Searches for New Physics in Colliders

Ben Brau University of Massachusetts, Amherst

NEPPSR 2009

Outline

- Grandiose Beginning: Why do we search?
- Hadron Collider Experiments
 - What do you produce in pp or ppbar collisions?
 - How do we detect those things?
- A brief survey of New Phenomena Search Strategies and Results
 - Searches for SUSY
 - Model-independent (signature-based) Searches
 - Searches for the SM (what about the Higgs Boson?)

Q: Why are we searching for new particles?

A: Answer fundamental questions about the universe

Dark Matter and Dark Energy

- What is dark matter and dark energy?
- Dark matter
 - 1933: Cluster rotation
 - 1975: Galaxy rotation
 - 2006: Galaxy cluster 1E 0657-56
 - Gravitational lensing
 - Chandra X-ray
- Dark energy
 - 1922: Einstein's Λ
 - 1998: Type 1A supernovae
 - 2003: WMAP

Matter-Dominated Universe

- Why do we live in a matterdominated universe?
- 1966 Sakharov's conditions:
 - Baryon number violation
 - CP violation
 - Not enough in quark sector
 - Neutrinos?
 - Thermal non-equilibrium

НАРУШЕНИЕ *ср*-инвариантности, *с*-асимметрия и барионная асимметрия вселенной

A.A.Cazapos

Теория расширяющейся Вселенной, предполагающая сверхплотное начальное состояние вещества, по-видимому, исключает возможность макроскопического разделения вещества и антивещества; поэтому следует

Extra Dimensions

A Large Mass Hierarchy from a Small Extra Dimension

Lisa Randall Joseph Henry Laboratories, Princeton University, Princeton, NJ 08543, USA and Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

> Raman Sundrum Department of Physics, Boston University, Boston, MA 02215, USA

PRL 83, 3370 (1999)

- Are there hidden dimensions of space?
- Many models in recent years
 - Can explain weakness of gravity "hierarchy problem"
 - Connection to dark matter?

ALL NEW SHOW TONIGHT!

Electroweak Symmetry Breaking

- What is the origin of electroweak symmetry breaking?
- Favored explanation: Higgs mechanism
 - Imparts mass to all particles in standard model

Tevatron Run II Preliminary, L=0.9-4.2 fb⁻¹

Why do we search for new particles?

- Answer fundamental questions about the universe:
 - What are dark matter and dark energy?
 - Why do we live in a matter-dominated universe?
 - Are there hidden dimensions?
 - What is the origin of electroweak symmetry breaking?
- How do we answer these questions?
 - Find the particles and interactions responsible
 - Particle colliders

The Tevatron Collider at Fermilab

- Presently most energetic collider in the world
- Collides protons and antiprotons
- E_{CM} = 1.96 TeV
- Still in operation, still collecting data
 - ~7 fb⁻¹ delivered, ~6 fb⁻¹ acquired each by CDF and D0
- Many searches for New Phenomena (NP)
- Now excluding a range of SM Higgs masses

The CERN Large Hadron Collider

A more realistic picture:

- Protons are really bound states of quarks and gluons. Each quark and gluon jiggles around within the quantum bound state.
 - Energy and Momenta of quarks and gluons is unknown.

How we really think about it:

- As physicists, we like to approximate everything as spherical and flat and infinite (simple) so we can calculate something about it.
- This approximation is good enough, provided we include in our description an estimate of the distribution of the partons (quarks/gluons) within the proton.
 - "Parton Distribution Functions" (PDFs) can't be calculated. Must be measured.

Parton Distribution Functions

Parton Distribution Functions

Derived from CTEQ6L global fits, with simplistic sea/valence subtraction. $Q^2 = (100 \text{ GeV})^2$

pp (or pp) Collisions Summary:

~1 TeV

- Only a fraction of proton's energy is involved
- pp collisions are really parton collisions
 - CM is not known
 - Fraction of proton's momentum determined by PDF
 - Simultaneous probe of many energies
- Contribution from gluon interactions can be significant

What is produced in a pp collision at 2 TeV?

- Light quark jets (hadrons)
- b-quark jets (hadrons)
- Gauge bosons W[±],Z⁰
- Top quark pairs
- Single top quark
- Di-boson
 W±W∓, W±Z⁰, Z⁰Z⁰
- Higgs
- Higgs + boson: ZH,WH
- SUSY, Technicolor, Leptoquarks, Z',W', excited quarks, excited leptons...

What is produced in a pp collision at 14 TeV?

