

University of Massachusetts, Amherst

New England Particle Physics Student Retreat 18-23 August 2002

Outline

- What is CP Violation? Why is it interesting?
- Fundamental Symmetries
- CP Violation in the Standard Model
- Studies at e⁺ e⁻ Asymmetric B Factories

What is CP Violation?

Observation that the Laws of Physics are not exactly the same under the combined transformation:

Charge conjugation C particle ↔ antiparticle

Parity P left-handed helicity ↔ right-handed helicity

CP symmetry is conserved in strong and electromagnetic interactions BUT weak interactions violate CP symmetry

Manifestation: different decay rates in K and B meson decays

For example, the decay rate for K⁰ o $\pi^-\mu^+\nu_\mu^-$ is slightly higher than that for $\overline{K}{}^0 \to \pi^+\mu^-\overline{\nu}_\mu^-$ (rate asymmetry = 0.3%)

Why is CP Violation Interesting?

- Phenomenon discovered in 1964 but not yet well understood or tested
- Understanding of the baryon antibaryon asymmetry of the Universe requires three ingredients: (A. Sakharov, 1967)
 - 1. Baryon number violating reactions occur
 - 2. CP Violation (CPV) takes place in these reactions
 - 3. Reactions occur out of thermal equilibrium (Big Bang)
 - ⇒ Without CPV all matter would have annihilated with antimatter after the Big Bang
 - + level of CPV needed is much higher than the Standard Model can allow
- Most extensions of the Standard Model provide new sources of CPV
 - ⇒ CPV studies are sensitive to New Physics

Fundamental Symmetries (I)

Invariance of field equations under certain transformations

- → Implies existence of underlying symmetry
- → Results in conservation laws (or forbidden processes)

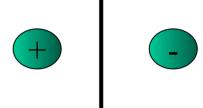
Examples:

- Invariance under translations in space
 - → Conservation of momentum
- Invariance under translations in time
 - → Conservation of energy
- Invariance under phase transformations
 - → Conservation of electric charge
- + There are 3 important discrete symmetries: C, P and T

Fundamental Symmetries (II)

Charge Conjugation C

- Particle ↔ Anti-particle
- Charged particles not eigenstates



$$C |e^{-}\rangle = |e^{+}\rangle \neq \pm |e^{-}\rangle$$

Neutral particles <u>are</u> (eigenvalue ±1)

$$C | \gamma \rangle = - | \gamma \rangle$$
 $C | \pi^{0} \rangle = + | \pi^{0} \rangle$

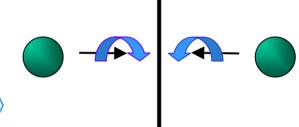
Strong and electromagnetic interactions are observed to be invariant under *C*

Fundamental Symmetries (III)

Parity P

- Reflects a system through the origin spatial coordinates flipped x → -x
 but angular momentum unchanged L → L
- Particles have intrinsic parity

$$P | \gamma \rangle = - | \gamma \rangle$$
 $P | \pi^{0} \rangle = - | \pi^{0} \rangle$



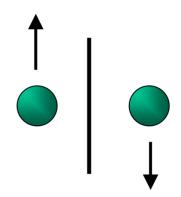
- Parity operation flips helicity state (left-handed → right-handed)
 - helicity: projection of spin vector along direction of motion
- Strong and electromagnetic interactions conserve P

Fundamental Symmetries (IV)

Time reversal T

- Reverses direction of time

$$t \longrightarrow -t$$



 Time invariance of a reaction implies equal rate for the time-reversed reaction:

$$p + {}^{27}Al \Leftrightarrow \alpha + {}^{24}Mg$$

Once again, strong and electromagnetic interactions are invariant under *T*

Fundamental Symmetries (V)

 The 3 operations (C,P, and T) are connected through invariance of combined CPT for all interactions

- *CPT* Theorem: all quantum field theories are invariant under this combo (any order)
 - Consequences:
 - √ particles and antiparticles have same mass and lifetime
 - √ particles obey spin statistics (Fermi or Bose)
 - √ CP violation implies T violation as well

Fundamental Symmetries (VI)

