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Maximum Likelihood Primer

Abstract

This note offers a brief introduction to maximum likelihood methods. It describes
the basics of parameter estimation using the likelihood function and examines several
potential pitfalls that both the neophyte and the experienced user should avoid. The
Run I sin 23 analysis is used as an example of how to construct a complex and realistic
likelihood function for an actual High Energy Physics analysis.

1 Introduction

We often wish to infer the value of a constant of nature from a set of measurements. For
example, we may measure the invariant mass of the decay products of a particle, such as
B — J/yK,, and wish to extract a measurement of the B® mass. Or perhaps we determine
an efficiency as a function of transverse momentum and wish to determine the parameters
of a functional form that well describes that dependence.

Determining an estimate of a parameter from measured data is known as parameter
estimation. There are many methods of parameter estimation, such as x? fits, binned likeli-
hood fits, unbinned likelihood fits, average calculation, and linear regression. In general, an
unbinned likelihood fit (also known as the maximum likelihood method) is the most powerful
(that is, does the “best” parameter estimation, as explained in section 3) for a given set of
data. This note discusses the basics of the maximum likelihood method. It is meant as a
primer for those just learning about such things but hopefully includes useful information for
experienced data fitters. For a more technical discussion of properties of likelihood functions
and fits, see reference [1]

2 Maximum Likelihood Basics

To apply the maximum likelihood method, a likelihood function must first be constructed.
Let p(X|a) be the the probability of getting a measurement X on a given event. Note that
X may represent more than one observable. For example, it could be the mass and proper
lifetime of a B — J/¥ K, in a single event. This probability is assumed to depend on a set
of parameters labeled as «, which could be one parameter or more than one.



The likelihood function is the product over N measurements of the probability p,

that is,
N

L = p(Xila). (1)
=1

The log-likelihood function is the natural logarithm of the likelihood function, that is,

N
InL = In(p). (2)
=1

We often want to infer the true value of the unknown parameter(s) « from the
measurements X;. The maximum likelihood estimator (MLE or mle) for the parameter « is
the value that maximizes the likelihood function (hence the name of the method). Since the
natural logarithm function is monotonic, the value of « that maximizes L also maximizes
InL.

If there is one parameter o and it is a continuous variable, then the value of « that
satisfies d(nL)
n
=0 (3)
is the MLE. Solutions to this equation could also be minima or inflection points, which
should be checked, but this is usually not a problem in practice. If there is more than one
parameter (call them «;), then we have to solve the following set of simultaneous equations

d(ln L)
804]'

=0, (4)

In most realistic problems, analytic solutions to these equations are difficult or impossible
to obtain. In that case, numeric methods are used (see Section 10 for a brief discussion).

In order to keep things straight, we will use the following notation: « for a parameter,
& for its MLE, and «ay for its true value.

As a concrete example, consider the measurement of the mass of B — J/¢ K, can-
didates in the absence of background. Assume the mass resolution is Gaussian and given
by
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where the actual B® mass Mp and the mass resolution ¢ are the parameters. The likelihood
and log—likelihood functions are

p(M|Mp,0) =

g

1 (M;=Mp)®
L = [[=e¢ = (6)
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InL = —Nln(VQWUz)—EZM, (7)
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where IV is the number of measurements. The parameter values that maximize the log—
likelihood are

Mp = %ZMz (8)

(M; — Mp)?
6'2 — Zz( ? B) ) (9)
N
These formulae probably look familiar as estimators for the mean and variance of Gaussian
distributed measurements. You may prefer a factor of N — 1 instead of IV in the variance

formula — this is discussed in the next section.

3 Bias, Consistency, and Efficiency

It may seem reasonable that a maximum likelihood estimator is a good estimator of a para-
meter because it is the one that maximizes the probability of getting the observed measure-
ments. However, we want to be sure mathematically whether an MLE is a “good” estimator,
or even whether it is the “best” estimator, for the parameter. To define “good” and “best”,
we define some mathematical properties that we wish our estimators to have.

To do this, you must first realize that an estimator is itself a random variable. If we
repeat an experiment, we will get a different set of measured values. Since an estimator is
a function of the measured values, we will get a different estimator. Thus, when averaged
over many experiments (that is, sets of measurements), an estimator has an average value
and a variance (and all other statistical measures).

