# Supersymmetry and the LHC: An Introduction

Brent D. Nelson Northeastern University

8/11/2009

1974 The free world discovers "supergauge transformations"

1979 Technicolor as a theory of BSM physics is born

- 1974 The free world discovers "supergauge transformations"
- 1979 Technicolor as a theory of BSM physics is born
- 1981 The MSSM is born
- 1983  $W^{\pm}$  and Z bosons discovered
- 1983 SSC proposed
- 1986 Low-energy SUSY emerges as a likely outcome of 4D string theories
- 1987 Tevatron begins

- 1974 The free world discovers "supergauge transformations"
- 1979 Technicolor as a theory of BSM physics is born
- 1981 The MSSM is born
- 1983  $W^{\pm}$  and Z bosons discovered
- 1983 SSC proposed
- 1986 Low-energy SUSY emerges as a likely outcome of 4D string theories
- 1987 Tevatron begins
- 1988 "Fine-tuning" argument invented  $\Rightarrow$  Superpartners and/or Higgs will be discovered at LEP!
- 1989 LEP begins
- 1989 SUSY loop corrections to  $m_h$  computed  $\Rightarrow$  Surprise! They're substantial!
- 1991 Construction of SSC begins ("no lose machine for EWSB")
- 1992 Electroweak precision measurements from LEP firmly establish SUSY over technicolor as the world's favorite BSM model

- 1974 The free world discovers "supergauge transformations"
- 1979 Technicolor as a theory of BSM physics is born
- 1981 The MSSM is born
- 1983  $W^{\pm}$  and Z bosons discovered
- 1983 SSC proposed
- 1986 Low-energy SUSY emerges as a likely outcome of 4D string theories
- 1987 Tevatron begins
- 1988 "Fine-tuning" argument invented  $\Rightarrow$  Superpartners and/or Higgs will be discovered at LEP!
- 1989 LEP begins
- 1989 SUSY loop corrections to  $m_h$  computed  $\Rightarrow$  Surprise! They're substantial!
- 1991 Construction of SSC begins ("no lose machine for EWSB")
- 1992 Electroweak precision measurements from LEP firmly establish SUSY over technicolor as the world's favorite BSM model
- 1993 SSC canceled
- 2001 LEP ends fails to find Higgs **or** superpartners  $\Rightarrow$  Hand-wringing begins in earnest...

# **Outline**

- 1. Why do we need to look beyond the Standard Model?
- 2. What is supersymmetry? What is the MSSM?
- 3. What are the selling points for supersymmetry?
- 4. SUSY breaking and superpartner masses
- 5. Minimal supergravity: the simplest SUSY model
- 6. Signatures of SUSY at hadron colliders

References: S. Martin's SUSY Primer, Chung et al. Physics Reports **407** (2005) 1 (hep-ph/0312378), Branson et al. High  $p_T$ -physics at the LHC (hep-ph/0110021)  $\Rightarrow$  The SM gauge symmetry is  $SU(3)_c \times SU(2)_L \times U(1)_Y$ 

 $g^{a=1,...,8}_{\mu}, \quad W^{i=1,2,3}_{\mu}, \quad B_{\mu} \to \text{EWSB} \to g^{a=1,...,8}_{\mu}, \quad W^{+}_{\mu}W^{-}_{\mu}Z_{\mu}, \quad A_{\mu}$ 

⇒ Matter content involves three generations of quarks and leptons

$$\begin{pmatrix} u \\ d \end{pmatrix}_L, u_R, d_R; \begin{pmatrix} \nu \\ e \end{pmatrix}_L, e_R, \nu_R \longrightarrow \mathbf{16} \text{ of SO(10)}$$

 $\Rightarrow$  The Higgs sector consists of a *single* doublet of  $SU(2)_L$  which performs two crucial roles: EWSB and fermion mass generation

$$\phi = \begin{pmatrix} \phi^+ \\ \phi_0 \end{pmatrix}_L; \qquad \begin{array}{c} \mathcal{L} \ni D_{\mu} \phi^{\dagger} D^{\mu} \phi + Q \phi u_R + Q \phi^{\dagger} d_R + \dots \\ D_{\mu} = \partial_{\mu} + g A_{\mu} + \dots \end{array}$$

 $\Rightarrow$  Total SM Lagrangian contains 19 undetermined parameters

⇒ Has (thus far) provided a good-to-excellent description of almost all accelerator/particle physics data ever collected!!

# So Why Did we Build the LHC?

 $\Rightarrow$  Well...we still haven't found the Higgs field

 $\Rightarrow$  Even if we did, scalars have problems

$$m_h^2 \simeq m_0^2 + \frac{\lambda^2}{16\pi^2} \Lambda_{\rm UV}^2 + \dots$$

- Technicolor
- "Little Higgs" Models
- Composite Higgs Models
- Large Extra Dimensions
- Supersymmetry
- ..

 $\Rightarrow$  Three things the Standard Model *cannot* explain

- Baryogenesis
- Dark matter
- Dark energy

- $\Rightarrow$  What is meant by a "supermultiplet"?
- Irreducible multiplet of the supersymmetry algebra
- Fields of the same quantum number(s), but different spin
  - \* Chiral supermultiplet:  $F = \left\{ \widetilde{f}, f, F_f \right\}$

- $\Rightarrow$  What is meant by a "supermultiplet"?
- Irreducible multiplet of the supersymmetry algebra
- Fields of the same quantum number(s), but different spin
  - ★ Chiral supermultiplet:
  - Vector supermultiplet:

$$F = \left\{ \widetilde{f}, \ f, \ F_f \right\}$$
$$A_a = \left\{ \widetilde{\lambda}_a, \ (A_{\mu})_a, \ D_a \right\}$$

- $\Rightarrow$  What is meant by a "supermultiplet"?
- Irreducible multiplet of the supersymmetry algebra
- Fields of the same quantum number(s), but different spin
  - Chiral supermultiplet:
  - ★ Vector supermultiplet:
  - ★ Gravity supermultiplet:

$$F = \left\{ \widetilde{f}, \ f, \ F_f \right\}$$
$$A_a = \left\{ \widetilde{\lambda}_a, \ (A_\mu)_a, \ D_a \right\}$$
$$G = \left\{ g_{\mu\nu}, \ \widetilde{\psi}_\mu, \ b_\mu, \ M \right\}$$

- $\Rightarrow$  What is meant by a "supermultiplet"?
- Irreducible multiplet of the supersymmetry algebra
- Fields of the same quantum number(s), but different spin
  - ★ Chiral supermultiplet:
  - Vector supermultiplet:
  - ★ Gravity supermultiplet:

$$F = \left\{ \widetilde{f}, f, F_f \right\}$$
$$A_a = \left\{ \widetilde{\lambda}_a, (A_\mu)_a, D_a \right\}$$
$$G = \left\{ g_{\mu\nu}, \widetilde{\psi}_\mu, b_\mu, M \right\}$$

Supermultiplets must have a common mass if SUSY unbroken

- $\Rightarrow$  What is meant by a "supermultiplet"?
- Irreducible multiplet of the supersymmetry algebra
- Fields of the same quantum number(s), but different spin

★ Chiral supermultiplet: F = { *f*,
★ Vector supermultiplet: A<sub>a</sub> = { *λ*<sub>a</sub>

★ Gravity supermultiplet:

$$F = \left\{ \widetilde{f}, \ f, \ F_f \right\}$$
$$A_a = \left\{ \widetilde{\lambda}_a, \ (A_\mu)_a, \ D_a \right\}$$
$$G = \left\{ g_{\mu\nu}, \ \widetilde{\psi}_\mu, \ b_\mu, \ M \right\}$$