BUT: weak interactions do NOT conserve either C or P

- First observation of parity violation in weak decays of ⁶⁰Co (C.S.Wu et al., 1957)
- Both C and P are completely violated in charged current weak interactions (W couples only to left-handed particles)

$$\mu_{L}^{-} \rightarrow e_{L}^{-} \ \overline{\nu}_{eR} \ \nu_{\mu L} \qquad \stackrel{P}{\longrightarrow} \quad \mu_{R}^{-} \rightarrow e_{R}^{-} \ \overline{\nu}_{eL} \ \nu_{\mu R}$$
observed
$$\stackrel{C}{\longrightarrow} \quad \mu_{L}^{+} \rightarrow e_{L}^{+} \nu_{eR} \ \overline{\nu}_{\mu L}$$
not observed

Combined CP operation yields same muon decay rates

$$\mu_L^- \rightarrow e_L^- \overline{\nu}_{eR} \nu_{\mu L} \xrightarrow{CP} \mu_R^+ \rightarrow e_R^+ \nu_{eL} \overline{\nu}_{\mu R}$$

Before 1964:

Strong interaction flavor eigenstates K^0 ($\bar{s}d$) and \bar{K}^0 ($s\bar{d}$) are superpositions of mass eigenstates $K^0{}_S$ and $K^0{}_L$

$$\left|K_{S}^{0}\right\rangle = \frac{1}{\sqrt{2}}\left(\left|K^{0}\right\rangle + \left|\overline{K}^{0}\right\rangle\right) \qquad \text{CP} = +1$$

$$\left|K_L^0\right\rangle = \frac{1}{\sqrt{2}} \left(\left|K^0\right\rangle - \left|\overline{K}^0\right\rangle\right)$$
 CP = -1

⇒ CP transforms matter ↔ antimatter

$$CP\left|K^{0}\right\rangle = \left|\overline{K}^{0}\right\rangle$$

Physical states K⁰_S and K⁰_L are eigenstates of CP if Hamiltonian is invariant under CP

$$\Rightarrow K_S^0 \to \pi^+ \pi^- \qquad \text{CP} = +1 \quad \tau = 1 \times 10^{-10} s$$

$$K_L^0 \to \pi^+ \pi^- \pi^0 \qquad \text{CP} = -1 \quad \tau = 5 \times 10^{-8} s$$

Cronin, Fitch, Christenson, Turlay (1964):

Measure K⁰_L decay into CP=+1 state

$$\frac{\Gamma(K_L^0 \to \pi^+ \pi^-)}{\Gamma(K_L^0 \to \text{all charged modes})} = \frac{(2.0 \pm 0.4) \times 10^{-3}}$$

⇒ CP violation in kaon weak decays

Other manifestations of CPV also observed in kaon decays but effects are always small, e.g.

$$\frac{\Gamma(K_L^0 \to \pi^- l^+ \nu) - \Gamma(K_L^0 \to \pi^+ l^- \nu)}{\Gamma(K_L^0 \to \pi^- l^+ \nu) + \Gamma(K_L^0 \to \pi^+ l^- \nu)} =$$

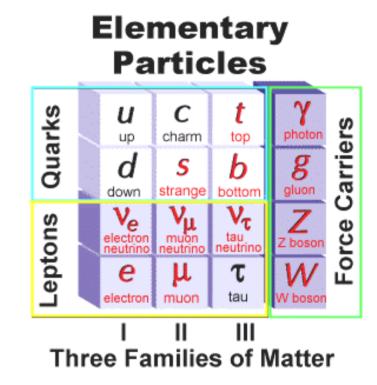
$$(3.27 \pm 0.12) \times 10^{-3}$$

CP Violation in the Standard Model (I)

How does the SM account for CPV in Kaon decays?

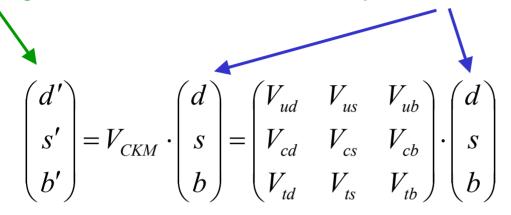
- Kobayashi and Maskawa (1973) propose existence of 3rd family of quarks (*before* discovery of charm and tau)
 - ⇒ CPV originates from an irreducible phase in the quark mixing matrix