$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Non Single Diffractive PTHIA [2] 65.10 ⁶ Dijet $p_T^{ijet} > 25 \text{ GeV}$ PTHIA [2] LO 367.10 ³ $\frac{\gamma}{\text{pt}}$ $p_T^{ij} > 25 \text{ GeV}$ PTHIA [2] LO 180 $\frac{b\bar{b} \rightarrow \mu + X}{b\bar{b} \rightarrow \mu + X}$ $p_T^{ij} > 6 \text{ GeV}$ PTHIA [2] LO 61.10 ³ $b\bar{b} \rightarrow \mu \mu + X$ $p_T^{ij} > 6 \text{ GeV}$ PTHIA [2] LO 61.10 ³ $b\bar{b} \rightarrow \mu \mu + X$ $p_T^{ij} > 6 / 4 \text{ GeV}$ PTHIA [2] LO 61.10 ³ $b\bar{b} \rightarrow \mu \mu + X$ $p_T^{ij} > 6 / 4 \text{ GeV}$ PTHIA [2] LO 10 $t\bar{t}$ Ref. [5] NLO+NLL 0.833 Single top t-channel AccerMC [6] LO 0.021 s-channel AccerMC [6] LO 0.007 wt AccerMC [6] LO 0.058 Ref. [10-12] NLO 0.066 $W \rightarrow \ell \nu$ FEWZ [13] LO 16.8 EVZ $m_{\ell\ell} > 60 \text{ GeV}$ FEWZ [13] NLO 2.05 $W \rightarrow \ell \nu$ $m_{\ell\ell} > 60 \text{ GeV}$ FEWZ [13] NLO 2.05 $W \rightarrow \ell \nu$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{split} \frac{b\bar{b} \to \mu \mu + \chi}{t\bar{t}} & p_T^{\mu_1/\mu_2} > 6 / 4 \text{GeV} & \text{PYTHIA} [2] & \text{LO} & 110 \\ \hline t\bar{t} & & \text{NLO} & 0.794 \\ \hline single top & t-channel & \text{Ref.} [5] & \text{NLO+NLL} & 0.833 \\ \text{AcerMC} [6] & \text{LO} & 0.251 \\ \text{Ref.} [7-9] & \text{NLO} & 0.246 \\ \text{s-channel} & \text{AcerMC} [6] & \text{LO} & 0.007 \\ \text{Ref.} [7] & \text{NLO} & 0.0011 \\ \text{Wt} & \text{AcerMC} [6] & \text{LO} & 0.0058 \\ \hline W \to \ell \nu & & \text{Ref.} [10-12] & \text{NLO} & 0.066 \\ \hline W \to \ell \nu & & \text{FEWZ} [13] & \text{LO} & 16.8 \\ \text{FEWZ} [13] & \text{NLO} & 20.7 \\ \text{FEWZ} [13] & \text{NLO} & 20.5 \\ \hline Z \to \ell \ell & & & m_{\ell \ell} > 60 \text{GeV} & & \text{FEWZ} [13] & \text{NLO} & 2.03 \\ \hline WW & & & & m_{W^{(*)}} > 20 \text{GeV}, p_T^W > 10 \text{GeV} & & & & & & & & & & & & & & & & & & &$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{split} & \text{Single top} \\ \text{production} & \begin{array}{c} \text{t-channel} & \text{Ref. [5]} & \text{NLO+NLL} & 0.833 \\ \text{AcerMC [6]} & \text{LO} & 0.251 \\ \text{Ref. [7-9]} & \text{NLO} & 0.246 \\ \text{s-channel} & \text{AcerMC [6]} & \text{LO} & 0.007 \\ \text{Ref. [7]} & \text{NLO} & 0.011 \\ \text{Wt} & \text{AcerMC [6]} & \text{LO} & 0.058 \\ \text{Ref. [10-12]} & \text{NLO} & 0.066 \\ \hline W \rightarrow \ell v & \\ FEWZ [13] & \text{LO} & 16.8 \\ FEWZ [13] & \text{NLO} & 20.7 \\ FEWZ [13] & \text{NLO} & 20.7 \\ FEWZ [13] & \text{NLO} & 20.5 \\ FEWZ [13] & \text{NLO} & 20.5 \\ FEWZ [13] & \text{NLO} & 20.5 \\ FEWZ [13] & \text{NLO} & 2.03 \\ FEWZ [13] & \text{NLO} & 2.03 \\ FEWZ [13] & \text{NLO} & 2.03 \\ FEWZ [13] & \text{NLO} & 2.02 \\ \hline WW & m_{W^{(*)}} > 20 \text{ GeV}, p_T^W > 10 \text{ GeV} & \text{MCFM [14]} & \text{LO} & 0.072 \\ \text{MCFM [14]} & \text{NLO} & 0.112 \\ \hline WZ & m_{W^{(*)}/Z^{(*)}} > 20 \text{ GeV}, p_T^{W/Z} > 10 \text{ GeV} & \text{MCFM [14]} & \text{LO} & 0.032 \\ \hline \end{array}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{split} & \text{s-channel} & \text{AcerMC [6]} & \text{LO} & 0.007 \\ & \text{Ref. [7]} & \text{NLO} & 0.011 \\ & \text{Wt} & \text{AcerMC [6]} & \text{LO} & 0.058 \\ & \text{Ref. [10-12]} & \text{NLO} & 0.066 \\ \hline W \to \ell \nu & & \text{FEWZ [13]} & \text{LO} & 16.8 \\ & \text{FEWZ [13]} & \text{NLO} & 20.7 \\ & \text{FEWZ [13]} & \text{NLO} & 20.5 \\ \hline Z \to \ell \ell & & m_{\ell \ell} > 60 \text{ GeV} & \text{FEWZ [13]} & \text{LO} & 1.66 \\ & \text{FEWZ [13]} & \text{NLO} & 2.03 \\ & \text{FEWZ [13]} & \text{NLO} & 2.03 \\ \hline WW & & m_{W^{(*)}} > 20 \text{ GeV}, p_{T}^{W} > 10 \text{ GeV} & \text{MCFM [14]} & \text{LO} & 0.072 \\ & & \text{MCFM [14]} & \text{NLO} & 0.112 \\ \hline WZ & & m_{W^{(*)}/Z^{(*)}} > 20 \text{ GeV}, p_{T}^{W/Z} > 10 \text{ GeV} & \text{MCFM [14]} & \text{LO} & 0.032 \\ \hline \end{split} $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c ccccc} W \rightarrow \ell \nu & & \mbox{FEWZ} [13] & \mbox{LO} & 16.8 \\ FEWZ [13] & NLO & 20.7 \\ FEWZ [13] & NNLO & 20.5 \\ FEWZ [13] & LO & 1.66 \\ FEWZ [13] & LO & 1.66 \\ FEWZ [13] & NLO & 2.03 \\ FEWZ [13] & NLO & 2.02 \\ \hline WW & & m_{W^{(*)}} > 20 \ {\rm GeV}, \ p_T^W > 10 \ {\rm GeV} & {\rm MCFM} [14] & {\rm LO} & 0.072 \\ MCFM [14] & NLO & 0.112 \\ \hline WZ & & m_{W^{(*)}/Z^{(*)}} > 20 \ {\rm GeV}, \ p_T^{W/Z} > 10 \ {\rm GeV} & {\rm MCFM} [14] & {\rm LO} & 0.032 \\ \hline \end{array} $
$\begin{split} Z \to \ell \ell & \qquad \qquad$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c } \hline WW & $m_{W^{(*)}} > 20 \ {\rm GeV}, \ p_{\rm T}^W > 10 \ {\rm GeV} & ${\rm MCFM} \ [14] & {\rm LO} & 0.072 \\ & {\rm MCFM} \ [14] & {\rm NLO} & 0.112 \\ \hline WZ & $m_{W^{(*)}/Z^{(*)}} > 20 \ {\rm GeV}, \ p_{\rm T}^{W/Z} > 10 \ {\rm GeV} & {\rm MCFM} \ [14] & {\rm LO} & 0.032 \\ \hline \end{array} $
WZ $m_{W^{(*)}/Z^{(*)}} > 20 \text{ GeV}, p_T^{W/Z} > 10 \text{ GeV}$ MCFM [14] NLO 0.112 MCFM [14] LO 0.032
WZ $m_{W^{(*)}/Z^{(*)}} > 20 \text{ GeV}, p_T^{W/Z} > 10 \text{ GeV}$ MCFM [14] LO 0.032
MCFM [14] NLO 0.056
ZZ $m_{\pi(s)} > 12 \text{ GeV}$ MCFM [14] LO 0.0165
MCFM [14] NLO 0.0221
$\gamma\gamma$ $(qq,qg \rightarrow \gamma\gamma)$ 80 < $m_{\gamma\gamma}$ <150 GeV RESBOS [15] NLO 0.0209
$(gg \rightarrow \gamma\gamma)$ 80 < $m_{\gamma\gamma}$ <150 GeV RESBOS [15] NLO 0.0080 23
From "The Expected Performance of the ATLAS Experient", CERN-OPEN-2008-020