Statisticians define an unbiased estimator as one whose expectation value is equal to
the true value of a parameter. This is obviously something we would like to require of our
estimators. Unfortunately, maximum likelihood estimators do not always have this property.
Sometimes they do, such as for the mean of a Gaussian in equation 8, as can be seen from

= T« . Il 1
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where the overline indicates average or expectation value over many experiments. The
variance of a Gaussian in equation 9 provides an example of a biased MLE, since a careful
calculation shows that

= N

02 = 2 (11)

N _ 1 0—07
that is, the average estimated variance and the true variance differ by a factor of N/(N —1).
It can easily be seen that replacing N with N — 1 in equation 9 does give an unbiased
estimator.




Note that the MLE estimator for the variance of a Gaussian does approach the true
variance for large N. An estimator with this property is called consistent by statisticians.
Under fairly general conditions, MLE’s are consistent.

Also note that bias depends on the functional form used for the fit. For example,
in a lifetime fit to an exponential of the form %e*t/ 7, the fit parameter can be either the
lifetime 7 or the decay rate I' = 1/7. The fit for 7 is unbiased, but the fit for I" is biased.

Another desirable property of an estimator is that it have the smallest possible vari-
ance. (Don’t confuse this variance with the Gaussian example above. The variance here is
the variance of the estimator about its mean over many experiments.) An estimator with the
smallest possible variance is known as an efficient estimator. Maximum likelihood estimators
are efficient for large N but aren’t necessarily so for small N.

The “best” estimator is an unbiased, efficient one. For large IV, maximum likelihood
estimators are unbiased and efficient, which is why maximum likelihood methods are popular.
For small N, MLE’s are not necessarily either unbiased or efficient. However, there does not
exist a general method for finding an unbiased, efficient estimator, so people use maximum
likelihood.

Since maximum likelihood estimators may be biased, it is essential to check this
feature for a given measurement. This is usually done with Monte Carlo methods as described
in section 8. If there is a bias, the result must be corrected so that published numbers are
unbiased.

4 Uncertainties on Parameters

As important as getting a correct estimate of a parameter is knowing how precise this
estimate is, that is, how likely is it to be close to the true value. This is usually expressed as
the standard deviation of the estimator about its true value or as a confidence interval. A
confidence interval at C'L confidence level has a 1 —C'L probability that the interval contains
the true value. The probability that the confidence interval contains the true value is also
known as the coverage. When someones gives a one standard deviation uncertainty on a
result, they imply that the estimated value plus or minus one standard deviation is a 68%
confidence interval (68% is the area under a Gaussian from the mean less o to the mean plus
o). In this note, A« will represent one standard deviation on the parameter «.

For one parameter and for large N, it can be shown (basically from the Central Limit
Theorem) that the likelihood function is a Gaussian function of the parameter. This implies
that In L is a parabolic function of «, that is,
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Figure 1: Example of an asymmetric log-likelihood function.

In this case, the rms standard deviation of the likelihood function is a good estimate of the
rms standard deviation of the MLE for «. This is equivalent to
1
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For small NV, In L may not be parabolic. In fact, it may not even be symmetric about
the maximum. In this case, a good estimate for the limits of the 68% confidence interval
are those values for which In L changes by 1/2 from its maximum value. For the parabolic
case, this is clearly equivalent to the definition above. An asymmetric case is illustrated in
figure 1, where o and « are the limits of the 68% confidence interval. This is usually
denoted as a = &fgf. If an n sigma confidence level is desired, then look to where In L
changes by n?/2.

It is not always the case that the Aln L = 1/2 interval gives a 68% confidence interval.
See reference [3] for a counter example involving a triangular probability distribution.
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Figure 2: Uncertainties on correlated parameters. Contour is where In L changes by 1/2
from its maximum value.

If there are multiple parameters, things are a little more complicated due to possible
correlations between the parameters. Consider a case with two parameters (« and 3), where
the likelihood function is Gaussian in a and . The contour in the o plane where Aln L =
1/2 is an ellipse. If @ and [ are correlated, then the ellipse will be tilted, as illustrated in
figure 2. Suppose we are interested in the uncertainty on &. If we hold « fixed, then (3, are
where In L changes by 1/2. These do not give the proper uncertainties. Instead, we must
take the extreme points on the ellipse, given by (4 in the figure. This is equivalent to finding
the values of # where In L changes by 1/2 and In L has a maximum value with respect to .
For more than two parameters, the prescription is similar, namely, to find the uncertainty
on a parameter, find where In L changes by 1/2 while maximizing In L with respect to all
other parameters. In most cases, this will be done numerically (see section 10).