Quark mixing matrix now called Cabibbo-Kobayashi-Maskawa (CKM) matrix



CP Violation in the Standard Model (II)

 CKM matrix originates from the fact that weak eigenstates are different from quark mass eigenstates



• CKM matrix plays an important role in charged current weak interaction (e.g. β decay n \rightarrow p e⁻ ν involves a d \rightarrow u transition)

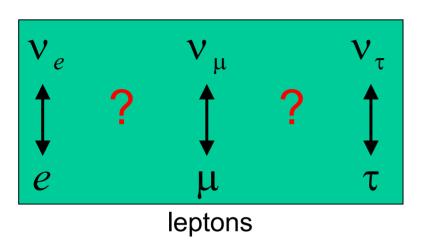
$$H_{CC} = \frac{g^2}{8M_W^2} J_{\mu}^{\dagger} J^{\mu}$$

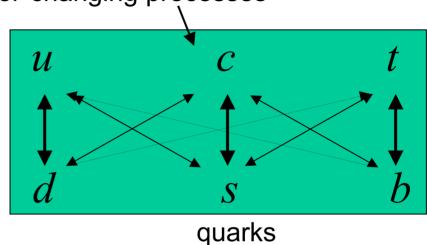
with current
$$J_{\mu} = (\overline{u} \ \overline{c} \ \overline{t}) \gamma_{\mu} (1 - \gamma_{5}) V_{CKM} \begin{pmatrix} a \\ s \\ b \end{pmatrix}$$

CP Violation in the Standard Model (III)

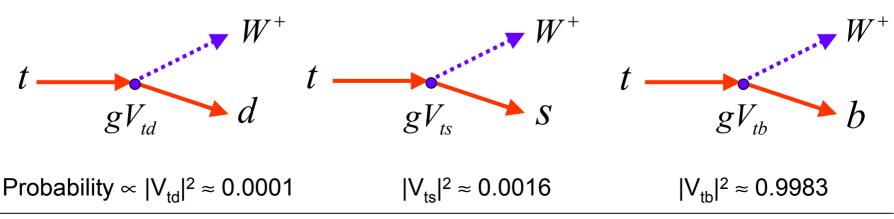
Properties of CKM matrix

• V_{CKM} governs probability of quark flavor-changing processes





Strength of the quark-flavor changing transition is determined by $V_{\it CKM}$



CP Violation in the Standard Model (IV)

Properties of CKM matrix

How many parameters?

9 complex elements ⇒ 18 parameters (not predicted by the theory)

However, (1)
$$V_{CKM}$$
 is unitary: $V_{CKM}^{\dagger} V_{CKM} = V_{CKM} V_{CKM}^{\dagger} = 1$
e.g. $|V_{td}|^2 + |V_{ts}|^2 + |V_{tb}|^2 = 1$
 \Rightarrow 9 independent parameters

(2) Quark fields can be redefined to remove 5 arbitrary phases

⇒ 4 independent parameters

3 angles + 1 phase

<u>Note</u>: if only 2 families of quarks \Rightarrow 2x2 matrix \Rightarrow 1 (real) independent param

⇒ no phase and no CPV

⇒ need at least 3 families of quarks to get an irreducible phase in the quark mixing matrix

CP Violation in the Standard Model (V)

Wolfenstein parameterization of CKM matrix

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$

 λ , A, ρ and η are fundamental parameters of the Standard Model

Expansion in powers of $\lambda \rightarrow$ hierarchy of transition probabilities

$$\lambda = |V_{us}| = 0.2196 \pm 0.0023 \qquad \text{from Kaon decay rates (s} \rightarrow \text{u})$$

$$A = |V_{cb}| / \lambda^2 = 0.854 \pm 0.041 \quad \text{from B} \rightarrow D^* \mid v \text{ decays \& lifetime (b} \rightarrow \text{c})$$

$$\rho = 0.22 \pm 0.10 \quad \text{from global fit to available data}$$

$$\eta = 0.35 \pm 0.05$$

 $\eta \neq 0 \Rightarrow$ non-zero phase responsible for CP violation

CKM Matrix Unitarity Conditions

$$V_{\mathit{CKM}}^{\dagger} V_{\mathit{CKM}}^{} = V_{\mathit{CKM}}^{} V_{\mathit{CKM}}^{\dagger} = 1$$