Example Rate Calculation:

- LHC Design L=10³⁴/cm²s
- pp inelastic: $\sigma = 79 \times 10^6$ nb
- 1 barn = 10^{-24} cm²
- pp inelastic: $\sigma = 79 \times 10^6 \times 10^{-9} \times 10^{-24} \text{ cm}^2$
- pp inelastic: $\sigma = 79 \times 10^{-27} \text{ cm}^2$
- Rate = $L\sigma = 10^{34}/cm^2s \times 79 \times 10^{-27} cm^2 = 7.9 \times 10^{8}/s \sim 10^{9}/s$
- O(20) interactions per bunch crossing
- Still, simply cannot record every event.

Solution: Trigger

 RunSummary for run 271746
 L1 | L2 | L2Latency | L3 | ShiftLog | ErrorLog | Reformatter | L3Filter | SessionLog | RunControl | RunSet |

 <271745 | 271747>
 L1 | L2 | L2Latency | L3 | ShiftLog | ErrorLog | Reformatter | L3Filter | SessionLog | RunControl | RunSet |

 Store | SlowControl | PhysMon | DfcLumi | OfflineStatus

Trigger Paths (L3) for run 271746

CSBIT	PATH_NAME_FROM	DATASET	PRESCALED	RATE_HZ	NB	STREAM	S
0	AAAAA_ALL_RECO_5.1_NOCOMP:1	null	<u>21</u>	0.00	<u>0.00</u>	none	
1	BBBAR_CMUP3_CMU1.5_DPS:6	B_DIMUON	<u>130708</u>	3.22	22.30	StreamJ	
2	BBBAR_CMUP3_CMX2_DPS:6	B_DIMUON	<u>29854</u>	<u>0.73</u>	<u>5.09</u>	StreamJ	
3	BBBAR_TWO_CMUP3_DPS:6	B_DIMUON	<u>8446</u>	<u>0.21</u>	<u>1.44</u>	StreamJ	
4	B_CHARM_HIGHPT_L1_CLCM_DPS:8	B_HADRONIC	<u>248758</u>	<u>6.12</u>	<u>42.45</u>	StreamH	
5	B_CHARM_HIGHPT_PS12500:3	B_HADRONIC	<u>75</u>	0.00	<u>0.01</u>	StreamH	
6	B_CHARM_L1_LUMI_80:5	B_HADRONIC	<u>0</u>	<u>0.00</u>	<u>0.00</u>	StreamH	
7	B_CHARM_L1_UPS:6	B_HADRONIC	<u>256193</u>	<u>6.30</u>	<u>43.72</u>	StreamH	
8	B_CHARM_LOWPT_CMU_L1_DPS:7	B_HADRONIC	<u>47158</u>	<u>1.16</u>	<u>8.05</u>	StreamH	
9	B_CHARM_LOWPT_CMX_L1_DPS:7	B_HADRONIC	<u>15284</u>	<u>0.38</u>	<u>2.61</u>	StreamH	
10	B_CHARM_LOWPT_L1_LUMI_35:4	B_HADRONIC	<u>0</u>	0.00	<u>0.00</u>	StreamH	
11	B_CHARM_LOWPT_L1_PS2_LUMI_50:5	B_HADRONIC	<u>0</u>	0.00	<u>0.00</u>	StreamH	
12	B_CHARM_NO_OPPO_L1_LUMI_65:2	B_HADRONIC	<u>0</u>	0.00	<u>0.00</u>	StreamH	
13	B_CHARM_PHI_L1_UPS:7	B_HADRONIC	<u>56805</u>	<u>1.40</u>	<u>9.69</u>	StreamH	
14	B_CHARM_PHI_LOWPT_L1_PS2_LUMI_50:3	B_HADRONIC	<u>0</u>	0.00	0.00	StreamH	
15	B_CHARM_PHI_LOWPT_LUMI_35:2	B_HADRONIC	<u>0</u>	0.00	0.00	StreamH	
16	B DO BEIO LI CLOM DESA	EVDDDCC	2671	0.00	0.63	StroomA	

CSBIT	PATH_NAME_FROM	DATASET	PRESCALED	RATE_HZ	NB	STREAM S	
							1
49	ELECTRON_CENTRAL_18:13	HIGH_PT_ELECTRON	<u>135843</u>	<u>3.34</u>	23.18	StreamB	1,273,70
49	ELECTRON_CENTRAL_18:13	SUSY_DILEPTON	<u>135843</u>	<u>3.34</u>	<u>23.18</u>	StreamE	<u>1,531,25</u>
50	ELECTRON_CENTRAL_18_LOOSE_L3PS50:5	HIGH_PT_ELECTRON	<u>6566</u>	<u>0.16</u>	<u>1.12</u>	StreamB	<u>1,273,70</u>
51	ELECTRON_CENTRAL_18_NO_L2:9	HIGH_PT_ELECTRON	<u>1625</u>	<u>0.04</u>	0.28	StreamB	1,273,70
52	ELECTRON_CENTRAL_4:16	B_ELECTRON	4176	<u>0.10</u>	0.71	StreamJ	<u>919,69</u>
53	ELECTRON_CENTRAL_4_NOL2:8	B_ELECTRON	<u>9404</u>	0.23	<u>1.60</u>	StreamJ	<u>919,69</u>
54	ELECTRON_CENTRAL_8_&_TRACK8_DPS:5	SUSY_DILEPTON	171356	4.22	<u>29.24</u>	StreamE	<u>1,531,25</u>
55	ELECTRON_CENTRAL_8_L2_DPS:8	LEPTON_CALIB	74961	<u>1.84</u>	<u>12.79</u>	StreamB	1,273,70
56	ELECTRON_CENTRAL_8_NO_L2:9	LEPTON_CALIB	<u>4953</u>	<u>0.12</u>	0.85	StreamB	1,273,70
57	ELECTRON_CENTRAL_PS2K_L1_CEM8_PT8:2	LEPTON_CALIB	4239	<u>0.10</u>	0.72	StreamB	1,273,70
58	ELECTRON_CENTRAL_PS50_L1_CEM4_PT4:2	B_ELECTRON	<u>11525</u>	0.28	<u>1.97</u>	StreamJ	<u>919,69</u>
59	EXPRESS_MET_PEM:13	PLUG_ELECTRON	<u>15631</u>	<u>0.38</u>	2.67	StreamB	<u>1,273,70</u>
60	EXPRESS_MUON_CMUP22:4	EXPRESS	<u>13058</u>	<u>0.32</u>	2.23	StreamA	<u>184,05</u>
60	EXPRESS_MUON_CMUP22:4	HIGH_PT_MUON	<u>13058</u>	<u>0.32</u>	2.23	StreamB	1,273,70
61	EXPRESS_MUON_CMX22:3	EXPRESS	<u>11788</u>	<u>0.29</u>	2.01	StreamA	184,05
61	EXPRESS_MUON_CMX22:3	HIGH_PT_MUON	<u>11788</u>	<u>0.29</u>	2.01	StreamB	1,273,70
62	EXPRESS_W:9	HIGH_PT_ELECTRON	<u>17717</u>	<u>0.44</u>	3.02	StreamB	<u>1,273,70</u>
62	EXPRESS_W:9	EXPRESS	<u>17717</u>	<u>0.44</u>	3.02	StreamA	<u>184,05</u>
63	EXPRESS_W_NOTRACK:14	HIGH_PT_ELECTRON	4660	0.11	0.80	StreamB	1,273,70
63	EXPRESS_W_NOTRACK:14	EXPRESS	4660	0.11	0.80	StreamA	184,05
64	EXPRESS_Z:10	HIGH_PT_ELECTRON	<u>7964</u>	0.20	1.36	StreamB	1,273,70
							(

