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Outline

• Grandiose Beginning: Why do we search?

• Hadron Collider Experiments

• What do you produce in pp or ppbar collisions?

• How do we detect those things?

• A brief survey of New Phenomena Search Strategies and Results

• Searches for SUSY

• Model-independent (signature-based) Searches

• Searches for the SM (what about the Higgs Boson?)
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Q: Why are we searching for new particles?

A: Answer fundamental questions about the universe
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Dark Matter and Dark Energy
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• What is dark matter and 
dark energy?

• Dark matter
• 1933: Cluster rotation
• 1975: Galaxy rotation
• 2006: Galaxy cluster

 1E 0657-56
• Gravitational lensing
• Chandra X-ray

• Dark energy
• 1922: Einstein’s Λ
• 1998: Type 1A supernovae
• 2003: WMAP

dark matter

ordinary matter
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Matter-Dominated Universe

• Why do we live in a matter-
dominated universe?

• 1966 - Sakharov’s conditions:

• Baryon number violation

• CP violation

• Not enough in quark 
sector

• Neutrinos?

• Thermal non-equilibrium
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Andrei Sakharov
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Extra Dimensions

• Are there hidden dimensions 
of space?

• Many models in recent years

• Can explain weakness of 
gravity
“hierarchy problem”

• Connection to dark matter?
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Abstract

We propose a new higher-dimensional mechanism for solving the hierarchy problem. The
weak scale is generated from a large scale of order the Planck scale through an exponential
hierarchy. However, this exponential arises not from gauge interactions but from the back-
ground metric (which is a slice of AdS5 spacetime). This mechanism relies on the existence
of only a single additional dimension. We demonstrate a simple explicit example of this
mechanism with two three-branes, one of which contains the Standard Model fields. The
experimental consequences of this scenario are new and dramatic. There are fundamental
spin-2 excitations with mass of weak scale order, which are coupled with weak scale as op-
posed to gravitational strength to the standard model particles. The phenomenology of these
models is quite distinct from that of large extra dimension scenarios; none of the current
constraints on theories with very large extra dimensions apply.

PRL 83, 3370 (1999)
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Electroweak Symmetry Breaking

• What is the origin of electroweak 
symmetry breaking?

• Favored explanation: Higgs 
mechanism

• Imparts mass to all particles in 
standard model

• Higgs boson not yet observed

• Other explanations possible
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Why do we search for new particles?

• Answer fundamental questions about the universe:

• What are dark matter and dark energy?

• Why do we live in a matter-dominated universe?

• Are there hidden dimensions?

• What is the origin of electroweak symmetry breaking?

• How do we answer these questions?

• Find the particles and interactions responsible

• Particle colliders

8
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The Tevatron Collider at Fermilab

• Presently most energetic collider in 
the world

• Collides protons and antiprotons

• ECM = 1.96 TeV

• Still in operation, still collecting data

• ~7 fb-1 delivered, ~6 fb-1 acquired 
each by CDF and D0

• Many searches for New Phenomena 
(NP)

• Now excluding a range of SM Higgs 
masses
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The CERN Large Hadron Collider
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7 TeV - 14 TeV



LHC

Switzerland
France
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Proton Proton Collisions
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A more realistic picture:
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• Protons are really bound states of quarks and gluons.  Each quark and gluon 
jiggles around within the quantum bound state.

• Energy and Momenta of quarks and gluons is unknown.



How we really think about it:

• As physicists, we like to approximate everything as spherical and flat and 
infinite (simple) so we can calculate something about it.

• This approximation is good enough, provided we include in our description an 
estimate of the distribution of the partons (quarks/gluons) within the proton.

• “Parton Distribution Functions” (PDFs) can’t be calculated.  Must be 
measured.
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Parton Distribution Functions
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Valence up
Valence down

Derived from CTEQ6L global fits, with simplistic sea/valence subtraction. Q2 = (100 GeV)2



Parton Distribution Functions
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Valence up
Valence down
Sea up
Sea down
Gluons

Derived from CTEQ6L global fits, with simplistic sea/valence subtraction. Q2 = (100 GeV)2



pp (or pp) Collisions Summary:

• Only a fraction of proton’s energy is 
involved

• pp collisions are really parton collisions

• CM is not known

• Fraction of proton’s momentum 
determined by PDF

• Simultaneous probe of many 
energies

• Contribution from gluon interactions 
can be significant
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What is produced in a pp collision at 2 TeV?

