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What is CP Violation?
Observation that the Laws of Physics are not exactly the same under
the combined transformation:

Charge conjugation C particle   ↔ antiparticle
Parity P left-handed helicity ↔ right-handed helicity

CP symmetry is conserved in strong and electromagnetic interactions
BUT weak interactions violate CP symmetry

Manifestation: different decay rates in K and B meson decays

For example, the decay rate for K0 → π− µ+ νµ is slightly higher than
that for K0 → π+ µ− νµ (rate asymmetry = 0.3%)
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Why is CP Violation Interesting?
Phenomenon discovered in 1964 but not yet well understood or tested 

Understanding of the baryon - antibaryon asymmetry of the Universe 

requires three ingredients:       (A. Sakharov, 1967)

1. Baryon number violating reactions occur

2. CP Violation (CPV) takes place in these reactions

3. Reactions occur out of thermal equilibrium  (Big Bang)

⇒ Without CPV all matter would have annihilated with antimatter after

the Big Bang

+ level of CPV needed is much higher than the Standard Model can allow

Most extensions of the Standard Model provide new sources of CPV

⇒ CPV studies are sensitive to New Physics
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Fundamental Symmetries (I)
Invariance of field equations under certain transformations

→ Implies existence of underlying symmetry
→ Results in conservation laws (or forbidden processes)

Examples:
Invariance under translations in space

→ Conservation of momentum
Invariance under translations in time

→ Conservation of energy 
Invariance under phase transformations

→ Conservation of electric charge

+ There are 3 important discrete symmetries: C, P and T
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Fundamental Symmetries (II)

• Charge Conjugation C
– Particle ↔ Anti-particle
– Charged particles not eigenstates

+ -

〉±≠〉=〉 −+− eeeC |||

Neutral particles are (eigenvalue ±1)

〉+=〉〉−=〉 00 |||| ππγγ CC

Strong and electromagnetic interactions are observed to 
be invariant under C
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Fundamental Symmetries (III)
• Parity P

– Reflects a system through the origin
spatial coordinates flipped  x -x 
but angular momentum unchanged   L L

– Particles have intrinsic parity
〉−=〉〉−=〉 00 |||| ππγγ PP

Parity operation flips helicity state (left-handed → right-handed)

helicity: projection of spin vector along direction of motion

Strong and electromagnetic interactions conserve P
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Fundamental Symmetries (IV)

• Time reversal T
– Reverses direction of time

t       - t

• Time invariance of a reaction implies equal rate for the 
time-reversed reaction:

MgAlp 2427 +⇔+ α

Once again, strong and electromagnetic interactions are 
invariant under T
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Fundamental Symmetries (V)

• The 3 operations (C,P, and T) are connected through 
invariance of combined CPT for all interactions

• CPT Theorem:  all quantum field theories are invariant 
under this combo (any order)
– Consequences:  

√ particles and antiparticles have same mass and lifetime

√ particles obey spin statistics (Fermi or Bose)

√ CP violation implies T violation as well
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Fundamental Symmetries (VI)
BUT:  weak interactions do NOT conserve either C or P

• First observation of parity violation in weak decays of 60Co 
(C.S.Wu et al., 1957)

• Both C and P are completely violated in charged current 
weak interactions (W couples only to left-handed particles)

• Combined CP operation yields same muon decay rates

                  

    observed                          not observed
L L eR L R R eL Re eµ µµ ν ν µ ν ν− − − −→ →P

observednot      

  LeRLL e µννµ ++ →C

ReLRRLeRLL ee µµ ννµννµ                   ++−− →→ CP
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Observation of CPV in the K0 – K0 system
Before 1964:

Strong interaction flavor eigenstates 
K0 (sd) and K0 (sd) are superpositions
of mass eigenstates K0

S and K0
L

⇒ CP transforms matter ↔ antimatter

Physical states K0
S and K0

L are eigenstates
of CP if Hamiltonian is invariant under CP

⇒

Cronin, Fitch, Christenson, Turlay
(1964):

Measure K0
L decay into CP=+1 state

⇒ CP violation in kaon weak decays

Other manifestations of CPV also
observed in kaon decays but
effects are always small, e.g.
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CP Violation in the Standard Model (I)
How does the SM account for CPV in Kaon decays?