Particles as seen by Collider Detectors: Idealized (end view)

Detectors: CDF

Detectors: ATLAS (well some of it)

Modern Collider Experiment Detectors

Ideally:

- Can identify and precisely measure jets (energy, trajectory), and their origin, and even whether they originate from a high energy quark or gluon.
- Can measure all energy in an event (and the missing momentum).
- Can detect and reconstruct energy, trajectories of e,µ with no background.
- A τ is just the third kind of charged lepton, right? We can measure leptons.
- Can identify and precisely measure bquark jets.

Realistically:

- "Jet" is another word for the spray of mostly hadronic particles that originates from quarks and gluons
 "A jet is a jet is a jet"
 "A jet isn't a jet isn't a jet!"
- "Underlying event", pileup, detector noise, mis-measurements all affect MET resolution.
- Electrons radiate and loose energy, photons convert to e⁺e⁻, pions decay to muons.
- Reconstructing τ leptons is very hard: they look more like jets than leptons
- Displaced vertices from b-quarks are hard to find and can be faked by light quark jets

Event Displays

(CDF)

High-Mass Di-Jet Event

A B_s Event (Vertex)

CDF Event Display: High Mass Electrons

A tī Dilepton Event

$$t\bar{t}, t \to W^+ b, \bar{t} \to W^- \bar{b}$$

Run number167631Event number2058969 $e\mu$ event (CEM-CMX)

Search Strategies

- Model-Dependent: Pick a model.
 Study the phenomenology.
 Optimize search for a model
 - Supersymmetry
 - Leptoquarks
 - Technicolor
 - New Gauge Bosons
 - Extra Dimensions
 -

- Model-Independent
- Pick a signature
 - Optimize for detector acceptance and background rejection
- Quantify Backgrounds
- Look for excess
- Do all signatures simultaneously?

Supersymmetry Phenomenology (for experimentalists)

- Proposes a new symmetry:
 - Fermions ↔ Bosons

- Every fermion has a boson superpartner and vice-versa
- New (conserved) quantum number called R-Parity:

 $R_{p} = (-1)^{B+L+2s}$ electron \leftrightarrow selectron $R_{\rho} = 1$ $R_{\rho} = -1$ photon \leftrightarrow photino $R_{\rho} = 1$ $R_{\rho} = -1$

- Consequences if R-Parity is conserved:
 - Supersymmetric particles are *pair-produced* in colliders.
 - The Lightest Supersymmetric Particle (LSP) is stable.
 - SUSY particles decay to SM particles and the LSP (which can result in missing energy).

The SUSY Zoo

Minimal Supergravity (mSUGRA)

- SUSY is a broken symmetry: spin 3/2 gravitino breaks Supersymmetry.
- Reduces the number of SUSY parameters from >100 to 5:
 - m₀: Scalar mass at the GUT scale.
 - m_{1/2}: Fermion mass at the GUT scale.
 - tan(β): Ratio of Higgs vacuum expectation values.
 - A₀: Trilinear scalar interaction at the GUT scale (Higgs sfermionL sfermionR).
 - sign(µ): Higgsino mass parameter (value is determined by EWSB).
- Specifying these 5 parameters determines SUSY spectrum.
 - Enables meaningful comparisons between experiments.

Searches for Squarks/Gluinos at CDF

- Strongly Produced
- Decay to jets and MET
- Neutralino is LSP
- Searches
 - Look for 2, 3, or 4 jets and MET
 - Are optimized in several different regions of mSUGRA parameter space to maximize sensitivity
 - Require lots of MET, large total jet energy
- Background: Mainly QCD (jets)

Searches for Squarks/Gluinos at CDF

		CDF (2	$2 {\rm fb}^{-1}$	DØ (2.	1 fb^{-1})
 Final results: 	Analyses	Expected	Observed	Expected	Observed
	2-jets	16 ± 5	18	$11 \pm 1^{+3}_{-2}$	11
	3-jets	37 ± 12	38	$11 \pm 1^{+3}_{-2}$	9
Limits are set	4-jets	48 ± 17	45	$18 \pm 1^{+6}_{-3}$	20

• Squark/Gluino plane for a choice of $tan(\beta)=3$, $A_0=0$, $\mu<0$

Search for Charginos/Neutralinos at CDF

- "Golden" mode for SUSY discovery at Tevatron
- Production:

Search for Charginos/Neutralinos at CDF

- Decay via virtual W, Z, or sleptons.
- Observe 3 leptons, MET from decay of Chargino (χ[±]₁) and next-to-lightest Neutralino(χ⁰₂)

Search for Charginos/Neutralinos at CDF

Process	$\sigma(bkg)/\sigma(sig)$	What it has	What it needs
WZ		3 leptons + MET	-
ZZ	~ 1	\geq 3 leptons	MET
WW		2 leptons + MET	one lepton
Top-pair	~ 10	3 leptons + MET	-
DY	~ 1000	2 leptons	one lepton + MET
Zγ→llγ	~ 30	\geq 3 leptons	MET
W	~ 5000	1 lepton + MET	two leptons

$CDF (3.2 \text{ fb}^{-1})$	Expected	Observed
3-leptons	1.5 ± 0.2	1
3-leptons+track	9.4 ± 1.4	6

Other Tevatron Searches

- Too many to go into details (or even list them all!) Partial list of searches:
 - Scalar Top
 - Scalar Bottom
 - Leptoquarks
 - Large Extra Dimensions
 - High-Mass resonances
 - New or Excited Fermions
 - Technicolor
 - Anomalous production of exotic signatures (e.g. MET + γ + b-jet)
- The SM Higgs is only one particle we're looking for.