• Light quark jets (hadrons)

• b-quark jets (hadrons)

• Gauge bosons W±,Z0

• Top quark pairs

• Single top quark

• Di-boson 
W±W∓, W±Z0, Z0Z0

• Higgs

• Higgs + boson: ZH,WH

• SUSY, Technicolor, 
Leptoquarks, Z’,W’, excited 
quarks,
excited leptons...
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What is produced in a pp collision at 14 TeV?
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From “The Expected Performance of the ATLAS Experient”, CERN-OPEN-2008-020 



Example Rate Calculation:

• LHC Design L=1034/cm2s

• pp inelastic: σ =79 x 106 nb

• 1 barn = 10-24 cm2 

• pp inelastic: σ = 79 x 106 x 10-9 x 10-24 cm2

• pp inelastic: σ = 79 x 10-27 cm2

• Rate = Lσ =1034/cm2s x 79 x 10-27 cm2 = 7.9 x 108/s ~ 109/s

• O(20) interactions per bunch crossing

• Still, simply cannot record every event.
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Solution: Trigger

• Only save events with interesting 
objects

• Leptons (e, mu, tau)

• High-energy jets

• Displaced vertices (b-quark jets)

• Missing energy

• Risk: throwing away the new 
physics signal!

• Solution: have to think of 
everything you want to save 
ahead of time.

25
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Example Trigger Table

26

http://www-cdfonline.fnal.gov/java/cdfdb/servlet/
RunSummary?RUN_NUMBER=271746&L3=1
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Particles as seen by Collider Detectors: 
Idealized (end view)
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Detectors: CDF
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Detectors: ATLAS (well some of it)
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Modern Collider Experiment Detectors
Ideally:

• Can identify and precisely measure jets 
(energy, trajectory), and their origin, and 
even whether they originate from a high 
energy quark or gluon.

• Can measure all energy in an event 
(and the missing momentum).

• Can detect and reconstruct energy, 
trajectories of e,μ with no background.

• A τ is just the third kind of charged 
lepton, right?  We can measure leptons.

• Can identify and precisely measure b-
quark jets.
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Realistically:

• “Jet” is another word for the spray of 
mostly hadronic particles that originates 
from quarks and gluons
“A jet is a jet is a jet”
“A jet isn’t a jet isn’t a jet!”

• “Underlying event”, pileup, detector noise, 
mis-measurements all affect MET 
resolution.

• Electrons radiate and loose energy, 
photons convert to e+e-, pions decay to 
muons.

• Reconstructing τ leptons is very hard: 
they look more like jets than leptons

• Displaced vertices from b-quarks are hard 
to find and can be faked by light quark 
jets



Event Displays

(CDF)
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High-Mass Di-Jet Event
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A Bs Event (Vertex)
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x (cm)

y (cm)
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CDF Event Display: High Mass Electrons
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A tt Dilepton Event

40

tt̄, t→W+b, t̄→W−b̄



Search Strategies

• Model-Dependent: Pick a model.  
Study the phenomenology.  
Optimize search for a model

• Supersymmetry

• Leptoquarks

• Technicolor

• New Gauge Bosons

• Extra Dimensions

• ...

41

• Model-Independent

• Pick a signature

• Optimize for detector 
acceptance and background 
rejection

• Quantify Backgrounds

• Look for excess

• Do all signatures simultaneously?



Supersymmetry Phenomenology 
(for experimentalists)

• Proposes a new symmetry:

• Fermions ↔ Bosons

42

• Every fermion has a boson superpartner and vice-versa

• New (conserved) quantum number called R-Parity:

Rp = (−1)B+L+2s

electron ↔ selectron
Rp = 1      Rp = -1

photon ↔ photino
Rp = 1      Rp = -1

• Consequences if R-Parity is conserved: 

• Supersymmetric particles are pair-produced in 
colliders.

• The Lightest Supersymmetric Particle (LSP) is stable.

• SUSY particles decay to SM particles and the LSP 
(which can result in missing energy).



The SUSY Zoo

43

• SUSY solves the heirarchy problem.

• Removes divergences to Higgs mass.

• Vanilla SUSY: >100 Parameters.  Traded one problem for 
another.



Minimal Supergravity (mSUGRA)

• SUSY is a broken symmetry: spin 3/2 gravitino breaks Supersymmetry.

• Reduces the number of SUSY parameters from >100 to 5:

• m0: Scalar mass at the GUT scale.

• m1/2: Fermion mass at the GUT scale.

• tan(β): Ratio of Higgs vacuum expectation values.

• A0: Trilinear scalar interaction at the GUT scale (Higgs - sfermionL - 
sfermionR).

• sign(μ): Higgsino mass parameter
(value is determined by EWSB).

• Specifying these 5 parameters determines SUSY spectrum.

• Enables meaningful comparisons between experiments.

44



Searches for Squarks/Gluinos at CDF

• Strongly Produced

• Decay to jets and MET

• Neutralino is LSP

• Searches

• Look for 2, 3, or 4 jets and MET

• Are optimized in several different regions of mSUGRA parameter space to 
maximize sensitivity

• Require lots of  MET, large total jet energy

• Background: Mainly QCD (jets)

45



Searches for Squarks/Gluinos at CDF

• Final results:

• Limits are set 

• Squark/Gluino plane for a choice of tan(β)= 3, A0=0, μ<0

46



Search for Charginos/Neutralinos at CDF

• “Golden” mode for SUSY discovery at Tevatron

• Production:

• Decay:

47

leptons
MET



Search for Charginos/Neutralinos at CDF

• Decay via virtual W, Z, or sleptons.