For multiple parameters, the correlations between the parameters are also important.
The first order correlations are expressed as the covariance matrix V, which is an M x M



matrix for a problem with M parameters defined by

Vij = (i — @) (o — @), (14)

where «; and «; are two parameters and the overlines indicate expectation values. The
diagonal elements of the covariance matrix give the variance of the corresponding parameter.
The off diagonal elements give the covariances. In the parabolic case, the inverse of the
covariance matrix U = V! is given by

02IlnL
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Uij = (15)

5 Normalization Issues

It is sometimes argued that it is not necessary to properly normalize the probability density
function p in the likelihood function, since the normalization factor is a multiplicative factor
in the likelihood, and hence an additive factor in the log-likelihood, and doesn’t affect where
the maximum of In L is nor the shape about the maximum.

This argument is correct as long as the normalization doesn’t depend on any of
the parameters. If it does, then omitting the normalization will give incorrect results. My
recommendation is to always normalize.

As an example, consider the Gaussian case given in equations 5 to 9. The normaliza-
tion factor for the Gaussian is 1/v2mwo?, which doesn’t depend on the data or on the mean.
If we are only interested in the mean, then we could drop the normalization, and maximizing
the likelihood function would give the same result. However, if we are interested in deter-
mining the variance, then the reader can easily verify that dropping the normalization and
maximizing the likelihood function will give the nonsense result of 62 = co.

6 Uncertainty on the Number of Events

It is common in High Energy Physics measurements to have multiple sources for a particular
type of event. For example, suppose we wanted to determine the number of B — J/y K
events in a data sample by calculating the invariant mass of the decay products and looking
at the number of events in the mass peak. Almost always, there would be additional events
where the decay products were not all from a B°, usually known as background events.

As an example, suppose the probability distribution of the background is flat over
a mass range AM that we fit (it could be anything, but often a low order polynomial is
sufficient to accurately describe the background). Also, let f be the probability that an



event in our sample is a signal event (that is, one that actually came from a B? — J/y K
decay). The probability density function in this case is

1 -mp)? 1
We 222 4+ (1= f)r (16)

AM®
Calculating the likelihood function and maximizing with respect to f will give an estimate
for f and an uncertainty Af.

p(M|f,M0,O’) =f

It is correct to take Ny = fIN as the number of signal events. It is also tempting
to take the uncertainty as AN, = AfN. We must be very careful in interpreting this
uncertainty. It is actually the uncertainty of the number of signal events in our sample of
exactly N events, that is, it is binomially distributed. If we are interested in determining a
cross section or branching ratio, we need to know the standard deviation in the number of
signal events over many experiments, which is larger due to fluctuations in N.

One solution is to take Ny = fN with an uncertainty given by folding the uncertain-
ties in f and N (AN = v/N) together in quadrature.

A second method is to add a term to the probability that is a Poisson distribution
in the number of events N with mean p. Then f is expressed as Ng/N, and N is one of
the parameters. This method is called by some an extended likelihood method [4] and also
yields a proper uncertainty on Ny. If you are not directly interested in the uncertainty on the
number of events, then doing an extended likelihood fit adds an unnecessary complication.

7 Constrained Parameters

Sometimes a parameter in a fit may be known with some uncertainty from another source.
For example, suppose we wished to determine the mass resolution for a certain decay mode
by fitting the invariant mass spectrum. Also suppose that the mass is given in the Particle
Data book as My + ops. We can in principle improve our determination of the resolution by
including a Gaussian term that expresses the probability of getting the measured value M
in our set of data. The likelihood and log-likelihood functions become

1 -0 N w2
L(oc) = ———e M [ e 27 ] (17)
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This is known as a constrained fit.

If the parameter being constrained is known much, much better from other data than
it can determined from the fit, then the constraint will simply move the parameter to the



known value and is equivalent to a fit without the constraint (fixing the parameter to the
known value). For example, you never see Planck’s constant constrained to its measured
value in High Energy Physics fits.

If the parameter being constrained is very poorly measured compared to how well
the fit can determine it, then the constraint also will have little effect, since the optimal
value with or without the constraint will be the same.

Constrained fits have their greatest power when the uncertainty on the measured
value is similar to the uncertainty that would result from the fit without the constraint.

8 Simple Monte Carlo Tests

It is important, particularly for complex problems, to make sure that the likelihood function
is behaving properly and to test whether there is any bias in the parameter estimation. A
common method to do this is to write a short program that generates data according to
the model assumed in the likelihood function. This is a powerful method to understand
likelihood functions and other statistical questions. Many people call such programs “toy”
Monte Carlos. Since these programs can be extremely useful in understanding subtleties
in likelihood fits and statistical methods in general, I prefer to call them simple Monte
Carlos (as distinguished from Monte Carlo programs that do detailed event generation and
simulation).