$$\begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

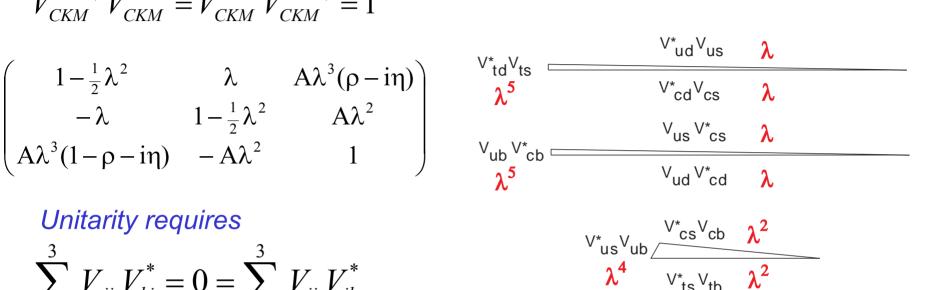
Unitarity requires

$$\sum_{i=1}^{3} V_{ji} V_{ki}^{*} = 0 = \sum_{i=1}^{3} V_{ij} V_{ik}^{*}$$

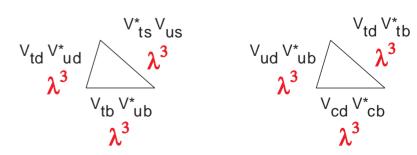
$$(j, k = 1, 2, 3 \text{ and } j \neq k)$$

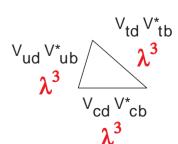
 \Rightarrow 6 orthogonality conditions

Represented by 6 triangles in the complex plane



$$\begin{array}{cccc} V_{td} V_{cd}^* & V_{ts} V_{cs}^* & \lambda^2 \\ \lambda^4 & V_{tb} V_{cb}^* & \lambda^2 \end{array}$$





"The" Unitarity Triangle (I)

Unitarity condition between 1st and 3rd columns:

$$V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0$$

Condition is represented by a triangle with ~equal sides

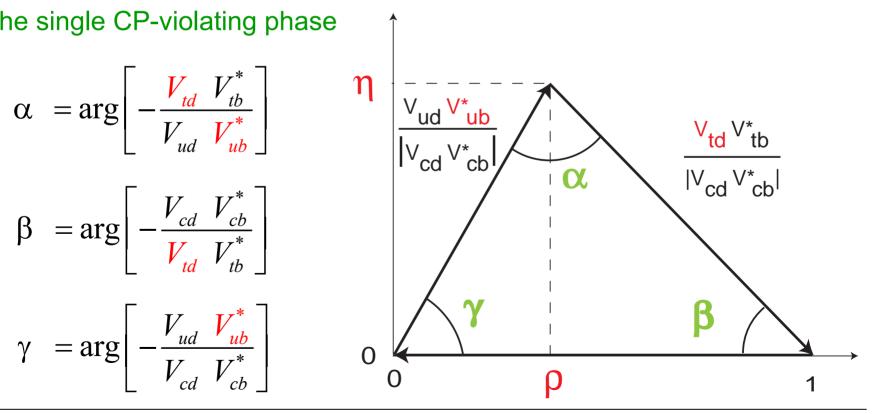
 \Rightarrow angles α , β , γ are large and are different manifestations of

the single CP-violating phase

$$\alpha = \arg \left[-\frac{V_{td} \ V_{tb}^*}{V_{ud} \ V_{ub}^*} \right]$$

$$\beta = \arg \left[-\frac{V_{cd} \ V_{cb}^*}{V_{td} \ V_{tb}^*} \right]$$

$$\gamma = \arg \left[-\frac{V_{ud} \ V_{ub}^*}{V_{cd} \ V_{cb}^*} \right]$$



CP Violation in the Standard Model (VI)

How does the CKM phase give rise to CPV?