Supermultiplets must have a common mass if SUSY unbroken

 $\Rightarrow$  Auxiliary fields F, D, M,  $b_{\mu}$ 

- NOT dynamical no kinetic terms in the component Lagrangian
- Required for SUSY algebra to close "off-shell"
- Solve EOM  $\partial \mathcal{L} / \partial \Phi = 0$  for auxiliary fields to eliminate them (more later)

- $\Rightarrow$  What is meant by a "supermultiplet"?
- Irreducible multiplet of the supersymmetry algebra
- Fields of the same quantum number(s), but different spin

★ Chiral supermultiplet:

- ★ Vector supermultiplet:
- ★ Gravity supermultiplet:

$$F = \left\{ \widetilde{f}, f, F_f \right\}$$
$$A_a = \left\{ \widetilde{\lambda}_a, (A_\mu)_a, D_a \right\}$$
$$G = \left\{ g_{\mu\nu}, \widetilde{\psi}_\mu, b_\mu, M \right\}$$

Supermultiplets must have a common mass if SUSY unbroken

 $\Rightarrow$  Auxiliary fields F, D, M,  $b_{\mu}$ 

- NOT dynamical no kinetic terms in the component Lagrangian
- Required for SUSY algebra to close "off-shell"
- Solve EOM  $\partial \mathcal{L} / \partial \Phi = 0$  for auxiliary fields to eliminate them (more later)
- But important: vevs trigger SUSY breaking (more later)!

#### $\Rightarrow$ Fields of the MSSM

| Names                  |           | spin 0                                  | spin 1/2                                   | $SU(3)_C, SU(2)_L, U(1)_Y$                  |
|------------------------|-----------|-----------------------------------------|--------------------------------------------|---------------------------------------------|
| squarks, quarks        | Q         | $(\widetilde{u}_L \ \ \widetilde{d}_L)$ | $egin{array}{ccc} (u_L & d_L) \end{array}$ | $(\ {f 3},\ {f 2}\ ,\ {f 1\over 6})$        |
| ( $\times 3$ families) | $ar{u}$   | $\widetilde{u}_R^*$                     | $u_R^\dagger$                              | $( {f \overline{3}},  {f 1},  -{2\over 3})$ |
|                        | $ar{d}$   | $\widetilde{d}_R^*$                     | $d_R^\dagger$                              | $(\overline{f 3},\ {f 1},\ {f 1\over 3})$   |
| sleptons, leptons      | L         | $(\widetilde{ u} \ \widetilde{e}_L)$    | $( u e_L)$                                 | $(\ {f 1},\ {f 2},\ -{1\over 2})$           |
| ( $\times 3$ families) | $\bar{e}$ | $\widetilde{e}_R^*$                     | $e_R^\dagger$                              | (1, 1, 1)                                   |
| Higgs, higgsinos       | $H_u$     | $(H_u^+ \ H_u^0)$                       | $(\chi^+_u \ \chi^0_u)$                    | $(\ {f 1},\ {f 2},\ +{1\over 2})$           |
|                        | $H_d$     | $(H^0_d \ H^d)$                         | $(\chi^0_d \ \chi^d)$                      | $(\ {f 1},\ {f 2}\ ,\ -{1\over 2})$         |

#### $\Rightarrow$ Fields of the MSSM

| Names                  |           | spin 0                                  | spin 1/2                                   | $SU(3)_C, SU(2)_L, U(1)_Y$                   |
|------------------------|-----------|-----------------------------------------|--------------------------------------------|----------------------------------------------|
| squarks, quarks        | Q         | $(\widetilde{u}_L \ \ \widetilde{d}_L)$ | $egin{array}{ccc} (u_L & d_L) \end{array}$ | $(\ {f 3},\ {f 2}\ ,\ {f 1\over 6})$         |
| ( $\times 3$ families) | $ar{u}$   | $\widetilde{u}_R^*$                     | $u_R^\dagger$                              | $(\ {f \overline{3}},\ {f 1},\ -{2\over 3})$ |
|                        | $ar{d}$   | $\widetilde{d}_R^*$                     | $d_R^\dagger$                              | $(\overline{f 3},{f 1},{1\over 3})$          |
| sleptons, leptons      | L         | $(\widetilde{ u} \ \widetilde{e}_L)$    | $( u \ e_L)$                               | $(\ {f 1},\ {f 2}\ ,\ -{1\over 2})$          |
| ( $\times 3$ families) | $\bar{e}$ | $\widetilde{e}_R^*$                     | $e_R^\dagger$                              | (1, 1, 1)                                    |
| Higgs, higgsinos       | $H_u$     | $(H_u^+  H_u^0)$                        | $(\chi^+_u \ \chi^0_u)$                    | $(\ {f 1},\ {f 2},\ +{1\over 2})$            |
|                        | $H_d$     | $(H^0_d \ H^d)$                         | $(\chi^0_d \ \chi^d)$                      | $(\ {f 1},\ {f 2}\ ,\ -{1\over 2})$          |

Gauginos:  $\widetilde{B}, \, \widetilde{W}^0, \, \widetilde{W}^{\pm}, \, \widetilde{g}$ 

#### $\Rightarrow$ Fields of the MSSM

| Names                  |         | spin 0                                  | spin 1/2                                   | $SU(3)_C, SU(2)_L, U(1)_Y$                  |
|------------------------|---------|-----------------------------------------|--------------------------------------------|---------------------------------------------|
| squarks, quarks        | Q       | $(\widetilde{u}_L \ \ \widetilde{d}_L)$ | $egin{array}{ccc} (u_L & d_L) \end{array}$ | $(\ {f 3},\ {f 2}\ ,\ {f 1\over 6})$        |
| ( $\times 3$ families) | $ar{u}$ | $\widetilde{u}_R^*$                     | $u_R^\dagger$                              | $( {f \overline{3}},  {f 1},  -{2\over 3})$ |
|                        | $ar{d}$ | $\widetilde{d}_R^*$                     | $d_R^\dagger$                              | $(\overline{f 3},{f 1},{1\over 3})$         |
| sleptons, leptons      | L       | $(\widetilde{ u} \ \widetilde{e}_L)$    | $( u \ e_L)$                               | $(\ {f 1},\ {f 2},\ -{1\over 2})$           |
| ( $\times 3$ families) | $ar{e}$ | $\widetilde{e}_R^*$                     | $e_R^\dagger$                              | (1, 1, 1)                                   |
| Higgs, higgsinos       | $H_u$   | $(H_u^+  H_u^0)$                        | $(\chi^+_u \ \chi^0_u)$                    | $(\ {f 1},\ {f 2},\ +{1\over 2})$           |
|                        | $H_d$   | $(H^0_d \ H^d)$                         | $(\chi^0_d \ \chi^d)$                      | $(\ {f 1},\ {f 2}\ ,\ -{1\over 2})$         |

Gauginos:  $\widetilde{B}, \ \widetilde{W}^0, \ \widetilde{W}^{\pm}, \ \widetilde{g}$ 

 $\Rightarrow$  Why *two* Higgs doublets?