• Kobayashi and Maskawa (1973) propose
existence of 3rd family of quarks
(before discovery of charm and tau)

⇒ CPV originates from an irreducible phase
in the quark mixing matrix

Quark mixing matrix now called
Cabibbo-Kobayashi-Maskawa (CKM) matrix
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CP Violation in the Standard Model (II)
• CKM matrix originates from the fact that

weak eigenstates are different from quark mass eigenstates

• CKM matrix plays an important role in charged current weak interaction
(e.g. β decay n → p e− ν involves a d → u transition)
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CP Violation in the Standard Model (III)
Properties of CKM matrix
• VCKM governs probability of quark flavor-changing processes

leptons                                     quarks

Strength of the quark-flavor changing transition is determined by VCKM

Probability ∝ |Vtd|2 ≈ 0.0001                |Vts|2 ≈ 0.0016                   |Vtb|2 ≈ 0.9983
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CP Violation in the Standard Model (IV)
Properties of CKM matrix
• How many parameters?

9 complex elements ⇒ 18 parameters (not predicted by the theory)

However, (1) VCKM is unitary:  
e.g.   |Vtd|2 + |Vts|2 + |Vtb|2 = 1 

⇒ 9 independent parameters

(2) Quark fields can be redefined to remove 5 arbitrary phases

⇒ 4 independent parameters

3 angles + 1 phase

Note: if only 2 families of quarks ⇒ 2x2 matrix ⇒ 1 (real) independent param

⇒ no phase and no CPV

⇒ need at least 3 families of quarks to get an irreducible phase in the
quark mixing matrix

1  †† == CKMCKMCKMCKM VVVV
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CP Violation in the Standard Model (V)
Wolfenstein parameterization of CKM matrix

λ, A, ρ and η are fundamental parameters of the Standard Model

Expansion in powers of λ    → hierarchy of transition probabilities

λ = |Vus| = 0.2196 ± 0.0023      from Kaon decay rates (s → u)
A = |Vcb| / λ2 = 0.854 ± 0.041   from B → D* l ν decays & lifetime (b → c)
ρ = 0.22 ± 0.10
η = 0.35 ± 0.05

η ≠ 0 ⇒ non-zero phase responsible for CP violation
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CKM Matrix Unitarity Conditions

Unitarity requires

⇒ 6 orthogonality conditions

Represented by 6 triangles
in the complex plane
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“The” Unitarity Triangle (I)
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Unitarity condition between 1st and 3rd columns:

Condition is represented by a triangle with ~equal sides
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CP Violation in the Standard Model (VI)
How does the CKM phase give rise to CPV?
Example:

compare decay rate for

B0 → π+π− vs. B0 → π+π−

Two diagrams contribute:      “Tree”      “Penguin”

B → f  amplitudes:  

: weak phase from CKM elements involved

: phase shift due to strong interactions between final state particles
Decay rate:

Relative CKM and strong phases:
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CP Violation in the Standard Model (VII)
How does the CKM phase give rise to CPV?
Consider CP-conjugate B → f  mode

B → f  amplitudes:  

Decay rate:

⇒ Rates are different for B and B decays

⇒ This kind of CPV is referred to as “direct” CPV or “CPV in decay”
it requires two amplitudes with different weak (CKM) and strong phases

In general, CPV originates from a quantum mechanical interference
between amplitudes with different phases
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CP Violation in B Decays
Why B Factories?

• CPV effects expected to be much larger in some B decay modes than 

those observed in kaon decays

Modes involving quark transitions between 3rd and 1st families:

these elements have large imaginary parts ⇒ large weak phases

• CPV phenomenology much richer  (many more decay modes)

• Some CPV measurements are particularly clean both theoretically

and experimentally, e.g., CPV in B0 → J/ψ K0s decays

⇒ Opportunity to test the Standard Model in a clean and new way
e+ e- B Factories operating at SLAC (BaBar) and KEK (Belle) since 1999
hadron collider experiments (CDF and D0) will also contribute soon

( i )   and  ( i )td ubV V3 3= Αλ 1− ρ − = Αλ ρ −η η
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B0 – B0 System
As in the neutral kaon system, Heavy and Light mass eigenstates are 
superpositions of flavor eigenstates

System characterized by
mass difference ∆m = mH – mL

width difference ∆Γ = ΓL – ΓH  

Different time evolution for BH and BL

leads to B0 ↔ B0 oscillations with
frequency ∆m   (a.k.a. “mixing”)
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3 Classes of CP Violation (I)
Need 2 amplitudes with different phase structure contributing to the same decay

→ 3 different ways to achieve this:
1) CP violation in decay (a.k.a. direct CP violation)

two amplitudes with different weak phases & different strong phases
e.g. compare BR(B+ → K+π0) and BR(B− → K−π0) 
but strong phases are not known 

2) CP violation in mixing (a.k.a. indirect CP violation)

Need relative phase between mass and width parts of mixing matrix
CP-violating asymmetries expected to be small in Standard Model

