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Why study energy loss?

Even the very best 
detectors don’t tell 
you what the 
particles are!



Why (cont.)?

Understanding 
energy loss 
mechanisms can lead 
to new experiments - 
Fly’s Eye (later 
HiRES) relies only on 
fluorescence and 
clear air to detected 
the very highest 
energy particles.
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Nomenclature

• N - number density

• Z - number protons

• A=N+Z

• mN - nucleon mass

• m - electron mass 

•  ! - mass density, 
radial coordinate

• T - deposited 
energy

• E - incident energy

• dx - medium 
thickness

•  " - dielectric 
constant

•  # - scattering 
angle in lab

•  $=e2/hc/2%=1/137

•  & - angular 
frequency



Single particle kinematics
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In a magnetic field:

•Identifying a particle is (generally) 
the same as measuring it mass

•Need to measure two quantities to 
find m.



General Problem
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•dE/dx - particle
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1a. Ionization loss - adding 
single collisions

Simplest approach - treat as a series of 
Coulomb collisions with atomic 
electrons:
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Kinematics

•Some trig: 

•Momentum transfer:

•Recoil kinetic energy:

•Solid angle:   
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A quantum correction for 
spin

e
#

•Spin of electron rotated 
through angle # during 
collision

•Average over initial, sum 
over final states gives 
probability factor
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Sum over many scatters…
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•Sum over N scattering sites particle passes

•Minimum energy ">>Ebinding

Observations:

1. Goes like 1/'2 -> very large loss at low '

2. Goes like ln ( as '->1, but density effect

3. Independent of particle mass -> can measure '

4. Distant collisions (Bethe 1930), ")>h<&>/2%



•Emulsion pictures 
of %)µ-e decays

• µ all have same 
length -> two body 
% decay

• µ track gets wider 
near end -> 1/'2 
energy loss



Minimum ionizing

Leading factor                         gives charcteristic 
energy loss.

For most materials:

•N=!/AmN

•Z=A/2! 
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Minimum occurs at (~4:



From PDG - dE/dx for 
various materials

•(dE/dx)min=1-2MeV/g-cm2

•Minimum occurs near E=4m





1b. Single collision in 
dielectric
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Solve for potentials with 
source terms:



Calculation of energy loss
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*is a characteristic length if the fields

For '~1 and *'<<1 (near field region)
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From PDG - dE/dx for 
various materials

•(dE/dx)min=1-2MeV/g-cm2, 

depends on Z/A.

•Minimum occurs near E=4m

•“Relativistic rise” by 
10-20% to (=10,000







•Masses:

•Me=0.0005 GeV

•M%=0.14 GeV

•MK=0.49 GeV

•Mp=0.938 GeV

•Thickness of bands 
due to statistical 
fluctuations in 
energy loss

•Separation up to 
~10 GeV



Further topics

• High energy secondary electrons (“+-
rays”)

• Radiation from collisions 
(bremstrahlung)

• Electromagnetic showers (cascade of 
pair production from initial e or (.

• Hadronic showers



2. Cerenkov radiation - the 
radiation field in a 

homogeneous medium
•Energy lost in photons -> radiation field from charged 
particle

•Mechanism - polarization of medium changes as 
particle passes

+
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Picture of matter

View atoms in matter as “harmonically 
bound”, which gives a simple expression 
for dielectric constant:
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Plasma frequency:

Oscillation frequency 
of a fully ionized 
plasma



Calculation of energy loss
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Fields (we have already done 
the work)

Cerenkov involves collisions far from the particle 
trajectory, *b>>1, asymptotic form for Ko, K1:
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Radiation
Direction: 
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Cerenkov radiation 
occurs near atomic 
resonances -> 
radiation in optical at 
angle #c



The usual picture….



Intensity of Radiation

Photon flux into Cerenkov cone:

dx
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Integrate over PMT response: dN(/dx=(90/cm)sin2#c



 Superkamiokande - nwater=1.33

Single electron event



Very high energy neutrinos

-

-+p->e+XRF Cerenkov 
photons



Goldstone DSN 
receiver

•Able to image the 
entire moon

•Power sensitivity - pW

•Large backgrounds - 
operate two dishes in 
coincidence

•Typical signal:





Moon imaged by RF Cerenkov 
from EHE neutrinos



Results

30 h data - unique 
results within factor 
of 100 of models



3. Transition radiation -  
radiation field in a 

heterogeneous medium
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Particle crossing 
interface causes 
coherent change in 
surface charge 
density -> radiation



Coherent radiation region
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factor

Total phase should be close to one.



Conditions for radiation
Two conditions for coherence:

1. n(&)('sin#~n(&)(#<1 -> collinear, for ( large (~1000)

2. (&/c)[1/')n(&)cos#]d(&)<1 )> dmax~(c/&p~10-6 m

Transition radiation:

Emitted at the interface

Propagates along with charged particle

Requires (>1000

At typical collider energies, TR is a signal for electrons



Radiation spectrum
•Must compute fields, 
complicated!

•Dimensionless frequency:

•Peak around -=1 -> 10 keV
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Total intensity
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Total intensity:

Only 10-3 photons per interface; 
need many interfaces ->

•Stack up foils

•Polypropylene fleece

Need to detect ~10 keV photons





TR photon detection:

•Thin walls

•High Z absorber (Xe)

•Proportional amplification

•Timing for tracking, 
better discrimination







AMS - detect cosmic rays, must discriminate high energy e+/p 











Simulated LHC event 
for B decays



4. Nuclear recoil - single 
collisions in a lattice

•Galactic dynamics -> dark matter !=0.3GeV/cm3, v=270 
km/s ('=0.0008)

•mDM=10-1000 GeV  (accelerator limits)

•May weakly interact via neutral current:

• *=h/p~20-2000 fm -> coherently interacts with all 
nucleons (mostly neutrons):
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Detection

T

Must detect single interaction with a nucleus, T~5 keV

-> use nucleus in a semiconductor crystal lattice

Energy loss at T~5 keV:

•1/3 ionization (conduction 
electrons)

•2/3 phonons (lattice 
vibrations)

Major background: ( rays -> 
ionization only



Early attempts: lower 
threshold on '' decay 
experiments, detect 
ionization only 



CDMS ZIP detector

•One side collected ionization elections

•Other side covered with s.c. phonon detections

10 cm 



Rejection of ( backgrounds Sensitivity improvement

by 10,000,000!

(in twenty years..._





Numbers

• (dE/dx)min=1.8 MeV/g/cm2, (~4

• 30 eV/ion dense matter, ~0.1 eV/e-h pair in 
semiconductor, 100eV/photon in scintillator

• Cerenkov: cos#c=1/'n,  N(=(90/cm)sin2#

• TR: 10-3 photons/interface, 10 keV

• Nuclear recoil: T~5 keV, 1/3 ionization, 2/3 
phonons, all ionization for photons
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