- One Higgs doublet of *scalars* OK for anomalies
- New fermions create triangle anomalies, e.g.  $Tr[Y^3] \neq 0$
- Need opposite hypercharge fermion

#### ⇒ Fields of the MSSM

| Names                  |         | spin 0                                  | spin 1/2                                   | $SU(3)_C, SU(2)_L, U(1)_Y$                   |
|------------------------|---------|-----------------------------------------|--------------------------------------------|----------------------------------------------|
| squarks, quarks        | Q       | $(\widetilde{u}_L \ \ \widetilde{d}_L)$ | $egin{array}{ccc} (u_L & d_L) \end{array}$ | $(\ {f 3},\ {f 2}\ ,\ {f 1\over 6})$         |
| ( $\times 3$ families) | $ar{u}$ | $\widetilde{u}_R^*$                     | $u_R^\dagger$                              | $(\ {f \overline{3}},\ {f 1},\ -{2\over 3})$ |
|                        | $ar{d}$ | $\widetilde{d}_R^*$                     | $d_R^\dagger$                              | $(\overline{f 3},{f 1},{1\over 3})$          |
| sleptons, leptons      | L       | $(\widetilde{ u} \ \widetilde{e}_L)$    | $( u \ e_L)$                               | $(\ {f 1},\ {f 2},\ -{1\over 2})$            |
| ( $\times 3$ families) | $ar{e}$ | $\widetilde{e}_R^*$                     | $e_R^\dagger$                              | (1, 1, 1)                                    |
| Higgs, higgsinos       | $H_u$   | $(H_u^+ \ H_u^0)$                       | $(\chi^+_u \ \chi^0_u)$                    | $(\ {f 1},\ {f 2},\ +{1\over 2})$            |
|                        | $H_d$   | $(H^0_d \ H^d)$                         | $(\chi^0_d \ \chi^d)$                      | $(\ {f 1},\ {f 2}\ ,\ -{1\over 2})$          |

Gauginos:  $\widetilde{B}, \ \widetilde{W}^0, \ \widetilde{W}^{\pm}, \ \widetilde{g}$ 

- $\Rightarrow$  Why *two* Higgs doublets?
- One Higgs doublet of *scalars* OK for anomalies
- New fermions create triangle anomalies, e.g.  $Tr[Y^3] \neq 0$
- Need opposite hypercharge fermion
- Yukawa (mass) interactions: superpotential cannot involve  $Qd_R^c(H_u)^{\dagger}$ , etc.

#### $\Rightarrow$ Fields of the MSSM

| Names                  |         | spin 0                                  | spin 1/2                                   | $SU(3)_C, SU(2)_L, U(1)_Y$                   |
|------------------------|---------|-----------------------------------------|--------------------------------------------|----------------------------------------------|
| squarks, quarks        | Q       | $(\widetilde{u}_L \ \ \widetilde{d}_L)$ | $egin{array}{ccc} (u_L & d_L) \end{array}$ | $(\ {f 3},\ {f 2}\ ,\ {f 1\over 6})$         |
| ( $\times 3$ families) | $ar{u}$ | $\widetilde{u}_R^*$                     | $u_R^\dagger$                              | $(\ {f \overline{3}},\ {f 1},\ -{2\over 3})$ |
|                        | $ar{d}$ | $\widetilde{d}_R^*$                     | $d_R^\dagger$                              | $(\overline{f 3},{f 1},{1\over 3})$          |
| sleptons, leptons      | L       | $(\widetilde{ u} \ \widetilde{e}_L)$    | $( u \ e_L)$                               | $(\ {f 1},\ {f 2},\ -{1\over 2})$            |
| ( $\times 3$ families) | $ar{e}$ | $\widetilde{e}_R^*$                     | $e_R^\dagger$                              | (1, 1, 1)                                    |
| Higgs, higgsinos       | $H_u$   | $(H_u^+ \ H_u^0)$                       | $(\chi^+_u \ \chi^0_u)$                    | $(\ {f 1},\ {f 2},\ +{1\over 2})$            |
|                        | $H_d$   | $(H^0_d \ H^d)$                         | $(\chi^0_d \ \chi^d)$                      | $(\ {f 1},\ {f 2}\ ,\ -{1\over 2})$          |

Gauginos:  $\widetilde{B}, \ \widetilde{W}^0, \ \widetilde{W}^{\pm}, \ \widetilde{g}$ 

- $\Rightarrow$  Why *two* Higgs doublets?
- One Higgs doublet of scalars OK for anomalies
- New fermions create triangle anomalies, e.g.  $Tr[Y^3] \neq 0$
- Need opposite hypercharge fermion
- Yukawa (mass) interactions: superpotential cannot involve  $Qd_R^c(H_u)^{\dagger}$ , etc. *Huh?*

- $\Rightarrow$  A supersymmetric Lagrangian is defined by a superpotential W
- A superpotential W must itself be a chiral (holomorphic) object
- This is ensured by making it a product of chiral supermultiplets only
- But how to find the component expression? *Tensor calculus*

- $\Rightarrow$  A supersymmetric Lagrangian is defined by a superpotential W
- A superpotential W must itself be a chiral (holomorphic) object
- This is ensured by making it a product of chiral supermultiplets only
- But how to find the component expression? *Tensor calculus*
- $\Rightarrow$  To make accounting easier, the superfield was invented

$$u_R^c = \tilde{u}_R^c + \theta u_R^c + \theta^2 F_u \qquad H_u = \begin{pmatrix} h_u^+ \\ h_u^0 \end{pmatrix} + \theta \begin{pmatrix} \chi_u^+ \\ \chi_u^0 \end{pmatrix} + \theta^2 \begin{pmatrix} F_{H_u}^+ \\ F_{H_u}^0 \end{pmatrix}$$

- $\Rightarrow$  A supersymmetric Lagrangian is defined by a superpotential W
- A superpotential W must itself be a chiral (holomorphic) object
- This is ensured by making it a product of chiral supermultiplets only
- But how to find the component expression? *Tensor calculus*
- $\Rightarrow$  To make accounting easier, the superfield was invented

$$u_R^c = \tilde{u}_R^c + \theta u_R^c + \theta^2 F_u \qquad H_u = \begin{pmatrix} h_u^+ \\ h_u^0 \end{pmatrix} + \theta \begin{pmatrix} \chi_u^+ \\ \chi_u^0 \end{pmatrix} + \theta^2 \begin{pmatrix} F_{H_u}^+ \\ F_{H_u}^0 \end{pmatrix}$$

• Tensor calculus made simple: every term must have two thetas

$$W \ni \lambda_u Q u_R^c H_u \to \lambda_u \tilde{u}_L u_R^{\dagger} \chi_u^0 + \lambda_u u_L \tilde{u}_R^c \chi_u^0 + \lambda_u u_L u_R^{\dagger} h_0 + \lambda_u \tilde{d}_L u_R^{\dagger} \chi_u^+ + \cdots$$

⇒ Most general gauge-invariant, renormalizable superpotential

 $W = W_{\rm MSSM} + W_R$ 

$$W_{\text{MSSM}} = \lambda_u Q u_R^c H_u + \lambda_d Q d_R^c H_d + \lambda_e L e_R^c H_d + \lambda_\nu L \nu_R^c H_u + \mu H_u H_d$$
$$W_R = \lambda' Q d_R^c L + \lambda'' d_R^c d_R^c u_R^c + \lambda''' L L e_R^c + \mu' L H_u$$

 $\Rightarrow$  The second set of terms are allowed, but dangerous!

• Higgs states can mix with leptons

⇒ Most general gauge-invariant, renormalizable superpotential

 $W = W_{\rm MSSM} + W_R$ 

$$W_{\text{MSSM}} = \lambda_u Q u_R^c H_u + \lambda_d Q d_R^c H_d + \lambda_e L e_R^c H_d + \lambda_\nu L \nu_R^c H_u + \mu H_u H_d$$
$$W_R = \lambda' Q d_R^c L + \lambda'' d_R^c d_R^c u_R^c + \lambda''' L L e_R^c + \mu' L H_u$$

 $\Rightarrow$  The second set of terms are allowed, but dangerous!