For example, if you think your data is Gaussian distributed and you are interested in
knowing how well you can determine the mean in a sample of 100 measurements, you would
write a program to generate sets of 100 measurements with a known mean and resolution.
Then you minimize the likelihood function for each set of measurements. If the average MLE
of the mean is equal to the mean used to generate the data, then the method is unbiased.
Also, the rms spread of the MLE’s should equal the average of the uncertainties from the
likelihood fits. If you do this test for a fit for the variance of a Gaussian, you will discover the
bias discussed in section 3. Of course, a simple Gaussian problem can be done analytically
and is well understood. However, for problems with many probability distributions with
many parameters, the simple Monte Carlo is a very useful check.

Note that using a simple Monte Carlo does not check that your likelihood function
properly models the data, which is always a crucial question. For example, if you think the
data is Gaussian distributed and use that for the likelihood function, but it really has some
other distribution (such as, a Lorentzian), then your fit will be incorrect. A simple Monte
Carlo test based on a Gaussian distribution will not reveal the problem.



9 Goodness of Fit

In order to check that the likelihood function properly models the data, it is important to
perform some form of goodness of fit check. Often people show binned plots of the data with
the function determined from the MLE parameters overlayed. Although information is lost
in the binning of the data (particularly in problems with multidimensional data), obviously
deficient modelling can be found this way.

Chi-squared (x?) fits have the advantage that they automatically provide a goodness
of fit estimation, since the estimated parameter should be distributed according to a x?
distribution with the appropriate number of degrees of freedom. Sometimes, people do an
unbinned likelihood fit and then do a binned x? test for goodness of fit.

Unfortunately, the likelihood often does not give a good measure of goodness of
fit. As an example, consider fitting lifetime data to an exponential. The likelihood and
log-likelihood functions are

N
L = [retr (19)
3
N
InL = Nkl -> Tt, (20)
)

where T is the parameter of interest (the total width in this case), ¢; is the proper decay
time of the i event, and N is the number of events. The MLE of T is

N
it

and the value of the likelihood function at it minimum is

t.
InL|_;=-N (1 +1In Z]:VZ> : (22)

I = (21)

Since In L depends only on the number of events and the average value of the data, any data
sets with similar size and average will give similar log-likelihood values, no matter what the
distribution actually is.

For more discussion on goodness of fit tests when using maximum likelihood methods,
see reference [2].

10 Numerical Methods

Most maximum likelihood fits are too complex to be solved analytically. Fortunately, there
exist numerical methods for maximizing functions. The most common method in experimen-
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tal high energy physics is to use a software package written at CERN called MINUIT. This
program actually minimizes a function of one or more parameters, returns the optimal values
of those parameters, and returns the uncertainties on those parameters. Since MINUIT is a
minimization program, you provide it with the negative of the log-likelihood function. To
find out how to use MINUIT, see its documentation [5]. For a brief discussion of the proper
use of MINUIT in likelihood fits, see reference [6].

11 Systematic Errors

A maximum likelihood fit will return the statistical errors on the parameters being estimated.
In addition, there may be systematic errors due to uncertainties in the modelling of the
data, uncertainty in parameters of the likelihood function that aren’t being estimated, and
uncertainties in numbers needed to convert the estimated parameter to the desired physics
quantity. For a more detailed discussion of systematic errors, including issues relevant to
likelihood fits, see reference [7]

12 Sin2p Likelihood Function

As an example of a realistic likelihood function used in High Energy Physics, we will look at
the Run I sin 23 analysis. The reader unfamiliar with the physics of this measurement should
consult reference [8]. The basic idea is that the decays By — J/9¥ K, and B = J /YK have
proper decay times that have an oscillating part that depends on the C' P—violation parameter
sin 23. The goal of the analysis is to extract a measurement of this parameter.

The measured quantities consist of the proper decay time, the invariant mass of the
J/YK,, and a tag of whether the initial particle was a B° or B’. The actual fit used in
the analysis has over 60 parameters, including mutiple background sources, multiple types
of tags, and possible asymmetries of the tags. A full description is beyond the scope of this
note, but the interested reader can find the details in reference [8].

A simplied model of the fit is presented here that contains most of the essential
features. We assume that there are two souces of events: signal and background. The
signal is J/¢ K, events from BY and B’ decays. The background events are from tracks that
reconstruct to a J/19 K, but didn’t come from a B decay.