1
||
||

   need ≠
BHf
BHf
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p
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fB0 B0 2
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3 Classes of CP Violation (II)
3) CP violation in interference between decays with and without mixing

Final state f is a CP eigenstate     (e.g. J/ψ K0
s or π+ π−)

need                                               to have CPV (no strong phases needed!)

which can happen even if                                       → only need weak phase

+ asymmetries can be large & do NOT require unknown strong phase
+ small theoretical uncertainties in some cases (e.g. J/ψ K0

s)
⇒ most promising way to study CPV via measurements of the angles α, β, γ
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CP Violation in B0 → J/ψ K0s Decays (I)
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CP Violation in B0 → J/ψ K0s Decays (II)
Expect large CP asymmetry

Standard Model fit yields 
sin 2β = 0.75 ± 0.09  S.Mele, PRD59, 113011 (1999)

Small branching ratio

BR(B0 → J/ψ K0) = (8.9 ±1.2) x 10-4

BR(J/ψ → l+ l−)    = (5.9 ±0.1) x 10-2

⇒ combined BR ≈ 10-4 for e & µ modes
+ Need to reconstruct  J/ψ → e+ e−, µ+ µ− and K0s → π+ π−

(account for detector and selection efficiency ~50%)
⇒ Requires very large sample of B mesons
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e+ e− B Factories
GOAL: Produce 30-100 million B B events/year to study CP violation in B decays
via
e+ e- → ϒ(4s) → B0 B0  (50%)

B+ B− (50%)

High signal-to-background ratio  σbb / σhadrons ≈ 0.22   with σbb= 1.05 nb
Clean events  <# tracks> ≈ 11  & able to reconstruct π0 and γ
No fragmentation products  (low combinatorial background)
Strong kinematical constraints (pϒ(4s) and pB

*) for background suppression
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ϒ(4s) → B0 B0

B0 B0 system in coherent L=1 state

B0 and B0 evolve IN PHASE
⇒ always one B0 and one B0

until one of them decays
at time t = t tag

Other B continues to evolve until it decays at time t = t CP

Consider other B decays into CP eigenstate fCP

If Btag is B0 at time ttag then probability to observe other B decay into fCP is

with ∆t = tCP - ttag

if Btag is B0 at time ttag then
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t tag
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t CP
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ϒ(4s) → B0 B0
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Different time evolution for B0(t = ttag) → fCP and B0(t = ttag) → fCP decays
Asymmetry depends on ∆t = tCP – ttag (NB: ∆t can be > 0 or < 0)

ϒ(4s) rest frame: B mesons produced nearly at rest
pB* = 340 MeV/c 

→ avg distance traveled before decay <L*> = 30 µm   (given τB = 1.55 ps)
⇒ Symmetric e+ e− collider (e.g. CESR) does not allow time reconstruction
⇒ Need unequal beam energies to boost ϒ(4s) system and measure ∆t
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PEP-II  B Factory @ SLAC

• E(e+) = 3.1 GeV and E(e−) = 9.0 GeV  ⇒ βγ = 0.55  ⇒ <L> = 260 µm
• Peak luminosity = 3.0 x 1033 cm-2 s-1 (design)

4.6 x 1033 cm-2 s-1 (achieved)
• Number of bunches = 800
• Positron current = 1775 mA,  Electron current = 1060 mA
• IP beam sizes = 150 µm in x,  5 µm in y
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PEP-II  B Factory @ SLAC
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BABAR Collaboration @ SLAC
Collaboration meeting @ SLAC  July 2002

9 Countries
76 Institutions
550 Physicists

July 2002
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BABAR Detector @ PEP-II

Cherenkov Detector (DIRC)

Silicon Vertex 
Tracker (SVT)

Instrumented Flux Return (IFR)
CsI Calorimeter (EMC)

Superconducting Coil (1.5T)

Drift Chamber 
(DCH)

e- (9.0 GeV)

e+ (3.1 GeV)
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1. Fully reconstruct B decay to CP eigenstate  (eigenvalue ηCP = ±1)
2. Determine B0 or B0 flavor of the other (tagging) B meson
3. Reconstruct decay vertices of both B mesons

∆z = zCP – ztag <∆z> = 260 µm
∆t = ∆z / (γ β c) SIGNED!