- Higgs states can mix with leptons
- New contributions to FCNC's at loop level  $\rightarrow \lambda \sim 0.05$

⇒ Most general gauge-invariant, renormalizable superpotential

 $W = W_{\rm MSSM} + W_R$ 

$$W_{\text{MSSM}} = \lambda_u Q u_R^c H_u + \lambda_d Q d_R^c H_d + \lambda_e L e_R^c H_d + \lambda_\nu L \nu_R^c H_u + \mu H_u H_d$$
$$W_R = \lambda' Q d_R^c L + \lambda'' d_R^c d_R^c u_R^c + \lambda''' L L e_R^c + \mu' L H_u$$

 $\Rightarrow$  The second set of terms are allowed, but dangerous!

- Higgs states can mix with leptons
- New contributions to FCNC's at loop level  $\rightarrow \lambda \sim 0.05$
- Products of operators can allow rapid proton decay ( $au_p \simeq au_n$ )

e.g. 
$$p \to \ell^+ \pi^0$$
 via  $\tilde{s}_R, \tilde{b}_R$  exchange  $\to \lambda' \lambda'' \sim 10^{-30}$ 

- $\Rightarrow$  So we introduce *R*-parity :  $R_p = (-1)^{3(B-L)+2s}$
- Without 2s we have "matter parity"

$$P_M(Q, u, d, L, e) = -1$$
  $P_M(H_u, H_d) = +1$ 

• With spin it instead separates SM from superpartners

$$R_p(q,\ell; h_u^0, h_d^0; (A_\mu)_a) = +1 \quad R_P(\tilde{q}, \tilde{\ell}; \chi_u^+, \chi_u^0, \chi_d^-, \chi_d^0; \lambda_a) = -1$$

 $\Rightarrow$  Require each term in component Lagrangian have  $R_p = +1$ 

- $\Rightarrow$  So we introduce *R*-parity :  $R_p = (-1)^{3(B-L)+2s}$
- Without 2s we have "matter parity"

$$P_M(Q, u, d, L, e) = -1$$
  $P_M(H_u, H_d) = +1$ 

• With spin it instead separates SM from superpartners

$$R_p(q,\ell; h_u^0, h_d^0; (A_\mu)_a) = +1 \quad R_P(\tilde{q}, \tilde{\ell}; \chi_u^+, \chi_u^0, \chi_d^-, \chi_d^0; \lambda_a) = -1$$

- $\Rightarrow$  Require each term in component Lagrangian have  $R_p = +1$
- Immediately forbids all of  $W_R$

- $\Rightarrow$  So we introduce *R*-parity :  $R_p = (-1)^{3(B-L)+2s}$
- Without 2s we have "matter parity"

$$P_M(Q, u, d, L, e) = -1$$
  $P_M(H_u, H_d) = +1$ 

• With spin it instead separates SM from superpartners

$$R_p(q,\ell; h_u^0, h_d^0; (A_\mu)_a) = +1 \quad R_P(\tilde{q}, \tilde{\ell}; \chi_u^+, \chi_u^0, \chi_d^-, \chi_d^0; \lambda_a) = -1$$

- $\Rightarrow$  Require each term in component Lagrangian have  $R_p = +1$
- Immediately forbids all of  $W_R$
- The "two superpartner" rule

- $\Rightarrow$  So we introduce *R*-parity :  $R_p = (-1)^{3(B-L)+2s}$
- Without 2s we have "matter parity"

$$P_M(Q, u, d, L, e) = -1$$
  $P_M(H_u, H_d) = +1$ 

• With spin it instead separates SM from superpartners

$$R_p(q,\ell; h_u^0, h_d^0; (A_\mu)_a) = +1 \quad R_P(\tilde{q}, \tilde{\ell}; \chi_u^+, \chi_u^0, \chi_d^-, \chi_d^0; \lambda_a) = -1$$

- $\Rightarrow$  Require each term in component Lagrangian have  $R_p = +1$
- Immediately forbids all of  $W_R$
- The "two superpartner" rule
- All superpartners must decay into *Lightest Supersymmetric Particle* (LSP)
  - ⋆ Stable
  - $\star$  Neutral and weakly-interacting  $\rightarrow$  cold dark matter?
  - Signature implication: missing energy

 $\Rightarrow$  Example: scalar field decays



⇒ Example: Top Yukawa (superpotential) interactions



• Consider corrections to SM  $m_H^2$  via  $\Delta V = -\lambda_S |H|^2 |s|^2$ 

$$\delta m_H^2 \Big|_{\mathbf{f}} = \frac{|\lambda_f|^2}{16\pi^2} \left[ -2\Lambda_{\rm UV}^2 + 6m_f^2 \ln(\lambda_{\rm UV}/m_f) \right]$$
  
$$\delta m_H^2 \Big|_{\mathbf{s}} = \frac{\lambda_s}{16\pi^2} \left[ \Lambda_{\rm UV}^2 - 2m_s^2 \ln(\lambda_{\rm UV}/m_s) \right]$$

• Scalars will diverge like fermions (logarithmically) provided

• Consider corrections to SM  $m_H^2$  via  $\Delta V = -\lambda_S |H|^2 |s|^2$ 

$$\delta m_H^2 \Big|_{\mathbf{f}} = \frac{|\lambda_f|^2}{16\pi^2} \left[ -2\Lambda_{\rm UV}^2 + 6m_f^2 \ln(\lambda_{\rm UV}/m_f) \right]$$
  
$$\delta m_H^2 \Big|_{\mathbf{s}} = \frac{\lambda_s}{16\pi^2} \left[ \Lambda_{\rm UV}^2 - 2m_s^2 \ln(\lambda_{\rm UV}/m_s) \right]$$

- Scalars will diverge like fermions (logarithmically) provided
  - ★ 2 scalars per every (Weyl) fermion

• Consider corrections to SM  $m_H^2$  via  $\Delta V = -\lambda_S |H|^2 |s|^2$ 

$$\delta m_H^2 \Big|_{\mathbf{f}} = \frac{|\lambda_f|^2}{16\pi^2} \left[ -2\Lambda_{\rm UV}^2 + 6m_f^2 \ln(\lambda_{\rm UV}/m_f) \right]$$
  
$$\delta m_H^2 \Big|_{\mathbf{s}} = \frac{\lambda_s}{16\pi^2} \left[ \Lambda_{\rm UV}^2 - 2m_s^2 \ln(\lambda_{\rm UV}/m_s) \right]$$

- Scalars will diverge like fermions (logarithmically) provided
  - $\star$  2 scalars per every (Weyl) fermion  $\checkmark$
  - $\star$  The couplings satisfy  $\lambda_S = |\lambda_F|^2$

• Consider corrections to SM  $m_H^2$  via  $\Delta V = -\lambda_S |H|^2 |s|^2$ 

$$\delta m_H^2 \Big|_{\mathbf{f}} = \frac{|\lambda_f|^2}{16\pi^2} \left[ -2\Lambda_{\rm UV}^2 + 6m_f^2 \ln(\lambda_{\rm UV}/m_f) \right]$$
  
$$\delta m_H^2 \Big|_{\mathbf{s}} = \frac{\lambda_s}{16\pi^2} \left[ \Lambda_{\rm UV}^2 - 2m_s^2 \ln(\lambda_{\rm UV}/m_s) \right]$$

- Scalars will diverge like fermions (logarithmically) provided
  - $\star$  2 scalars per every (Weyl) fermion  $\checkmark$
  - $\star$  The couplings satisfy  $\lambda_S = |\lambda_F|^2 \checkmark$
  - ★ The scalar and fermion masses are similar

$$\delta m_H^2 \big|_{\rm f+s} \sim \frac{\alpha}{16\pi^2} (m_f^2 - m_s^2) \ln\left(\Lambda_{\rm \scriptscriptstyle UV}/m\right)$$