Model-Independent Global Searches

- Idea: Can't we try to model all the data all at once?
- Very ambitious. CDF and D0 have done this.

"Model Independent Algorithmic"

- Classify events by their object content (final state)
- Simulate standard model with Monte Carlo
- Global fit to extract correction factors (luminosity, kfactors, mis-id rates, trigger efficiencies, jet energy scale)
- Look for anomalies in distributions (bulk)
- \bullet Look for excesses in high sum E_T distributions
 - Assumes NP will be at high sum E_T and appear as an excess
- Order final states by how discrepant they are
 - Flag interesting states for further study
- Iterative procedure to identify and account for detector effects
- Sensitivity to new physics depends on details of final state
- Provides a safety net to avoid missing the obvious
- CDF has a 2 fb⁻¹ result, D0 has a 1 fb⁻¹ result.

Model-Independend Algorithmic: Standard Model MC Cocktail

Dataset	Process	Weights •	Number -	Total weight						
pyth_jj_000	Pythia jj 0 <pt<10< td=""><td>1000</td><td>2</td><td>2055.45</td><td></td><td>cosmic_j_hi</td><td>Cosmic (jet100)</td><td>0.4</td><td>10416</td><td>4195.08</td></pt<10<>	1000	2	2055.45		cosmic_j_hi	Cosmic (jet100)	0.4	10416	4195.08
pyth_pj_008	Pythia gazma j 8 <pt<12< td=""><td>350</td><td>3</td><td>1038.11</td><td></td><td>mrenna_mu+mu-jj</td><td>MadEvent Z(->mumu) jj</td><td>0.39</td><td>6047</td><td>2357.39</td></pt<12<>	350	3	1038.11		mrenna_mu+mu-jj	MadEvent Z(->mumu) jj	0.39	6047	2357.39
pyth_jj_010	Pythia jj 10 <pt<18< td=""><td>95</td><td>144</td><td>13744.8</td><td></td><td>pyth_bj_120</td><td>Pythia bj 120<pt<150< td=""><td>0.34</td><td>2751</td><td>940.23</td></pt<150<></td></pt<18<>	95	144	13744.8		pyth_bj_120	Pythia bj 120 <pt<150< td=""><td>0.34</td><td>2751</td><td>940.23</td></pt<150<>	0.34	2751	940.23
mrenna_e-ve-	MadEvent W(->ev)	15	424	6294.31	1.1	mad_aaj	MadEvent ganna ganna j	0.32	593	190.3
mrenna_e+ve	MadEvent W(->ev)	15	404	5984.59	1.1	wewk9t	Pythia W(->tau v)	0.31	76188	23358.7
mrenna_mu-vn-	MadEvent W(->muv)	13	301	3967.26	1.1	wewk7n	Pythia W(->mu v)	0.27	329003	89354
mrenna_mu+vm	MadEvent W(->muv)	13	293	3852.91	1.1	wexcOm	Pythia W(->mu v)	0.24	360137	88144.3
pyth_jj_090	Pythia jj 90 <pt<120< td=""><td>12</td><td>1791</td><td>21573.4</td><td>1.1</td><td>mad_e+vej</td><td>MadEvent W(->ev) j</td><td>0.23</td><td>755</td><td>175.32</td></pt<120<>	12	1791	21573.4	1.1	mad_e+vej	MadEvent W(->ev) j	0.23	755	175.32
pyth_11_018	Pythia jj 18cpTc40	11	22381	255804	1.1	mad_mu+vmj	MadEvent W(->muv) j	0.2	549	108.77
pyth pi 012	Pythia gamma 1 12 <pt<22< td=""><td>9.9</td><td>2243</td><td>22195.4</td><td>1.1</td><td>pyth bi 040</td><td>Pythia bi 40<pt<60< td=""><td>0.19</td><td>53968</td><td>10099.4</td></pt<60<></td></pt<22<>	9.9	2243	22195.4	1.1	pyth bi 040	Pythia bi 40 <pt<60< td=""><td>0.19</td><td>53968</td><td>10099.4</td></pt<60<>	0.19	53968	10099.4
nad etve	MadEvent W(->ev)	6.6	34	225.49	- i -	mad e+e-1	MadEvent Z(->ee) i	0.18	751	138.04
nad veve-i	MadEvent Z(->vv) i	6.3	5	31.3	- i -	hewk09	MadEvent W(->ev) ganna	0.16	16595	2737.64
prenna mutau-	MadEvent 2(-)mumu)	6.2	601	3704.11		nad etveli	MadEvent W(-Dev) 11	0.16	956	155.72
and making	MadEvent V(=)mur)	5.9	21	128.2		and enterned	Madfront 2(-)mum) i	0.16	516	81.29
and stated	MadEugent 7(-bury) (5.7		29.59		and suteriall	MadFuent 7(-hears) 55	0.16	1759	276 04
and erver	MadEucart U(->ev) j	5.7	47	20.00		and suburds	MadEment U(->mund) 15	0.15	753	111 7
Edd_e-ve-	MadEvent 7(->ev)	5.4	4004	200.02		nuth hi 150	Pathia bi (504-7400)	0.10	20250	4350
Erenza_eve-	Madhwent M(->ee)	0.4	4004	20209.0		pych_0J_180	Pychia bj 180xp1200	0.10	29360	4002
mad_mu-vm-	Madevent w(->duv)	5.3	20	105.76		mad_vtvt-a	MadEvent Z(->vv) ganna	0.15	122	17.99
bArg=11-150	Pythia jj 120 <pr<150< td=""><td>°</td><td>2782</td><td>13907.2</td><td></td><td>sad_veve-a</td><td>Madavent 2(->vv) ganna</td><td>0.15</td><td>123</td><td>17.90</td></pr<150<>	°	2782	13907.2		sad_veve-a	Madavent 2(->vv) ganna	0.15	123	17.90
cosmic_j_lo	Cosmic (jet20)	4.7	92	428.91		hewk0a.	MadEvent W(->muv) gamma	0.14	10254	1460.67
pyth_bj_010	Pythia bj 10 <pt<18< td=""><td>3.3</td><td>137</td><td>458.81</td><td></td><td>we0s8m</td><td>Pythia W(->mu v)</td><td>0.14</td><td>712708</td><td>97780.9</td></pt<18<>	3.3	137	458.81		we0s8m	Pythia W(->mu v)	0.14	712708	97780.9
pyth_jj_060	Pythia jj 60 <pt<90< td=""><td>3.1</td><td>25066</td><td>76827.8</td><td></td><td>mrenna_e+vejjj</td><td>MadEvent W(->ev) jjj</td><td>0.13</td><td>15317</td><td>1937.54</td></pt<90<>	3.1	25066	76827.8		mrenna_e+vejjj	MadEvent W(->ev) jjj	0.13	15317	1937.54