4. Extract sin 2β with unbinned maximum likelihood fit (value hidden to avoid bias)

Experimental effects: Dilution D = (1 – 2w) and resolution function R(∆t)
σ(sin 2β) ∝ 1 / (N εtag D2)1/2

sin 2β (Blind) Analysis at BaBar
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Exclusive B Reconstruction (I)

Exploit two kinematical constraints:
→ Beam energy substituted mass

resolution ~ 2.6 MeV/c2

dominated by beam energy spread

→ Energy difference

resolution ~10-40 MeV depending
on decay mode
suppress background from other B decays

*2 *2
ES beam Brecm E p= −

**
beamBrec EEE −=∆

Signal region
mES:
[mB -3σ, mB +3σ]

∆E:
[0 -3σ, 0 +3σ]

mES  (GeV/c2)

∆
E 

(M
eV

)
∆E

mES 
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Exclusive B Reconstruction (II)
Full reconstruction of B decay into
→ CP-odd eigenstates:  ηCP = -1

• B0 → J/ψ K0
s

J/ψ → e+ e−, µ+ µ−

• B0 → ψ(2s) K0
s

ψ(2s) → e+ e−, µ+ µ−, J/ψ π+ π−

• B0 → χc1 K0
s

χc1 → J/ψ γ
• B0 → ηc K0

s

ηc → K0
s K+ π− , K+ K− π0

with K0
s → π+ π− (and π0 π0 for J/ψ mode)

→ CP-even eigenstates: ηCP = +1

• B0 → J/ψ K0
L

→ CP-mixed eigenstates:
• B0 → J/ψ K*0   (K*0 → K0

s π0) 

BELLE  J/ψ K0
L

1506  signal 
candidates,
purity  94%

988  signal 
candidates,
purity  55%
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Candidate for B0 → J/ψ K0
s    with J/ψ → e+ e− and K0

s → π+ π−
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Candidate for B0 → J/ψ K0
s    with J/ψ → e+ e− and K0

s → π+ π−Candidate for B0 → J/ψ K0
s    with J/ψ → e+ e− and K0

s → π+ π−
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Need to tag B0 or B0 flavor of other (Btag) meson
BCP has flavor opposite that of Btag at t = ttag

Examine all charged particles in the event not included in BCP reco

Ingredients:
• Lepton charge  (B → l+ X vs. B → l− X )
• Kaon charge  (b →c →s transition ⇒ B → K+ X  vs. B → K− X) 
• Slow pion charge  (B → D*− X ⇒ slow π− )
• Cascade lepton charge

Flavor Tagging (I)

−π

+π
+µ

−µ

0B

0B
0D

−π
+µ

−K

−π
µυ

)4( sΥ

LB

HB
e+

e−

∆z = ∆tβγc

BCP

Btag
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Flavor Tagging (II)
Tag performance extracted directly from data:
• reconstruct one B decay to flavor eigenstate D*− l+ νl, D(*)− π+, D(*)− ρ+, …
• tag the rest of the event and measure both mistag rate w and ∆md

2.7 ± 0.331.5 ± 0.920.0 ± 0.3Inclusive

28.1 ± 0.765.5 ± 0.5All

6.7 ± 0.420.9 ± 0.819.8 ± 0.3Kaon II

10.7 ± 0.410.0 ± 0.716.7 ± 0.2Kaon I

7.9 ± 0.33.3 ± 0.69.1 ± 0.2Lepton

Q (%)w (%)εtag (%)Method

Effectiveness
Q = ε (1 – 2w)2

= ε D2
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Proper Time Difference ∆t = ∆z / (γ β c)
Measure decay vertex positions for BCP and Btag along boost direction

→ BCP vertex:
* Geometric & kinematic fit   σz ~ 65 µm

→ Btag vertex:
* Fit remaining tracks
* Use beam spot constraint
* Iterate to remove trks with large χ2 (minimize bias from charm decays)
* Include resultant K0

s trajectory and BCP momentum vector
σz ~ 110 µm

→ dominates ∆z resolution + introduces δz ~ 25 µm bias from charm

C PBta gB

∆ z

e+e-
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sin 2β Measurement
• BaBar 88 x 106 BB pairs: sin 2 0.741 0.067 ( ) 0.033 ( )stat systβ = ± ±

ηCP = -1 ηCP = +1



S.Willocq    (UMass) CP Violation - NEPPSR 2002 44

sin 2β Measurement with Lepton Tags Only
• 220 lepton-tagged ηf = -1 events

= ±sin2 0 79 0 11β . .

