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Maximum Likelihood Primer

Abstract

This note o�ers a brief introduction to maximum likelihood methods� It describes

the basics of parameter estimation using the likelihood function and examines several

potential pitfalls that both the neophyte and the experienced user should avoid� The

Run I sin �� analysis is used as an example of how to construct a complex and realistic

likelihood function for an actual High Energy Physics analysis�

� Introduction

We often wish to infer the value of a constant of nature from a set of measurements� For
example� we may measure the invariant mass of the decay products of a particle� such as
B� � J��Ks� and wish to extract a measurement of the B� mass� Or perhaps we determine
an e�ciency as a function of transverse momentum and wish to determine the parameters
of a functional form that well describes that dependence�

Determining an estimate of a parameter from measured data is known as parameter
estimation� There are many methods of parameter estimation� such as �� �ts� binned likeli�
hood �ts� unbinned likelihood �ts� average calculation� and linear regression� In general� an
unbinned likelihood �t 	also known as the maximum likelihood method
 is the most powerful
	that is� does the �best� parameter estimation� as explained in section �
 for a given set of
data� This note discusses the basics of the maximum likelihood method� It is meant as a
primer for those just learning about such things but hopefully includes useful information for
experienced data �tters� For a more technical discussion of properties of likelihood functions
and �ts� see reference 
��

� Maximum Likelihood Basics

To apply the maximum likelihood method� a likelihood function must �rst be constructed�
Let p	Xj�
 be the the probability of getting a measurement X on a given event� Note that
X may represent more than one observable� For example� it could be the mass and proper
lifetime of a B � J��Ks in a single event� This probability is assumed to depend on a set
of parameters labeled as �� which could be one parameter or more than one�
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The likelihood function is the product over N measurements of the probability p�
that is�

L �

NY
i��

p	Xij�
� 	�


The log�likelihood function is the natural logarithm of the likelihood function� that is�

lnL �

NX
i��

ln	pi
� 	�


We often want to infer the true value of the unknown parameter	s
 � from the
measurements Xi� The maximum likelihood estimator 	MLE or mle
 for the parameter � is
the value that maximizes the likelihood function 	hence the name of the method
� Since the
natural logarithm function is monotonic� the value of � that maximizes L also maximizes
lnL�

If there is one parameter � and it is a continuous variable� then the value of � that
satis�es

d	lnL


d�
� � 	�


is the MLE� Solutions to this equation could also be minima or in�ection points� which
should be checked� but this is usually not a problem in practice� If there is more than one
parameter 	call them �j
� then we have to solve the following set of simultaneous equations

�	lnL


��j
� �� 	�


In most realistic problems� analytic solutions to these equations are di�cult or impossible
to obtain� In that case� numeric methods are used 	see Section �� for a brief discussion
�

In order to keep things straight� we will use the following notation� � for a parameter�
�� for its MLE� and �� for its true value�

As a concrete example� consider the measurement of the mass of B � J��Ks can�
didates in the absence of background� Assume the mass resolution is Gaussian and given
by

p	M jMB � �
 �
�p
����

e�
�M�MB��

��� � 	�


where the actual B� mass MB and the mass resolution � are the parameters� The likelihood
and log�likelihood functions are
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where N is the number of measurements� The parameter values that maximize the log�
likelihood are

�MB �
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N
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These formulae probably look familiar as estimators for the mean and variance of Gaussian
distributed measurements� You may prefer a factor of N � � instead of N in the variance
formula � this is discussed in the next section�

� Bias� Consistency� and E�ciency

It may seem reasonable that a maximum likelihood estimator is a good estimator of a para�
meter because it is the one that maximizes the probability of getting the observed measure�
ments� However� we want to be sure mathematically whether an MLE is a �good� estimator�
or even whether it is the �best� estimator� for the parameter� To de�ne �good� and �best��
we de�ne some mathematical properties that we wish our estimators to have�

To do this� you must �rst realize that an estimator is itself a random variable� If we
repeat an experiment� we will get a di�erent set of measured values� Since an estimator is
a function of the measured values� we will get a di�erent estimator� Thus� when averaged
over many experiments 	that is� sets of measurements
� an estimator has an average value
and a variance 	and all other statistical measures
�

Statisticians de�ne an unbiased estimator as one whose expectation value is equal to
the true value of a parameter� This is obviously something we would like to require of our
estimators� Unfortunately� maximum likelihood estimators do not always have this property�
Sometimes they do� such as for the mean of a Gaussian in equation �� as can be seen from
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where the overline indicates average or expectation value over many experiments� The
variance of a Gaussian in equation � provides an example of a biased MLE� since a careful
calculation shows that

��� �
N

N � �
��� � 	��


that is� the average estimated variance and the true variance di�er by a factor of N�	N ��
�
It can easily be seen that replacing N with N � � in equation � does give an unbiased
estimator�
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Note that the MLE estimator for the variance of a Gaussian does approach the true
variance for large N � An estimator with this property is called consistent by statisticians�
Under fairly general conditions� MLE�s are consistent�

Also note that bias depends on the functional form used for the �t� For example�
in a lifetime �t to an exponential of the form �

� e
�t�� � the �t parameter can be either the

lifetime 	 or the decay rate � � ��	 � The �t for 	 is unbiased� but the �t for � is biased�

Another desirable property of an estimator is that it have the smallest possible vari�
ance� 	Don�t confuse this variance with the Gaussian example above� The variance here is
the variance of the estimator about its mean over many experiments�
 An estimator with the
smallest possible variance is known as an e�cient estimator� Maximum likelihood estimators
are e�cient for large N but aren�t necessarily so for small N �

The �best� estimator is an unbiased� e�cient one� For large N � maximum likelihood
estimators are unbiased and e�cient� which is why maximum likelihood methods are popular�
For small N � MLE�s are not necessarily either unbiased or e�cient� However� there does not
exist a general method for �nding an unbiased� e�cient estimator� so people use maximum
likelihood�

Since maximum likelihood estimators may be biased� it is essential to check this
feature for a given measurement� This is usually done with Monte Carlo methods as described
in section �� If there is a bias� the result must be corrected so that published numbers are
unbiased�

� Uncertainties on Parameters

As important as getting a correct estimate of a parameter is knowing how precise this
estimate is� that is� how likely is it to be close to the true value� This is usually expressed as
the standard deviation of the estimator about its true value or as a con�dence interval� A
con�dence interval at CL con�dence level has a ��CL probability that the interval contains
the true value� The probability that the con�dence interval contains the true value is also
known as the coverage� When someones gives a one standard deviation uncertainty on a
result� they imply that the estimated value plus or minus one standard deviation is a ���
con�dence interval 	��� is the area under a Gaussian from the mean less � to the mean plus
�
� In this note� �� will represent one standard deviation on the parameter ��

For one parameter and for large N � it can be shown 	basically from the Central Limit
Theorem
 that the likelihood function is a Gaussian function of the parameter� This implies
that lnL is a parabolic function of �� that is�

lnL	�
 � lnL	��
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Figure �� Example of an asymmetric log�likelihood function�

In this case� the rms standard deviation of the likelihood function is a good estimate of the
rms standard deviation of the MLE for �� This is equivalent to

�� � � �

�� lnL
���

���
����

� 	��


For small N � lnL may not be parabolic� In fact� it may not even be symmetric about
the maximum� In this case� a good estimate for the limits of the ��� con�dence interval
are those values for which lnL changes by � � from its maximum value� For the parabolic
case� this is clearly equivalent to the de�nition above� An asymmetric case is illustrated in
�gure �� where �� and �� are the limits of the ��� con�dence interval� This is usually
denoted as � � ��

���
��

�

� If an n sigma con�dence level is desired� then look to where lnL
changes by n����

It is not always the case that the � lnL � ��� interval gives a ��� con�dence interval�
See reference 
�� for a counter example involving a triangular probability distribution�
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Figure �� Uncertainties on correlated parameters� Contour is where lnL changes by � �
from its maximum value�

If there are multiple parameters� things are a little more complicated due to possible
correlations between the parameters� Consider a case with two parameters 	� and 

� where
the likelihood function is Gaussian in � and 
� The contour in the �
 plane where � lnL �
��� is an ellipse� If � and 
 are correlated� then the ellipse will be tilted� as illustrated in
�gure �� Suppose we are interested in the uncertainty on ��� If we hold � �xed� then 
�� are
where lnL changes by � �� These do not give the proper uncertainties� Instead� we must
take the extreme points on the ellipse� given by 
� in the �gure� This is equivalent to �nding
the values of 
 where lnL changes by � � and lnL has a maximum value with respect to ��
For more than two parameters� the prescription is similar� namely� to �nd the uncertainty
on a parameter� �nd where lnL changes by � � while maximizing lnL with respect to all
other parameters� In most cases� this will be done numerically 	see section ��
�

For multiple parameters� the correlations between the parameters are also important�
The �rst order correlations are expressed as the covariance matrix V� which is an M �M
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matrix for a problem with M parameters de�ned by

Vij � 	�i � �i
	�j � �j
� 	��


where �i and �j are two parameters and the overlines indicate expectation values� The
diagonal elements of the covariance matrix give the variance of the corresponding parameter�
The o� diagonal elements give the covariances� In the parabolic case� the inverse of the
covariance matrix U � V �� is given by

Uij � � �� lnL

��i��j
� 	��


� Normalization Issues

It is sometimes argued that it is not necessary to properly normalize the probability density
function p in the likelihood function� since the normalization factor is a multiplicative factor
in the likelihood� and hence an additive factor in the log�likelihood� and doesn�t a�ect where
the maximum of lnL is nor the shape about the maximum�

This argument is correct as long as the normalization doesn�t depend on any of
the parameters� If it does� then omitting the normalization will give incorrect results� My
recommendation is to always normalize�

As an example� consider the Gaussian case given in equations � to �� The normaliza�
tion factor for the Gaussian is ��

p
����� which doesn�t depend on the data or on the mean�

If we are only interested in the mean� then we could drop the normalization� and maximizing
the likelihood function would give the same result� However� if we are interested in deter�
mining the variance� then the reader can easily verify that dropping the normalization and
maximizing the likelihood function will give the nonsense result of ��� ���

� Uncertainty on the Number of Events

It is common in High Energy Physics measurements to have multiple sources for a particular
type of event� For example� suppose we wanted to determine the number of B� � J��Ks

events in a data sample by calculating the invariant mass of the decay products and looking
at the number of events in the mass peak� Almost always� there would be additional events
where the decay products were not all from a B�� usually known as background events�

As an example� suppose the probability distribution of the background is �at over
a mass range �M that we �t 	it could be anything� but often a low order polynomial is
su�cient to accurately describe the background
� Also� let f be the probability that an
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event in our sample is a signal event 	that is� one that actually came from a B� � J��Ks

decay
� The probability density function in this case is

p	M jf�M�� �
 � f
�p
����

e�
�M�M��

�

��� � 	�� f

�

�M
� 	��


Calculating the likelihood function and maximizing with respect to f will give an estimate
for f and an uncertainty �f �

It is correct to take Ns � fN as the number of signal events� It is also tempting
to take the uncertainty as �Ns � �fN � We must be very careful in interpreting this
uncertainty� It is actually the uncertainty of the number of signal events in our sample of
exactly N events� that is� it is binomially distributed� If we are interested in determining a
cross section or branching ratio� we need to know the standard deviation in the number of
signal events over many experiments� which is larger due to �uctuations in N �

One solution is to take Ns � fN with an uncertainty given by folding the uncertain�
ties in f and N 	�N �

p
N
 together in quadrature�

A second method is to add a term to the probability that is a Poisson distribution
in the number of events N with mean �� Then f is expressed as Ns�N � and Ns is one of
the parameters� This method is called by some an extended likelihood method 
�� and also
yields a proper uncertainty on Ns� If you are not directly interested in the uncertainty on the
number of events� then doing an extended likelihood �t adds an unnecessary complication�

� Constrained Parameters

Sometimes a parameter in a �t may be known with some uncertainty from another source�
For example� suppose we wished to determine the mass resolution for a certain decay mode
by �tting the invariant mass spectrum� Also suppose that the mass is given in the Particle
Data book as M�� �M � We can in principle improve our determination of the resolution by
including a Gaussian term that expresses the probability of getting the measured value M
in our set of data� The likelihood and log�likelihood functions become
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This is known as a constrained �t�

If the parameter being constrained is known much� much better from other data than
it can determined from the �t� then the constraint will simply move the parameter to the
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known value and is equivalent to a �t without the constraint 	�xing the parameter to the
known value
� For example� you never see Planck�s constant constrained to its measured
value in High Energy Physics �ts�

If the parameter being constrained is very poorly measured compared to how well
the �t can determine it� then the constraint also will have little e�ect� since the optimal
value with or without the constraint will be the same�

Constrained �ts have their greatest power when the uncertainty on the measured
value is similar to the uncertainty that would result from the �t without the constraint�

	 Simple Monte Carlo Tests

It is important� particularly for complex problems� to make sure that the likelihood function
is behaving properly and to test whether there is any bias in the parameter estimation� A
common method to do this is to write a short program that generates data according to
the model assumed in the likelihood function� This is a powerful method to understand
likelihood functions and other statistical questions� Many people call such programs �toy�
Monte Carlos� Since these programs can be extremely useful in understanding subtleties
in likelihood �ts and statistical methods in general� I prefer to call them simple Monte
Carlos 	as distinguished from Monte Carlo programs that do detailed event generation and
simulation
�

For example� if you think your data is Gaussian distributed and you are interested in
knowing how well you can determine the mean in a sample of ��� measurements� you would
write a program to generate sets of ��� measurements with a known mean and resolution�
Then you minimize the likelihood function for each set of measurements� If the average MLE
of the mean is equal to the mean used to generate the data� then the method is unbiased�
Also� the rms spread of the MLE�s should equal the average of the uncertainties from the
likelihood �ts� If you do this test for a �t for the variance of a Gaussian� you will discover the
bias discussed in section �� Of course� a simple Gaussian problem can be done analytically
and is well understood� However� for problems with many probability distributions with
many parameters� the simple Monte Carlo is a very useful check�

Note that using a simple Monte Carlo does not check that your likelihood function
properly models the data� which is always a crucial question� For example� if you think the
data is Gaussian distributed and use that for the likelihood function� but it really has some
other distribution 	such as� a Lorentzian
� then your �t will be incorrect� A simple Monte
Carlo test based on a Gaussian distribution will not reveal the problem�
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 Goodness of Fit

In order to check that the likelihood function properly models the data� it is important to
perform some form of goodness of �t check� Often people show binned plots of the data with
the function determined from the MLE parameters overlayed� Although information is lost
in the binning of the data 	particularly in problems with multidimensional data
� obviously
de�cient modelling can be found this way�

Chi�squared 	��
 �ts have the advantage that they automatically provide a goodness
of �t estimation� since the estimated parameter should be distributed according to a ��

distribution with the appropriate number of degrees of freedom� Sometimes� people do an
unbinned likelihood �t and then do a binned �� test for goodness of �t�

Unfortunately� the likelihood often does not give a good measure of goodness of
�t� As an example� consider �tting lifetime data to an exponential� The likelihood and
log�likelihood functions are

L �
NY
i

�e���ti� 	��


lnL � N ln ��
NX
i

�ti� 	��


where � is the parameter of interest 	the total width in this case
� ti is the proper decay
time of the ith event� and N is the number of events� The MLE of � is

�� �
NPN
i ti

	��


and the value of the likelihood function at it minimum is

lnLj���� � �N
�
� � ln

P
ti

N

�
� 	��


Since lnL depends only on the number of events and the average value of the data� any data
sets with similar size and average will give similar log�likelihood values� no matter what the
distribution actually is�

For more discussion on goodness of �t tests when using maximum likelihood methods�
see reference 
���

�� Numerical Methods

Most maximum likelihood �ts are too complex to be solved analytically� Fortunately� there
exist numerical methods for maximizing functions� The most common method in experimen�
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tal high energy physics is to use a software package written at CERN called MINUIT� This
program actually minimizes a function of one or more parameters� returns the optimal values
of those parameters� and returns the uncertainties on those parameters� Since MINUIT is a
minimization program� you provide it with the negative of the log�likelihood function� To
�nd out how to use MINUIT� see its documentation 
��� For a brief discussion of the proper
use of MINUIT in likelihood �ts� see reference 
���

�� Systematic Errors

Amaximum likelihood �t will return the statistical errors on the parameters being estimated�
In addition� there may be systematic errors due to uncertainties in the modelling of the
data� uncertainty in parameters of the likelihood function that aren�t being estimated� and
uncertainties in numbers needed to convert the estimated parameter to the desired physics
quantity� For a more detailed discussion of systematic errors� including issues relevant to
likelihood �ts� see reference 
��

�� Sin�� Likelihood Function

As an example of a realistic likelihood function used in High Energy Physics� we will look at
the Run I sin �
 analysis� The reader unfamiliar with the physics of this measurement should

consult reference 
��� The basic idea is that the decays B� � J��Ks and B
� � J��Ks have

proper decay times that have an oscillating part that depends on the CP�violation parameter
sin �
� The goal of the analysis is to extract a measurement of this parameter�

The measured quantities consist of the proper decay time� the invariant mass of the

J��Ks� and a tag of whether the initial particle was a B� or B
�
� The actual �t used in

the analysis has over �� parameters� including mutiple background sources� multiple types
of tags� and possible asymmetries of the tags� A full description is beyond the scope of this
note� but the interested reader can �nd the details in reference 
���

A simplied model of the �t is presented here that contains most of the essential
features� We assume that there are two souces of events� signal and background� The

signal is J��Ks events from B� and B
�
decays� The background events are from tracks that

reconstruct to a J��Ks but didn�t come from a B decay�

The probability PS for the signal contains three factors for the proper time� mass�
and tagging e�ciency� that is�

PS � TS	t
MS	m
ES	Q
� 	��


��



where t is the proper time� m is the invariant mass� and Q is the tag 	Q � �� for a B
�
tag�

� for no tag� and �� for a B� tag�

The proper time distribution for the signal is

!h	t
 �
�

	
e�t�� 
�� sin �
 sin	�mt
� � 	��


where 	 is the average B� lifetime� �m is the mass di�erence of the eigenstates� and the sign

depends on whether the initial particle was a B� or B
�
�

There is an e�ciency �S for tagging a signal event and a probability f of mistagging

an event� that is� tagging an event as a B� when it really was a B
�
and vice versa� Thus�

the probability of getting a B� tag at time t is 	note that the tagging e�ciency is included
in E
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where D � �� �f is known as the dilution� Doing this for the three tagging cases 	Q � ���
�� ��
 gives

h	t
 �
�

	
e�t�� 
��DQ sin �
 sin	�mt
� 	��


Since we measure the proper decay time with a non�zero resolution� we must fold this
lifetime distribution with a Gaussian whose width is the resolution� The resolution �t is given
by the secondary vertex �t and varies from event to event� Thus� we have TS	t
 � h � g	t
�
where h � g symbolizes the convolution of h	t
 with a Gaussian function g�

The mass distribution is Gaussian with a resolution �m that is also given by the
secondary vertex �t and varies from event to event� giving

MS	m
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����m

e
�

�m�MB��
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The ES	Q
 function is the probability of getting a tag Q� where Q � � for a B�

tag� �� for B
�
tag� and � for no tag� We assume that B��s and B

�
�s are tagged with equal

e�ciency �S � giving
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The reader should check that PS is properly normalized when summed over Q and integrated
over m and t�

The probability for the background also contains three terms for the time dependence�
mass dependence� and tagging e�ciency� that is�

PB � TB	t
MB	m
EB	Q
� 	��


To simplify things� we assume that the background consists only of prompt events with a
linear mass spectrum over the mass rangeW � The choice of a shape for the mass distribution
in a real example would be one that �ts the data well� We assume that the background events
are tagged with an e�ciency �B � which can di�er from the signal tagging e�ciency� We also

assume that there is an equal probably of tagging a background event as a B� or B
�
� This

gives
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Note that the dilution D appears in these probabilities only as a product with sin �
�
which is the parameter we wish to determine� Thus� it is not possible to �t for both D and
sin �
� Thus� the dilution must be determined from other data� The authors included the
measured dilution as a constraint� In our case� including it as a constaint or �tting for
the product D sin �
 and dividing out the measured value of D will give the same result�
However� using the constraint will automatically include the error on D in the error on sin �
�

The authors also chose to include constraints on the B� lifetime 	 and the mixing
frequency �m� They could have chosen to also constrain the B mass but did not� apparently
because they felt that the PDG value was su�ciently more accurate than a determination
from the J��Ks data�

Although the number of events was not the main goal of this measurement 	sin �

was
� the authors chose to do an extended likelihood �t�

Putting all of this together gives a log�likelihood function of
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where the sum over i is over events� Dm is the measured dilution� M� is the PDG value of the
mass with uncertainty �M � and 	� is the PDG value of the lifetime with uncertainty �� � Note
that the normalizations on the constraint Gaussians do not depend on the �t parameters
and could be dropped�

The actual sin �
 analysis includes details such as whether events were measured
in the SVX or not� long lived backgrounds� scale errors on uncertainties of measurements
of lifetimes and masses� possible tagging asymmetries� and constraints to measurements of
e�ciencies� This results in a more complicated log�likelihood function with a total of ��
parameters� but the essential form is the same as presented here� Readers interested in the
full� gory details can see reference 
���
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