• Hence the desire that  $(m_f^2 - m_s^2) \lesssim 1 \text{ TeV}$ 

- Dark matter
  - ★ LSP is  $R_p$ -odd → nothing to decay into → stable!
  - $\star$  Interacts weakly with itself and with SM  $\rightarrow$  perfect CDM candidate!
- Baryogenesis
  - SM has only one (small phase); MSSM has 40 of them!
  - Phase transition for EWSB strongly first-order in MSSM, but not in SM
- Gauge coupling unification



$$\mathcal{L}_{\text{soft}} \ni -\frac{1}{2}M_a\lambda_a\lambda_a$$

 $\Rightarrow$  Gluinos ( $M_3$ )

- Only s = 1/2, SU(3) adjoint-valued fields  $\rightarrow$  no mixing
- Adjoint irrep.'s  $\rightarrow$  self-conjugate  $\rightarrow$  "LH" and "RH" components identical
$\mathcal{L}_{\text{soft}} \ni -\frac{1}{2}M_a\lambda_a\lambda_a$ 

$$\Rightarrow$$
 Gluinos ( $M_3$ )

• Only 
$$s = 1/2$$
,  $SU(3)$  adjoint-valued fields  $\rightarrow$  no mixing

- Adjoint irrep.'s  $\rightarrow$  self-conjugate  $\rightarrow$  "LH" and "RH" components identical
- $\Rightarrow$  Charginos ( $M_2$  and  $\mu$ )
- Four 2-component spinors: Higgsinos ( $\chi_u^+$ ,  $\chi_d^-$ ) and W-inos ( $\tilde{\lambda}_1, \tilde{\lambda}_2$ )

$$\psi^{\pm} = \left(\widetilde{W}^+, \chi_u^+, \widetilde{W}^-, \chi_d^-\right)$$

- Charged  $\rightarrow$  can be grouped into two Dirac spinors ( $\widetilde{C}_1, \widetilde{C}_2$ )
- Mass terms in  $4 \times 4$  notation:  $\mathcal{L} \ni -\frac{1}{2} (\psi^{\pm})^T M_{\widetilde{C}} (\psi^{\pm}) + \text{c.c.}$

$$M_{\widetilde{C}} = \begin{pmatrix} 0 & X^T \\ X & 0 \end{pmatrix} \qquad X = \begin{pmatrix} M_2 e^{i\varphi_2} & g_2 \boldsymbol{v_u} \\ g_2 \boldsymbol{v_d} & \mu e^{i\varphi_\mu} \end{pmatrix}$$

# **Gaugino Masses II – EM Neutral Sector**

- $\Rightarrow$  Neutralinos ( $M_1$ ,  $M_2$  and  $\mu$ )
- Four 2-comp. spinors: Higgsinos ( $\chi_u^0, \chi_d^0$ ), W-ino  $\widetilde{\lambda}_3 = \widetilde{W}^0$  and B-ino  $\widetilde{B}$  $\psi^0 = \left(\widetilde{B}, \widetilde{W}^0, \chi_d^0, \chi_u^0\right)$
- Neutral  $\rightarrow$  can be organized into four Majorana spinors  $\widetilde{N}_i$

## **Gaugino Masses II – EM Neutral Sector**

- $\Rightarrow$  Neutralinos ( $M_1$ ,  $M_2$  and  $\mu$ )
- Four 2-comp. spinors: Higgsinos ( $\chi_u^0$ ,  $\chi_d^0$ ), W-ino  $\widetilde{\lambda}_3 = \widetilde{W}^0$  and B-ino  $\widetilde{B}$  $\psi^0 = \left(\widetilde{B}, \widetilde{W}^0, \chi_d^0, \chi_u^0\right)$
- Neutral ightarrow can be organized into four Majorana spinors  $\widetilde{N}_i$
- Mass terms in  $4 \times 4$  notation:  $\mathcal{L} \ni -\frac{1}{2} (\psi^0)^T M_{\widetilde{N}} (\psi^0) + \text{c.c.}$

$$M_{\widetilde{N}} = \begin{pmatrix} M_1 e^{i\varphi_1} & 0 & -g' v_d / \sqrt{2} & g' v_u / \sqrt{2} \\ 0 & M_2 e^{i\varphi_2} & g' v_d / \sqrt{2} & -g' v_u / \sqrt{2} \\ -g' v_d / \sqrt{2} & g' v_d / \sqrt{2} & 0 & -\mu e^{i\varphi_\mu} \\ g' v_u / \sqrt{2} & -g' v_u / \sqrt{2} & -\mu e^{i\varphi_\mu} & 0 \end{pmatrix}$$

 $\Rightarrow$  Typical eigenstates if  $M_1 \lesssim M_2 \ll \mu$ 

$$\begin{split} m_{\widetilde{N}_1} \simeq M_1; \quad m_{\widetilde{N}_2} \simeq m_{\widetilde{C}_1} \simeq M_2; \quad m_{\widetilde{N}_3} \simeq m_{\widetilde{N}_4} \simeq m_{\widetilde{C}_1} \simeq \mu \\ \widetilde{N}_1 \sim \widetilde{B}; \quad \widetilde{N}_2 \sim \widetilde{W}^0; \quad \widetilde{N}_3, \widetilde{N}_4 \sim \widetilde{H} \\ \widetilde{C}_1 \sim \widetilde{W}^{\pm}; \widetilde{C}_2 \sim \widetilde{H}^{\pm} \end{split}$$

⇒ A *supersymmetric* mass term

$$W \quad \ni \quad \mu H_u H_d = \mu (H_u)_{\alpha} (H_d)_{\beta} \epsilon^{\alpha\beta} \\ \rightarrow \quad \mu (\chi_u^+ \chi_d^- - \chi_u^0 \chi_d^0) + |\mu|^2 \left( |h_u^0|^2 + |h_d^0|^2 + |h_u^+|^2 + |h_d^-|^2 \right)$$

• Non-vanishing  $\mu$  needed to give Higgsinos mass

⇒ A *supersymmetric* mass term

$$W \quad \ni \quad \mu H_u H_d = \mu (H_u)_{\alpha} (H_d)_{\beta} \epsilon^{\alpha\beta} \\ \rightarrow \quad \mu (\chi_u^+ \chi_d^- - \chi_u^0 \chi_d^0) + |\mu|^2 \left( |h_u^0|^2 + |h_d^0|^2 + |h_u^+|^2 + |h_d^-|^2 \right)$$

- Non-vanishing  $\mu$  needed to give Higgsinos mass
- But if  $V_H \sim m_H^2 |h|^2 + \lambda |h|^4$ , need  $m_H^2 < 0$  if we want  $\langle h \rangle \neq 0$

⇒ A *supersymmetric* mass term

$$W \quad \ni \quad \mu H_u H_d = \mu (H_u)_{\alpha} (H_d)_{\beta} \epsilon^{\alpha\beta} \\ \rightarrow \quad \mu (\chi_u^+ \chi_d^- - \chi_u^0 \chi_d^0) + |\mu|^2 \left( |h_u^0|^2 + |h_d^0|^2 + |h_u^+|^2 + |h_d^-|^2 \right)$$

- Non-vanishing  $\mu$  needed to give Higgsinos mass
- But if  $V_H \sim m_H^2 |h|^2 + \lambda |h|^4$ , need  $m_H^2 < 0$  if we want  $\langle h \rangle \neq 0$
- So we need  $|\mu|^2 \lesssim m_{\widetilde{f}}^2 \sim (1 \ {\rm TeV})^2$

 $\Rightarrow$  But not tied to SUSY breaking, so no need to be EW scale!