mrenna_mu+vmj	MadEvent W(->muv) j	2.4	8262	19519.6		mrenna_e-ve-jjj	MadEvent W(->ev) jjj	0.13	15365	1943.02
mrenna_mu-vm-j	MadEvent W(->muv) j	2.4	8246	19468.7		pyth_pp	Pythia gamma gamma	0.13	35980	4545.46
mrenna_mu+mu-j	MadEvent Z(->mumu) j	2.3	5053	11585		mad_e+e-b-b	MadEvent Z(->ee) bb	0.12	970	113.96
cosmic_ph	Cosmic (photon_25_iso)	2.2	1136	2501.8		mrenna_mu-vm-jjj	MadEvent W(->muv) jjj	0.11	8462	965.16
pyth_jj_040	Pythia jj 40 <pt<60< td=""><td>2</td><td>112425</td><td>227788</td><td></td><td>mrenna_mu+vmjjj</td><td>MadEvent W(->muv) jjj</td><td>0.11</td><td>8455</td><td>963.69</td></pt<60<>	2	112425	227788		mrenna_mu+vmjjj	MadEvent W(->muv) jjj	0.11	8455	963.69
pyth_jj_200	Pythia jj 200 <pt<300< td=""><td>1.7</td><td>72266</td><td>119638</td><td>1.1</td><td>mad_aajj</td><td>MadEvent ganna ganna jj</td><td>0.11</td><td>8032</td><td>875.83</td></pt<300<>	1.7	72266	119638	1.1	mad_aajj	MadEvent ganna ganna jj	0.11	8032	875.83
sewkad	Pythia W(->ev)	1.5	304263	458816	1.1	mad_mu+mu-b-b	MadEvent 2(->mumu) bb	0.1	495	49.45
mrenna_e+vej	MadEvent W(->ev) j	1.5	25313	37338.1	1.1	wenubb0p	Alpgen W(->ev) bb	0.096	5240	503.62
mrenna_e-ve-j	MadEvent W(->ev) j	1.5	25298	37297.8	1.1	ztopcz	Pythia ZZ	0.091	577	52.72
pyth_pj_022	Pythia gazma j 22 <pt<45< td=""><td>1.4</td><td>28761</td><td>39696.7</td><td>1.1</td><td>mad_aaa_f</td><td>MadEvent gamma gamma gamma</td><td>0.09</td><td>51</td><td>4.6</td></pt<45<>	1.4	28761	39696.7	1.1	mad_aaa_f	MadEvent gamma gamma gamma	0.09	51	4.6
pyth_11_150	Pythia jj 150 cpT<200	1.2	63063	78705.9	1.1	pyth_11_300	Pythia jj 300 <pt<400< td=""><td>0.077</td><td>92271</td><td>7129.41</td></pt<400<>	0.077	92271	7129.41
pyth_p1_080	Pythia ganma j 80 <pt< td=""><td>0.93</td><td>15891</td><td>14749.8</td><td>- i -</td><td>mad_aaa</td><td>MadEvent ganna ganna ganna</td><td>0.075</td><td>43</td><td>3.23</td></pt<>	0.93	15891	14749.8	- i -	mad_aaa	MadEvent ganna ganna ganna	0.075	43	3.23
nad e+e-ii	MadEvent Z(->ee) 11	0.92	505	464.88	1.1	teskin	Pythia Z(->mu mu)	0.075	654354	49056.2
pyth pi 045	Pythia gazma 1 45 <pt<80< td=""><td>0.76</td><td>69834</td><td>53036.9</td><td>- i -</td><td>wanubb0p</td><td>Alpgen W(->mu v) bb</td><td>0.075</td><td>3289</td><td>246.14</td></pt<80<>	0.76	69834	53036.9	- i -	wanubb0p	Alpgen W(->mu v) bb	0.075	3289	246.14
prenna etveli	MadEvent W(->ev) 11	0.74	17218	12819.9	- i -	nyth bi 200	Pythia bi 200cpTc300	0.075	99577	7428.85
prenna e-ve-11	MadEvent W(->ev) 11	0.74	17221	12816.9	- i - i	heyk03	MadEvent 2(->ee) ganna	0.074	40797	3006.46
pyth bi 018	Pythia bi 18cpTc40	0.67	14722	9932.61	- i	zeyk9t.	Pythia Z(->tau tau)	0.073	15963	1173.26
monna motumii	MadEvent W(->mmv) 11	0.64	10151	6481.97	- i -	overlay	Overlaid events	0.073	5050	366.9
menna mo-un-11	MadEvent W(->muv) 11	0.64	10162	6487.74		wennhhin	Almgen W(->ev) bb i	0.072	3370	244.18
and stated d	MadEmant 7(-2mm) i	0.62	10	6 22		umuhhte	Almon Mahmurkh i	0.072	1640	118.25
man_coro-j_r	Buthis bi forsTc00	0.58	8080	A658 75		hards04	MadSupert 2(-) man) man	0.071	802	57.07
pyca_bj_000	Madfuart S(cher) ii	0.56	278	154 63		newkow is 400	Dethia ii 400cm7	0.069	6240	497.7
mag_ee-]]	Hadfwert T(->ev) jj	0.00	24074	40200 7		byen_33_400	Pychia jj 400-pi	0.008	10450	921.1
mrenna_e+e-j	MadEvent 2(->ee) j	0.65	39879	19320.7		arenna_nuvnu-jjj	Redevent Z(->numu) jjj	0.066	10169	669.53
Had_e-ve-j	Hadrivenc w(->ev) j	0.04	305	104.93		wenubozp	Alpgen #(->ev) bb]]	0.004	1014	04.02
mad_e+e-	Madavent 2(->ee)	0.5	1076	039.77		wanucozp	Alpgen w(->mu v) bb]]	0.004	606	32.09
mad_mu-vm-j	Madevent W(->duv) j	0.49	190	87.18		arenna_e+e-jjj	Madavent 2(->ee) []]	0.063	22291	1405.92
mad_mu-vm-jj	Madevent w(->muv)]]	0.49	236	115.00		wewsoo	Pythia wz	0.085	2016	110.82
nad_veve-j_f	Madmovent Z(->vv) j	0.45	11	4.93		mrenna_e+vejjjj	Madavent W(->ev) jjjj	0.053	7006	370.64
mrenna_e+e-jj	MadEvent Z(->ee) jj	0.44	11265	5006.31		nrenna_e-ve-jjjj	MadEvent W(->ev) jjjj	0.053	6998	369.98
pyth_bj_090	Pythia bj 90 <pt<120< td=""><td>0.43</td><td>2219</td><td>964.7</td><td></td><td>mrenna_mu-vm-jjjj</td><td>MadEvent W(->muv) jjjj</td><td>0.051</td><td>3646</td><td>185.71</td></pt<120<>	0.43	2219	964.7		mrenna_mu-vm-jjjj	MadEvent W(->muv) jjjj	0.051	3646	185.71
mad_mu+mu-	MadEvent Z(->munu)	0.43	616	266.71		nrenna_mu*vnjjjj	MadEvent W(->muv) jjjj	0.051	3609	183.68
mad_vtvt-a_f	MadEvent 2(->vv) gamma	0.43	39	16.66		ttop0z	Berwig ttbar	0.05	17452	878.99
nad_veve-a_f	MadEvent Z(->vv) gamma	0.41	38	15.69		sewkod	Pythia WW	0.049	2204	108.67
tevkie	Pythia Z(->ee)	0.41	151898	62592.4	1.1	Total:				2.13365e+06