98% purity
3.3% mistag rate

20% better ∆t 
resolution
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World sin 2β Measurements

World average

sin 2β = 0.734 ± 0.055

In excellent agreement
with value determined
indirectly from other
B and K decay measurements:
sin 2β = 0.75 ± 0.09
S.Mele, PRD59, 113011 (1999)
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Search for CP violation in charmless
B decays (b → u or b → s transitions)

→ measure decay rate asymmetry

No evidence for direct CPV yet
Uncertainties at the 5-40% level

(similar results from CLEO and BELLE)

Most precise for B0 → K+π− with

CP Violation in Decay

)()(
)()(

fBfB
fBfBACP →Γ+→Γ

→Γ−→Γ
=

0.102 0.050 (stat)
                     0.016 (syst)

CPA = − ±
±

fB 2
≠ fB 2

CP Violation in decay:
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CP Violation in Mixing

CP Violation in mixing:

Measure asymmetry in semileptonic decays

BaBar:  aSL =  0.005 ± 0.012(stat) 
± 0.014(syst)

| q / p | =  0.998 ± 0.006(stat) 
± 0.007(syst)

Consistent with small predicted violation

40 0

40 0

1 /( ) ( )
( ) ( ) 1 /

l l
SL

l l

q pB l X B l Xa
B l X B l X q p

ν ν
ν ν

+ −

+ −

−Γ → − Γ →
= =

Γ → + Γ → +

fB0 B0 2
≠ fB0 B0 2

Rate of “wrong” sign leptons
(from mixing)
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“The” Unitarity Triangle (II)
Without sin 2β, ρ and η poorly constrained by expt (large theory uncertainties)

|Vub| = |A λ3 (ρ – iη)|
B → Xu l ν decays (b → u)

|Vtd| = |A λ3 (1 – ρ – iη)|
B0 – B0 oscill. freq. (d → t)
CPV in Kaon decays
εK measurement (s → c)

All constraints are consistent
with one another

GOAL:
Stringent test of SM
via precise measurements of
the sides and angles of
the unitarity triangle
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“The” Unitarity Triangle (III)

εK

sin2β

ρ
_

η_

We can now check the consistency of the CKM picture of CPV
Compare constraints from:

1. CPV in the kaon system (εK)
2. CPV in b → ccs (e.g. B0 → J/ψ K0

s)
3. |Vub| and |Vtd| from b → u decay rate and B mixing frequency

Excellent consistency
between the different
observables

CKM matrix
provides coherent
framework (so far…)

0 1-1

1

0
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“The” Unitarity Triangle (IV)
Possible situation in 2007 showing inconsistency between the 
measurement of the sides and of the angles of the triangle:

Assume uncertainties of 3% in |Vcb|, 10% in |Vub|, <1% in ∆md and ∆ms

Assume uncertainties of 1% in sin 2β, 5o in α and 10o in γ

Inconsistency between constraints might look like:
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Summary
CP Violation:

New window into the Standard Model of Particle Physics,
relevant to matter-antimatter asymmetry of the Universe,
sensitive to New Physics

CKM quark mixing matrix for 3 families of quarks contains an irreducible

phase that induces CP violation in weak charged current interactions

B Factories have observed (large) CP violation for the first time outside of 
the neutral kaon system  (B0 → J/ψ K0

s decays)

Current data is in excellent agreement with the CKM picture of CPV

Probing of the SM continues with larger data samples at the B Factories
and begins at the Fermilab Tevatron
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Additional Slides
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CP Violation in the Standard Model (I)
(Electroweak) Standard Model:
• Three families of quarks and leptons

arranged in left-handed doublets and
right-handed singlets

• Local gauge invariance under
U(1)Y ⊗ SU(2)L symmetry groups yields
electromagnetic and weak interactions

• Field equations (Lagrangian) describe electromagnetic (LEM), charged 
current weak (LCC), and neutral current weak (LNC) interactions,
also “Yukawa” interactions between Higgs field φ and fermions
(LY to provide mass to the fermions)

family 1for      , , , , st
RRR

L

e

L

edu
ed

u








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



 ν
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CP Violation in the Standard Model (II)
Higgs coupling to fermions:
For the first family we have 

Note: separate terms for up-type quarks (Q = +2/3 e) and

down-type quarks (Q = -1/3 e) 

After spontaneous symmetry breaking, we obtain quark mass terms
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CP Violation in the Standard Model (III)
Quark mass matrices:
In general, mass matrices                       are not diagonal

⇒ Need to diagonalize those with matrices Vup and Vdown

⇒ Redefine quark eigenstates to get
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CP Violation in the Standard Model (IV)
Charged-current Weak Interaction:
Redefinition of quark mass eigenstates has non-trivial consequence:

→ Eigenstates for weak interactions (d’, s’, b’) are linear combinations of
mass eigenstates (d, s, b):

→ Unitary transformation matrix 
is Cabibbo-Kobayashi-Maskawa
(CKM) mixing matrix
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