The probability Pg for the signal contains three factors for the proper time, mass,
and tagging efficiency, that is,

Ps = Ts(t)Ms(m)Es(Q), (23)
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where t is the proper time, m is the invariant mass, and @ is the tag (Q = -1 for a B’ tag,
0 for no tag, and +1 for a BY tag.

The proper time distribution for the signal is
1

h(t) = e~/ [1 + sin2@sin(Amt)], (24)
T

where 7 is the average B lifetime, Am is the mass difference of the eigenstates, and the sign
depends on whether the initial particle was a B° or B

There is an efficiency eg for tagging a signal event and a probability f of mistagging
an event, that is, tagging an event as a B when it really was a B and vice versa. Thus,
the probability of getting a BY tag at time ¢ is (note that the tagging efficiency is included
in &)

h(t) = %e*t/f [1 —sin2@sin(Amt)] (1 — f) + %e’t/T [1 +sin23sin(Amt)] f (25)
= %e*t/T [1—(1—2f)sin28sin(Amt)] (26)
= %e*t/f [1 — Dsin20sin(Amt)) (27)

where D =1 — 2f is known as the dilution. Doing this for the three tagging cases (Q = -1,
0, +1) gives

h(t) = %e*t/f [1 — DQsin 24 sin(Amt)] (28)

Since we measure the proper decay time with a non-zero resolution, we must fold this
lifetime distribution with a Gaussian whose width is the resolution. The resolution o; is given
by the secondary vertex fit and varies from event to event. Thus, we have Ts(t) = h * g(t),
where h * g symbolizes the convolution of h(t) with a Gaussian function g.

The mass distribution is Gaussian with a resolution o, that is also given by the
secondary vertex fit and varies from event to event, giving

1 _(m—MB)2
Mg(m) = e m (29)

\/2mo2,

The £5(Q) function is the probability of getting a tag @, where Q = 1 for a B°
tag, -1 for B tag, and 0 for no tag. We assume that B%’s and B"'s are tagged with equal
efficiency eg, giving

5 Q=-1
@) ={ l-es Q=0 (30)
S Q=+1
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The reader should check that Pg is properly normalized when summed over ) and integrated
over m and t.

The probability for the background also contains three terms for the time dependence,
mass dependence, and tagging efficiency, that is,

Pp =Tg(t)Mp(m)Ep(Q), (31)

To simplify things, we assume that the background consists only of prompt events with a
linear mass spectrum over the mass range W. The choice of a shape for the mass distribution
in a real example would be one that fits the data well. We assume that the background events
are tagged with an efficiency ep, which can differ from the signal tagging efficiency. We also
assume that there is an equal probably of tagging a background event as a B? or B’. This
gives

Tp(t) = e 29t (32)

Mp(m) = ——- (33)

£Q) = (1-es Q= (34)

Note that the dilution D appears in these probabilities only as a product with sin 20,
which is the parameter we wish to determine. Thus, it is not possible to fit for both D and
sin 2. Thus, the dilution must be determined from other data. The authors included the
measured dilution as a constraint. In our case, including it as a constaint or fitting for
the product Dsin2f and dividing out the measured value of D will give the same result.
However, using the constraint will automatically include the error on D in the error on sin 2.

The authors also chose to include constraints on the B lifetime 7 and the mixing
frequency Am. They could have chosen to also constrain the B mass but did not, apparently

because they felt that the PDG value was sufficiently more accurate than a determination
from the J/¢Y K, data.

Although the number of events was not the main goal of this measurement (sin 20
was), the authors chose to do an extended likelihood fit.
Putting all of this together gives a log-likelihood function of

N
InL = Ns+Np+» [NsP+ NpPj] (35)

)

_ 2
—1In(y/270%) — % (36)
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—1In(y/2703%,) — w (37)

—In(y/2702) — M, (38)

20,

where the sum over ¢ is over events, D,,, is the measured dilution, Mj is the PDG value of the
mass with uncertainty o, and 7 is the PDG value of the lifetime with uncertainty o,. Note
that the normalizations on the constraint Gaussians do not depend on the fit parameters
and could be dropped.

The actual sin23 analysis includes details such as whether events were measured
in the SVX or not, long lived backgrounds, scale errors on uncertainties of measurements
of lifetimes and masses, possible tagging asymmetries, and constraints to measurements of
efficiencies. This results in a more complicated log-likelihood function with a total of 67
parameters, but the essential form is the same as presented here. Readers interested in the
full, gory details can see reference [8].
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