Model-Independent Algorithmic:

Correction Factors

Cod	le Category	Explanation	Value	Error	Error(%)	
000	l luminosity	CDF integrated luminosity	1990	50	2.6	
000	2 k-factor	cosmic_ph	0.83	0.05	6.0	
0003	3 k-factor	cosmic_j	0.192	0.006	3.1	
0004	4 k-factor	$1\gamma 1j photon+jet(s)$	0.92	0.04	4.4	
000	5 k-factor	$1\gamma 2 \mathrm{j}$	1.26	0.05	4.0	
0000	6 k-factor	$1\gamma 3j$	1.61	0.08	5.0	
000,	7 k-factor	$1\gamma 4j+$	1.94	0.16	8.3	
0008	8 k-factor	$2\gamma 0$ j diphoton(+jets)	1.6	0.08	5.0	
0009	k-factor	$2\gamma 1 \mathrm{j}$	2.99	0.17	5.7	
0010) k-factor	$2\gamma 2j+$	1.2	0.09	7.5	
001	l k-factor	W0j W (+jets)	1.38	0.03	2.2	
0012	2 k-factor	W1j	1.33	0.03	2.3	
0013	3 k-factor	W2j	1.99	0.05	2.5	
0014	4 k-factor	W3j+	2.11	0.09	4.3	
001	5 k-factor	Z0j Z (+jets)	1.39	0.028	2.0	
0010	6 k-factor	Z1j	1.23	0.04	3.2	
001'	7 k-factor	Z_{2j+}	1.02	0.04	3.9	
0018	8 k-factor	2j $\hat{p}_T < 150$ dijet	1.003	0.027	2.7	
0019	k-factor	$2j\ 150 < \hat{p}_T$	1.34	0.03	2.2	
0020) k-factor	$3j \hat{p}_T < 150 \text{ multijet}$	0.941	0.025	2.7	
002	l k-factor	$3j 150 < \hat{p}_T$	1.48	0.04	2.7	
0023	2 k-factor	$4j \hat{p}_T < 150$	1.06	0.03	2.8	
0023	3 k-factor	$4j 150 < \hat{p}_T$	1.93	0.06	3.1	
0024	4 k-factor	5j low	1.33	0.05	3.8	
002	5 k-factor	$1b2j 150 < \hat{p}_T$	2.22	0.11	5.0	
0026	6 k-factor	$1b3 150 < \hat{p}_T$	2.98	0.15	5.0	
002'	7 misId	$p(e \rightarrow e)$ central	0.978	0.006	0.6	
0028	3 misId	$p(e \rightarrow e)$ plug	0.966	0.007	0.7	
0029) misId	$p(\mu \rightarrow \mu)$ CMUP+CMX	0.888	0.007	0.8	
0030) misId	$p(\gamma \rightarrow \gamma)$ central	0.949	0.018	1.9	
003	l misId	$p(\gamma \rightarrow \gamma)$ plug	0.859	0.016	1.9	
003	2 misId	$p(b \rightarrow b)$ central	0.978	0.021	2.1	
003	3 misId	$p(\gamma \rightarrow e)$ plug	0.06	0.003	5.0	
0034	t misId	$p(q \rightarrow e)$ central	7.09×10^{-5}	1.9×10^{-6}	2.7	
003	mieId	$p(q \rightarrow 0)$ plug	0.000766	1.2×10^{-5}	1.6	
003		p(d→e) prug	1.14.10-5	1.2 × 10	1.0	
0030	o misia	$p(q \rightarrow \mu)$	1.14×10	6X10 ·	5.2	
003	7 misld	$p(b \rightarrow \mu)$	3.3×10^{-5}	1.1×10^{-5}	33.0	
0038	s misId	$p(j \rightarrow b) 25 < p_T$	0.0183	0.0002	1.1	
0039) misId	$p(q \rightarrow \tau)$	0.0052	0.0001	1.9	
0040) misId	$p(q \rightarrow \gamma)$ central	0.000266	1.4×10^{-5}	5.3	
004	l misId	$p(q \rightarrow \gamma)$ plug	0.00048	6×10^{-5}	12.6	
004	2 trigger	$p(e \rightarrow trig) plug, p_T > 25$	0.86	0.007	0.8	54

MC Mis-Id Study

TABLE XXIII: Central single particle misidentification matrix. Using a single particle gun, 10^5 particles of each type shown at the left of the table are shot with $p_T = 25$ GeV into the central CDF detector, uniformly distributed in θ and in ϕ . The resulting reconstructed object types are shown at the top of the table, labeling the table columns. Thus the rightmost element of this matrix in the fourth row from the bottom shows $p(\tau^- \rightarrow j)$, the number of negatively charged tau leptons (out of 10^5) reconstructed as a jet.