- $\Rightarrow$  Assume that only Higgs fields obtain vevs at minimum
- Minimum can always be found such that  $\langle h_u^+ \rangle = \langle h_d^- \rangle = 0$
- Phase rotations on remaining two Higgs states can make potential real and  $\langle h_u^0 \rangle = v_u$ ,  $\langle h_d^0 \rangle = v_d$  real and positive

$$V = (|\mu|^2 + m_{H_u}^2) |h_u^0|^2 + (|\mu|^2 + m_{H_d}^2) |h_d^0|^2 - (bh_u^0 h_d^0 + \text{ c.c.}) + \frac{1}{8} (g^2 + g'^2) (|h_u^0|^2 - |h_d^0|^2)^2$$

- $\Rightarrow$  Assume that only Higgs fields obtain vevs at minimum
- Minimum can always be found such that  $\langle h_u^+ \rangle = \langle h_d^- \rangle = 0$
- Phase rotations on remaining two Higgs states can make potential real and  $\langle h_u^0 \rangle = v_u$ ,  $\langle h_d^0 \rangle = v_d$  real and positive

$$V = (|\mu|^2 + m_{H_u}^2) |h_u^0|^2 + (|\mu|^2 + m_{H_d}^2) |h_d^0|^2 - (bh_u^0 h_d^0 + \text{ c.c.}) + \frac{1}{8} (g^2 + g'^2) (|h_u^0|^2 - |h_d^0|^2)^2$$

 $\Rightarrow$  Two minimization conditions  $\left< \partial V / \partial h_u^0, h_d^0 \right> = 0$ 

$$\mu^2 = \frac{m_{H_d}^2 - m_{H_u}^2 \tan^2 \beta}{\tan^2 \beta - 1} - \frac{1}{2}M_z^2; \quad 2b = (m_{H_d}^2 + m_{H_u}^2 + 2\mu^2)\sin 2\beta$$

- Here we have introduced the parameter  $\tan \beta = v_u/v_d$
- Note that  $v^2 = v_u^2 + v_d^2 \simeq (174 \text{ GeV})^2$  and  $M_z^2 = \frac{v^2}{2} (\frac{5}{3} (g')^2 + g_2^2)$

#### **Higgs Sector II: Mass Eigenstates**

 $\Rightarrow$  Two doublets  $\rightarrow$  8 d.o.f. - 3 d.o.f. (eaten) = 5 Higgs eigenstates

$$A \sim \sin\beta \operatorname{Im}(h_d^0) + \cos\beta \operatorname{Im}(h_u^0)$$
$$H^+ \sim \cos\beta h_u^+ + \sin\beta (h_d^-)^*$$
$$\begin{pmatrix} h^0 \\ H^0 \end{pmatrix} \sim \sqrt{2} \begin{pmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{pmatrix} \begin{pmatrix} \operatorname{Re}[h_u^0] - v_u \\ \operatorname{Re}[h_d^0] - v_d \end{pmatrix}$$

 $\Rightarrow$  Two doublets  $\rightarrow$  8 d.o.f. - 3 d.o.f. (eaten) = 5 Higgs eigenstates

$$A \sim \sin\beta \operatorname{Im}(h_d^0) + \cos\beta \operatorname{Im}(h_u^0)$$
$$H^+ \sim \cos\beta h_u^+ + \sin\beta (h_d^-)^*$$
$$\begin{pmatrix} h^0 \\ H^0 \end{pmatrix} \sim \sqrt{2} \begin{pmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{pmatrix} \begin{pmatrix} \operatorname{Re}[h_u^0] - v_u \\ \operatorname{Re}[h_d^0] - v_d \end{pmatrix}$$

 $\Rightarrow$  Masses of these are given by

$$m_A^2 = 2b/\sin 2\beta; \quad m_{H^{\pm}}^2 = m_A^2 + m_W^2$$
$$m_{h^0,H^0}^2 = \frac{1}{2} \left( m_A^2 + M_z^2 \mp \sqrt{(m_A^2 + M_z^2)^2 - 4M_z^2 m_A^2 \cos^2 2\beta} \right)$$

 $\Rightarrow$  Parameterizing the Higgs sector: minimization conditions allow swap of  $\mu,\,b$  for  $M_z,\,\tan\beta$ 

- $\Rightarrow$  What is a *hidden sector*?
- No tree-level (renormalizable) interaction of MSSM fields to SUSY breaking order parameters  $\langle F \rangle$ ,  $\langle D \rangle$ ,  $\langle M \rangle$
- Thus  $\langle D_Y \rangle \neq 0$  and  $\langle F_{H_u,H_d} \rangle \neq 0$  can't be dominant source of SUSY breaking

- $\Rightarrow$  What is a *hidden sector*?
- No tree-level (renormalizable) interaction of MSSM fields to SUSY breaking order parameters  $\langle F \rangle$ ,  $\langle D \rangle$ ,  $\langle M \rangle$
- Thus  $\langle D_Y \rangle \neq 0$  and  $\langle F_{H_u,H_d} \rangle \neq 0$  can't be dominant source of SUSY breaking
- Instead, expect terms like  $\langle F_X/M_X \rangle \lambda_a \lambda_a$  or  $\langle |F_X|^2/M_X^2 \rangle k_{ij}(\phi^i)^* \phi^j$
- That is, SUSY breaking is *spontaneous* in the hidden sector, but appears *explicitly* in our sector

- $\Rightarrow$  What is a *hidden sector*?
- No tree-level (renormalizable) interaction of MSSM fields to SUSY breaking order parameters  $\langle F \rangle$ ,  $\langle D \rangle$ ,  $\langle M \rangle$
- Thus  $\langle D_Y \rangle \neq 0$  and  $\langle F_{H_u,H_d} \rangle \neq 0$  can't be dominant source of SUSY breaking
- Instead, expect terms like  $\langle F_X/M_X \rangle \lambda_a \lambda_a$  or  $\langle |F_X|^2/M_X^2 \rangle k_{ij}(\phi^i)^* \phi^j$
- That is, SUSY breaking is *spontaneous* in the hidden sector, but appears *explicitly* in our sector
- $\Rightarrow$  Why must we break SUSY in one?
- If no hidden sector, then at least some scalars lighter than fermions!
- Spontaneous breaking in our sector can only be through  $\langle D_Y, D_3 \rangle \neq 0$  and  $\langle F_{H_u, H_d} \rangle \neq 0$

$$m_{\tilde{t}}^2 \sim m_t^2 \pm (aD_Y + bD_3)$$

As a result of putting SUSY breaking in a hidden sector that models are classifed more by how SUSY breaking is transmitted to our sector than how it was actually broken in the first place. As a result of putting SUSY breaking in a hidden sector that models are classifed more by how SUSY breaking is transmitted to our sector than how it was actually broken in the first place.

- ⇒ Sterile (gauge-singlet) chiral superfield as spurion
- Imagine soft Lagrangian given by

$$-\frac{F_G}{M_G}\sum_a \lambda_a \lambda_a - |\frac{F_S}{M_S}|^2 \sum_f k_{ij}^f (\widetilde{\phi}_f^i)^* \widetilde{\phi}_f^j - \frac{1}{2} \frac{F_B}{M_B} \mu H_u H_d - \frac{F_A}{M_A} \sum_\alpha \lambda_{ijk}^\alpha \widetilde{\phi}^i \widetilde{\phi}^j \widetilde{\phi}^k$$

- $M_i$  are the scales of the mediation fields (what's been integrated out)
- If we take  $M_i = M_{PL}$  we have gravity mediation

As a result of putting SUSY breaking in a hidden sector that models are classifed more by how SUSY breaking is transmitted to our sector than how it was actually broken in the first place.