• Observe 3 leptons, MET from decay of Chargino (χ±1) and next-to-lightest 
Neutralino(χ02)

48



Search for Charginos/Neutralinos at CDF

49



Other Tevatron Searches

• Too many to go into details (or even list them all!)  Partial list of searches:

• Scalar Top 

• Scalar Bottom

• Leptoquarks

• Large Extra Dimensions

• High-Mass resonances

• New or Excited Fermions

• Technicolor 

• Anomalous production of exotic signatures (e.g. MET + γ + b-jet)

• The SM Higgs is only one particle we’re looking for.
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Model-Independent Global Searches

• Idea: Can’t we try to model all the data all at once?

• Very ambitious.  CDF and D0 have done this.

51



“Model Independent Algorithmic”
• Classify events by their object content (final state)

• Simulate standard model with Monte Carlo

• Global fit to extract correction factors (luminosity, k-
factors, mis-id rates, trigger efficiencies, jet energy scale)

• Look for anomalies in distributions (bulk)

• Look for excesses in high sum ET distributions

• Assumes NP will be at high sum ET and appear as an 
excess

• Order final states by how discrepant they are

• Flag interesting states for further study

• Iterative procedure to identify and account for detector 
effects

• Sensitivity to new physics depends on details of final 
state

• Provides a safety net to avoid missing the obvious

• CDF has a 2 fb-1 result, D0 has a 1 fb-1 result.
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Model-Independend Algorithmic: 
Standard Model MC Cocktail
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Model-Independent Algorithmic: 
Correction Factors

54



MC Mis-Id Study



Model-Independent Algorithmic
(Vista/Sleuth)



Higgs Boson Searches -- LEP

• Production:

• Look for “Higgsstrahlung”

• Mass reach limited by beam energies

• Sensitive to Higgs masses up to

• Four Detectors: ALEPH, DELPHI, L3, OPAL

• Final results combined all detectors, all channels

• Complicated combination.
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e+e− → Z0H

≈
√

s−mZ0



Higgs Searches - LEP

• Standard Model Higgs excluded for mH < 114.4 GeV.

• Electroweak fit favors a light Higgs Boson.
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• High-Mass: Look for direct production, WW decays dominate

• Low-Mass: Look for associated production with a W or Z, bb decays 
dominate

• Hunting for Higgs at the Tevatron is hunting for Di-Bosons
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Higgs Boson Searches -- Tevatron
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Higgs Search: Low-Mass ZH and WH

• Reconstruct Z-> ll, Require 2 jets.

• Require one jet have a b-tag

• Jet energies are corrected with a NN

• 2-dimensional NN trained to 
discriminate from Z+jets, ttbar
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CDF Relative Sensitivity of Channels

• Favored low-mass region most difficult: Many channels needed.

• Within a factor of 3 of SM over most of mass range.

• D0 results are very similar. 62
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Higgs Limits - Tevatron Combination

• Expect an update soon with more data
63



Event Display: A CDF ZH Candidate Event

64
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Other Di-Boson searches: WZ → lllν

• If we hope to see Higgs, we should be able to see 
other SM diboson production (higher rates)

• WZ Observation at CDF is a milestone towards 
Higgs

• Significant improvements in lepton acceptance

• Other diboson milestones underway
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Milestone on the road to the Higgs: 
Standard Model EWK DiBosons with Jets

• Electroweak production of WW 
and WZ, observed in
lepton + MET + jet + jet 

• Detailed MET model used to reject 
events with mis-measured MET

• 5.3σ Observation

• Cross section consistent with SM
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Higgs Production and Decay (14 TeV, pp)

• High Mass: WW and ZZ most promising

• Low Mass: bb is very tough.  γγ is clean but requires a lot of data.
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“What kind of new physics do you expect to 
be discovered at the LHC?”

• Poll of 300 people at 
Fermilab 
(G. Choudalakis)

• Largest group said:
“Higgs”

• Next largest said: 
“Something we haven’t 
thought of yet”

• Symmetry magazine 
February 2007

• We expect something

• We don’t know what to 
expect
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Summary

• The Tevatron is searching for hints new phenomena in its data.

• The LHC is waiting eagerly for first collision data to explore a new energy 
regime.
(and waiting and waiting...)
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Anatomy of a b-tag (SECVTX)	

• Efficiency depends on jet ET, nTracks, cone size, etc.
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Could the Higgs hide under the Z?

• Nope.
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Source, mass, and observer lined up: 

Source slightly off axis of mass and observer:
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dark matter

ordinary matter
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