	e^+	e^-	μ^+	μ^{-}	τ^+	τ^{-}	γ	j	b
e^+	62228	33	0	0	182	0	2435	28140	0
e^{-}	24	62324	0	0	0	192	2455	28023	1
μ^+	0	0	50491	0	6	0	0	606	0
μ^{-}	0	1	0	50294	0	6	0	577	0
γ	1393	1327	0	0	1	1	67679	21468	0
π^0	1204	1228	0	0	5	8	58010	33370	0
π^+	266	0	115	0	41887	6	95	54189	37
π^{-}	1	361	0	88	13	41355	148	54692	44
K^+	156	1	273	0	42725	7	37	52317	24
K^{-}	1	248	0	165	28	41562	115	53917	22
B^+	100	0	77	1	100	10	40	66062	25861
B^{-}	2	85	3	68	11	99	45	66414	25621
B^0	88	27	87	17	77	32	21	65866	25046
$ar{B^0}$	17	79	11	71	41	77	21	66034	25103
D^+	126	6	62	0	1485	67	207	79596	11620
D^{-}	4	134	3	74	64	1400	234	79977	11554
D^0	60	13	27	2	312	1053	248	88821	5487
$\bar{D^0}$	15	46	5	28	1027	253	237	89025	5480
K_L^0	1	4	0	0	71	60	202	96089	26
K^0_S	26	31	2	1	170	525	9715	76196	0
τ^+	1711	13	1449	0	4167	2	673	50866	607
τ^{-}	12	1716	0	1474	6	3940	621	51125	580
\boldsymbol{u}	8	10	1	0	446	31	247	94074	26
d	3	4	0	0	64	308	191	94322	22
g	2	0	0	0	17	14	12	81865	99

Model-Independent Algorithmic (Vista/Sleuth)

Higgs Boson Searches -- LEP

- Production: $e^+e^- \rightarrow Z^0 H$
- Look for "Higgsstrahlung"
- Mass reach limited by beam energies
- Sensitive to Higgs masses up to

$$\approx \sqrt{s - m_{Z^0}}$$

- Four Detectors: ALEPH, DELPHI, L3, OPAL
- Final results combined all detectors, all channels

boson and by those of the associated Z boson. The searches at LEP encompass the four-jet final state $(H\rightarrow b\bar{b})(Z\rightarrow q\bar{q})$, the missing energy final state $(H\rightarrow b\bar{b})(Z\rightarrow \nu\bar{\nu})$, the leptonic final state $(H\rightarrow b\bar{b})(Z\rightarrow \ell^+\ell^-)$ where ℓ denotes an electron or a muon, and the tau lepton final states $(H\rightarrow b\bar{b})(Z\rightarrow \tau^+\tau^-)$ and $(H\rightarrow \tau^+\tau^-)(Z\rightarrow q\bar{q})$.

Complicated combination.

Higgs Searches - LEP

- Standard Model Higgs excluded for $m_H < 114.4$ GeV.
- Electroweak fit favors a light Higgs Boson.

Higgs Boson Production and Decay (2 TeV, p p-bar)

- High-Mass: Look for direct production, WW decays dominate
- Low-Mass: Look for associated production with a W or Z, bb decays dominate
- Hunting for Higgs at the Tevatron is hunting for Di-Bosons

Higgs Bos Searches -- Tevatron

Higgs Search: Low-Mass ZH and WH

- Reconstruct Z-> II, Require 2 jets.
- Require one jet have a b-tag
- Jet energies are corrected with a NN
- 2-dimensional NN trained to discriminate from Z+jets, ttbar

CDF Run II Preliminary (4.1 fb⁻¹)

PreTag

 $M_{\rm H} = 120 \text{ GeV/c}^2 \times 1500 \text{ After NN Corr.}$

 $M_{\rm H} = 120 \text{ GeV/c}^2 \times 1500 \text{ Before NN Corr.}$

2200

2000

1800

1600 1400 1200

1000 800

> 600 -400 -

Number of Events

data

Z + bb

Z + cc

Z + lf jets Fakes

tt

WW,WZ,ZZ

uncertainty

CDF Relative Sensitivity of Channels

- Favored low-mass region most difficult: Many channels needed.
- Within a factor of 3 of SM over most of mass range.
- D0 results are very similar.

Higgs Limits - Tevatron Combination

• Expect an update soon with more data

Event Display: A CDF ZH Candidate Event

Other Di-Boson searches: WZ \rightarrow IIIv

If we hope to see Higgs, we should be able to	see
other SM diboson production (higher rates)	

- WZ Observation at CDF is a milestone towards Higgs
- Significant improvements in lepton acceptance
- Other diboson milestones underway

Source	Expectation \pm Stat \pm Syst \pm Lumi
Z+jets	$1.21 \pm 0.27 \pm 0.28 \pm -$
ZZ	$0.88 \pm 0.01 \pm 0.09 \pm 0.05$
$Z\gamma$	$0.44 \pm 0.05 \pm 0.15 \pm 0.03$
$t\bar{t}$	$0.12 \pm 0.01 \pm 0.02 \pm 0.01$
Total Background	$2.65 \pm 0.28 \pm 0.33 \pm 0.09$
WZ	$9.75 \pm 0.03 \pm 0.31 \pm 0.59$
Total Expected	$12.41 \pm 0.28 \pm 0.45 \pm 0.67$
Observed	16

Milestone on the road to the Higgs: Standard Model EWK DiBosons with Jets

- Electroweak production of WW and WZ, observed in lepton + MET + jet + jet
- Detailed MET model used to reject events with mis-measured MET
- 5.3σ Observation
- Cross section consistent with SM

 $\sigma(ppbar \rightarrow VV + X) = 18 \pm 2.8(stat) \pm 2.4(syst) \pm 1.1(lumi) pb$

Higgs Production and Decay (14 TeV, pp)

High Mass: WW and ZZ most promising

• Low Mass: bb is very tough. γγ is clean but requires a lot of data.

"What kind of new physics do you expect to overed at the LHC?"

Summary

- The Tevatron is searching for hints new phenomena in its data.
- The LHC is waiting eagerly for first collision data to explore a new energy regime. (and waiting and waiting...)

Could the Higgs hide under the Z?

Source, mass, and observer lined up:

Source slightly off axis of mass and observer:

Ben Brau

Freshman Colloquium