- ⇒ Sterile (gauge-singlet) chiral superfield as spurion
- Imagine soft Lagrangian given by

$$-\frac{F_G}{M_G}\sum_a \lambda_a \lambda_a - |\frac{F_S}{M_S}|^2 \sum_f k_{ij}^f (\widetilde{\phi}_f^i)^* \widetilde{\phi}_f^j - \frac{1}{2} \frac{F_B}{M_B} \mu H_u H_d - \frac{F_A}{M_A} \sum_\alpha \lambda_{ijk}^\alpha \widetilde{\phi}^i \widetilde{\phi}^j \widetilde{\phi}^k$$

- M<sub>i</sub> are the scales of the mediation fields (what's been integrated out)
- If we take  $M_i = M_{PL}$  we have gravity mediation

⇒ Resulting soft terms

$$m_{1/2} = \frac{F_G}{M_G}$$
,  $m_0^2 = |\frac{F_S}{M_S}|^2$ ,  $a_{ijk}^{\alpha} = \lambda_{ijk}^{\alpha} \frac{F_A}{M_A}$ ,  $b = \mu \frac{F_B}{M_B}$ 

# **Minimal Supergravity (mSUGRA)**

Defined by parameter set:  $\{m_{1/2}, m_0, A_0, \tan\beta, \operatorname{sgn}(\mu)\}$ 



**mSUGRA Sample Spectrum A** 



## **mSUGRA Sample Spectrum B**



- $\Rightarrow$  Break up into channels by *n* jets + *m* leptons +  $I_T$
- 0 leptons +  $\geq 2$  jets +  $E_T$  ("multijet" channel)
- 2 leptons +  $I_T$ 
  - Same Sign (SS) vs. Opposite Sign (OS) sub-samples
  - $\star$  Can be "clean" (no jets) or with  $\geq 2$  jets
- Trilpetons, clean or  $\geq 2$  jets, +  $E_T$

⇒ Remember: invisible, stable LSP means **no mass peaks**!

- $\Rightarrow$  Squark, gluino production rate  $\sim$  SM jet production at similar  $Q^2$
- ⇒ Multijet signal via quark decays

 $\widetilde{g} \to q \overline{q} \widetilde{N}_i^0$ ,  $\widetilde{g} \to t \widetilde{t}$ ,  $\widetilde{q}_L \to q \widetilde{C}_i^{\pm}$ , etc. [and subsequent cascades]

- ⇒ The ultimate *inclusive signature*
- Just count events does not matter what the original particles were
- Look for excess over (known) SM rate

- $\Rightarrow$  Squark, gluino production rate  $\sim$  SM jet production at similar  $Q^2$
- ⇒ Multijet signal via quark decays

 $\widetilde{g} \to q \overline{q} \widetilde{N}_i^0$ ,  $\widetilde{g} \to t \widetilde{t}$ ,  $\widetilde{q}_L \to q \widetilde{C}_i^{\pm}$ , etc. [and subsequent cascades]

- ⇒ The ultimate *inclusive signature*
- Just count events does not matter what the original particles were
- Look for excess over (known) SM rate

 $\Rightarrow$  Kinematic variable  $M_{\text{eff}} \equiv E_T + \sum_i (p_T^{\text{jet}})_i$  can be useful in SUSY discovery

- Claim: peak in  $M_{\text{eff}}$  distribution proportional to  $M_{\text{SUSY}} \equiv \min(M_{\tilde{g}}, M_{\tilde{q}})$
- This channel alone can find SUSY for squarks/gluinos up to 1 TeV with 1 fb<sup>-1</sup> – 2.5-3 TeV for 300 fb<sup>-1</sup>

# $M_{\rm eff}$ and Kinematic Distributions

- SM backgrounds
  - ★ QCD ( $gg \rightarrow gg$ , etc.) with extra jets from parton showers
  - Heavy flavor production
  - \* Z + multijets with  $Z \rightarrow \tau \tau$ or  $Z \rightarrow \nu \nu$
  - \* W + multijets with  $W \to \tau \nu$ or  $W \to \ell \nu$
- A typical set of cuts
  - $\star~E_T^{
    m jet} \geq$  100, 50, 50, 50 GeV
  - ★ No isolated lepton with  $p_T > 20 \text{ GeV}$
  - ★ Transverse sphericity  $S_T > 0.2$
  - ★ Transverse plane angle  $30^{o} < \Delta \phi(E_T, j) < 90^{o}$
  - $\star E_T > 0.2 M_{\text{eff}}$



- $\Rightarrow$  Multi-lepton signals are comparable in reach/discovery to multijets with  $100 \, {\rm fb}^{-1}$  data
- $\Rightarrow$  OS Dilepton events (inclusive)
- Many paths to this signature in SUSY:  $\widetilde{C}_1^{\pm}$  pair production,  $\widetilde{N}_2^0 \rightarrow \widetilde{\ell}^{\pm} \ell^{\mp} \rightarrow \widetilde{N}_1^0 \ell^+ \ell^-$ ,  $\widetilde{q}_L \rightarrow \widetilde{N}_2^0 q \rightarrow \widetilde{N}_1^0 \ell^+ \ell^- q$ , etc.
- Main SM background is  $t\bar{t}$  production
- Inclusive OS and *same flavor* can be a SUSY discovery mode



- $\Rightarrow$  Multi-lepton signals are comparable in reach/discovery to multijets with  $100 \, {\rm fb}^{-1}$  data
- $\Rightarrow$  OS Dilepton events (inclusive)
- Many paths to this signature in SUSY:  $\widetilde{C}_1^{\pm}$  pair production,  $\widetilde{N}_2^0 \rightarrow \widetilde{\ell}^{\pm} \ell^{\mp} \rightarrow \widetilde{N}_1^0 \ell^+ \ell^-$ ,  $\widetilde{q}_L \rightarrow \widetilde{N}_2^0 q \rightarrow \widetilde{N}_1^0 \ell^+ \ell^- q$ , etc.
- Main SM background is  $t\bar{t}$  production
- Inclusive OS and *same flavor* can be a SUSY discovery mode



 $\Rightarrow$  Reduction of SM background

- Use  $e^+e^- + \mu^+\mu^- e^\pm\mu^\mp$ sample to reduce  $t\bar{t}$
- Veto  $Z \rightarrow \ell \ell$  via invariant mass cut  $M_{\ell \ell} \neq M_Z \pm 10 \text{ GeV}$
- Off shell  $\gamma$  and Z decays to taus reduced by  $\Delta\phi(\ell\ell) \leq 150^o$

## **Multilepton Events: OS dileptons**



# **Multilepton Events: SS Dileptons & Trileptons**

- $\Rightarrow$  SS dilepton events often said to be "truly SUSY" signature
- SS usually seen as gluino-driven; result of Majorana nature

$$\widetilde{g} \to q\widetilde{q} \to qq'\widetilde{C}_1^{\pm} \to qq'W^{\pm}\widetilde{N}_1^0$$

- Signature is  $\mathbb{E}_T$  + jets + pair of same-sign dileptons
- SM background very low and easy to control for...

- $\Rightarrow$  SS dilepton events often said to be "truly SUSY" signature
- SS usually seen as gluino-driven; result of Majorana nature

 $\widetilde{g} \to q\widetilde{q} \to qq'\widetilde{C}_1^{\pm} \to qq'W^{\pm}\widetilde{N}_1^0$ 

- Signature is  $\mathbb{E}_T$  + jets + pair of same-sign dileptons
- SM background very low and easy to control for...
- ⇒ "Clean" Trilepton Events: the Gold-Plated Signature
- Lack of jets tends to mean chargino/neutralino production

$$pp \to \widetilde{C}_1^\pm \widetilde{N}_2^0 \to \widetilde{N}_1^0 \ell \ell \ \widetilde{N}_1^0 \ell \nu$$

- Separation of production mechanism (i.e. isolation of  $\widetilde{C}_1^{\pm}\widetilde{N}_2^0$  sample) seems possible with cuts
- Various kinematic distributions can be formed  $m_{\ell_i \ell_j}$

Endpoint of effective mass distribution of the two leptons carries information.....but on what?

$$\widetilde{N}_2^0 \to \widetilde{N}_1^0 \ell^+ \ell^-$$
 then  $M_{\ell\ell}^{\max} = M_{\widetilde{N}_2^0} - M_{\widetilde{N}_1^0}$ 

 $\widetilde{N}_2^0 \to \widetilde{\ell^{\pm}} \ell^{\mp} \to \widetilde{N}_1^0 \ell^+ \ell^- \text{ then } M^{\max}_{\ell \ell} = \frac{1}{M_{\widetilde{\ell}}} \sqrt{(M^2_{\widetilde{N}_2^0} - M^2_{\widetilde{\ell}})(M_{\widetilde{\ell}^2} - M^2_{\widetilde{N}_1^0})}$ 

⇒ Shape of distribution is supposed to tell them apart



Rule of thumb: SUSY "discovery" can be done with **inclusive**, model-independent observations – parameter extraction requires **exclusive**, model-dependent techniques

 $\Rightarrow$  The background to SUSY is more SUSY!

Rule of thumb: SUSY "discovery" can be done with **inclusive**, model-independent observations – parameter extraction requires **exclusive**, model-dependent techniques

#### $\Rightarrow$ The background to SUSY is more SUSY!

Lots of distribution features will be extracted...to what end?

- Example: trilepton + 2 jets allows all sorts of pairings. Do they have information content if you don't know the spectrum? Can you separate chargino/neutralino sources from squark/gluino sources?
- Example: SS dileptons can come from gluinos, but also from

$$pp \to \tilde{b}_L \bar{\tilde{b}}_L X \to t \tilde{C}_1^- t \tilde{C}_1^+ X$$

Endpoint value measures something different here!

⇒ Need to use strict cuts to separate multiple channels leading to same inclusive topology...reduction in signal and significance

- $\Rightarrow$  We are passing from theory-rich era of SUSY to data-rich era!
- $\Rightarrow$  Analysis Approach and Synthesis Approach will likely both be needed

- $\Rightarrow$  We are passing from theory-rich era of SUSY to data-rich era!
- ⇒ Analysis Approach and Synthesis Approach will likely both be needed
- Synthesis direction
  - ★ Enlarge the set of inclusive signatures
  - Improve SM baseline determination
  - Study ability to separate regions with a model's parameter space and models from one another
- Analysis direction
  - Enlarge toolbox using non-SUGRA cases
  - ⋆ Robustness analysis: from points to lines to footprints

- $\Rightarrow$  We are passing from theory-rich era of SUSY to data-rich era!
- ⇒ Analysis Approach and Synthesis Approach will likely both be needed
- Synthesis direction
  - ★ Enlarge the set of inclusive signatures
  - Improve SM baseline determination
  - Study ability to separate regions with a model's parameter space and models from one another
- Analysis direction
  - Enlarge toolbox using non-SUGRA cases
  - Robustness analysis: from points to lines to footprints
- $\Rightarrow$  Towards a decision tree style strategy
- 1. Organize analysis tools by needed inputs/model dependence
- 2. Use least dependent tools with global fits to paradigms
- 3. Cross check promising paradigms against other analysis measurements
- 4. Organize flow chart as function of integrated luminosity

**Supporting Slides** 

Examples of exclusive analysis: separating contributions to  $M_{\rm eff}$  and  $m_{\ell\ell}$ 

In multijet channel, how do you know what fraction of the sample is from production of gluino pairs and what fraction from squark pairs?
Examples of exclusive analysis: separating contributions to  $M_{\rm eff}$  and  $m_{\ell\ell}$ 

In multijet channel, how do you know what fraction of the sample is from production of gluino pairs and what fraction from squark pairs?

- Jet multiplicity: assume for first/second generation squarks "R" and "L" produced more or less equally
- BR( $\widetilde{q}_R \rightarrow q \widetilde{N}_1^0$ ) nearly 100%  $\rightarrow$  one jet per decay
- $\tilde{q}_L$  and  $\tilde{g}$  have different decays such as  $\tilde{g} \to q\bar{q}\tilde{C}_i^{\pm}$  and  $\tilde{g} \to q\bar{q}\tilde{N}_i^{\pm} \to$  usually more jets per decay

In SS dilepton + jets sample, how do you separate gluino from squark contributions?

Examples of exclusive analysis: separating contributions to  $M_{\rm eff}$  and  $m_{\ell\ell}$ 

In multijet channel, how do you know what fraction of the sample is from production of gluino pairs and what fraction from squark pairs?

- Jet multiplicity: assume for first/second generation squarks "R" and "L" produced more or less equally
- BR( $\widetilde{q}_R \rightarrow q \widetilde{N}_1^0$ ) nearly 100%  $\rightarrow$  one jet per decay
- $\tilde{q}_L$  and  $\tilde{g}$  have different decays such as  $\tilde{g} \to q\bar{q}\tilde{C}_i^{\pm}$  and  $\tilde{g} \to q\bar{q}\tilde{N}_i^{\pm} \to$  usually more jets per decay

In SS dilepton + jets sample, how do you separate gluino from squark contributions?

- Charge asymmetry: initial state at LHC is *pp*
- Cascade decays from g̃q and q̃q events leads to a larger cross section for positive SS pairs than for negative ones
- This asymmetry is sensitive to  $m_{\widetilde{g}}/m_{\widetilde{q}}$

- ⇒ Many such algorithms known, but all are devised within limited model regimes (all mSUGRA)
- BR( $\tilde{q}_R \rightarrow q \tilde{N}_1^0$ ) nearly 100% artifact of LSP being 99% B-ino
- Obtaining  $m_{\tilde{g}}/m_{\tilde{q}}$  from charge asymmetry in SS dileptons really requires outside knowledge of  $m_{\tilde{g}}$  to work well
- Gluino mass measurement algorithm based on mSUGRA point where  $m_{\tilde{\ell}_R}^2 \simeq M_{\tilde{N}_2^0} M_{\tilde{N}_1^0}$  by no means a general result

- ⇒ Many such algorithms known, but all are devised within limited model regimes (all mSUGRA)
- BR( $\tilde{q}_R \rightarrow q \tilde{N}_1^0$ ) nearly 100% artifact of LSP being 99% B-ino
- Obtaining  $m_{\tilde{g}}/m_{\tilde{q}}$  from charge asymmetry in SS dileptons really requires outside knowledge of  $m_{\tilde{g}}$  to work well
- Gluino mass measurement algorithm based on mSUGRA point where  $m_{\widetilde{\ell}_R}^2 \simeq M_{\widetilde{N}_2^0} M_{\widetilde{N}_1^0}$  by no means a general result
- ⇒ Even once exclusive samples are prepared, information from distributions may be misleading because of **phases**
- Can shift peak of  $M_{\rm eff}$  distributions by significant amount
- Can change the **shape** of kinematic distributions and **location** of endpoint
- Can effect cross-sections for gaugino production [clean trilepton signal] by 30-40%
- Relation between mass eigenstates and soft Lagrangian parameters becomes more complicated