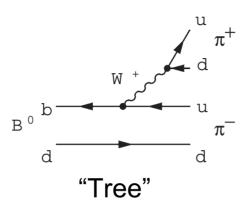
Example:

compare decay rate for

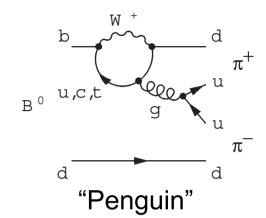
$$\mathsf{B}^0 o \pi^+\pi^-$$
 vs. $\overline{\mathsf{B}}{}^0 o \pi^+\pi^-$

Two diagrams contribute:

 $B \rightarrow f$ amplitudes:



$$T_c = |T| e^{i\phi_{CKM}^T} e^{i\delta_s^T}$$



$$P_f = |P| e^{i\phi_{CKM}^P} e^{i\delta_s^P}$$

♦ CKM: weak phase from CKM elements involved

: phase shift due to strong interactions between final state particles

Decay rate:
$$\Gamma(B \to f) \propto \left| T_f + P_f \right|^2 = \left| T \right|^2 + \left| P \right|^2 + \left| T \right| \left| P \right| e^{i\phi_{CKM}^T} e^{i\delta_s^T} e^{-i\phi_{CKM}^P} e^{-i\delta_s^P}$$
$$+ \left| T \right| \left| P \right| e^{-i\phi_{CKM}^T} e^{-i\delta_s^T} e^{i\phi_{CKM}^P} e^{i\delta_s^P}$$
$$= \left| T \right|^2 + \left| P \right|^2 + 2\left| T \right| \left| P \right| \cos\left(\Delta \phi_{CKM} + \Delta \delta_s\right)$$

Relative CKM and strong phases: $\Delta \phi_{CKM} = \phi_{CKM}^T - \phi_{CKM}^P = \Delta \delta_s = \delta_s^T - \delta_s^P$

CP Violation in the Standard Model (VII)

How does the CKM phase give rise to CPV?

Consider CP-conjugate $\overline{B} \to \overline{f}$ mode

$$\overline{\mathbf{B}} \to \overline{\mathbf{f}} \text{ amplitudes:} \qquad T_{\overline{f}} = \left| T \right| e^{-i \phi_{CKM}^T} e^{i \delta_s^T} \qquad P_{\overline{f}} = \left| P \right| e^{-i \phi_{CKM}^P} e^{i \delta_s^P}$$

$$\text{Decay rate: } \Gamma(\overline{B} \to \overline{f}) \propto \left| T_{\overline{f}} + P_{\overline{f}} \right|^2 = \left| T \right|^2 + \left| P \right|^2 + 2 \left| T \right| \left| P \right| \cos \left(-\Delta \phi_{CKM} + \Delta \delta_s \right)$$

 \Rightarrow Rates are different for B and \overline{B} decays

$$A_{CP} = \frac{\Gamma(\overline{B} \to \overline{f}) - \Gamma(B \to f)}{\Gamma(\overline{B} \to \overline{f}) + \Gamma(B \to f)} = \frac{2 |T||P| \sin \Delta \phi_{CKM} \sin \Delta \delta_{s}}{|T|^{2} + |P|^{2} + 2 |T||P| \cos \Delta \phi_{CKM} \cos \Delta \delta_{s}}$$

⇒ This kind of CPV is referred to as "direct" CPV or "CPV in decay" it requires two amplitudes with different weak (CKM) and strong phases

In general, CPV originates from a quantum mechanical interference between amplitudes with different phases

CP Violation in B Decays

Why B Factories?

 CPV effects expected to be much larger in some B decay modes than those observed in kaon decays

Modes involving quark transitions between 3rd and 1st families:

$$V_{td} = A\lambda^3 (1 - \rho - i\eta)$$
 and $V_{ub} = A\lambda^3 (\rho - i\eta)$

these elements have large imaginary parts ⇒ large weak phases

- CPV phenomenology much richer (many more decay modes)
- Some CPV measurements are particularly clean both theoretically and experimentally, e.g., CPV in $B^0 \to J/\psi$ K⁰s decays
- ⇒ Opportunity to test the Standard Model in a clean and new way
 e+ e- B Factories operating at SLAC (BaBar) and KEK (Belle) since 1999
 hadron collider experiments (CDF and D0) will also contribute soon

$B^0 - \overline{B}^0$ System

As in the neutral kaon system, Heavy and Light mass eigenstates are

superpositions of flavor eigenstates

$$\begin{vmatrix} B_L \rangle = p | B^0 \rangle + q | \overline{B}^0 \rangle$$

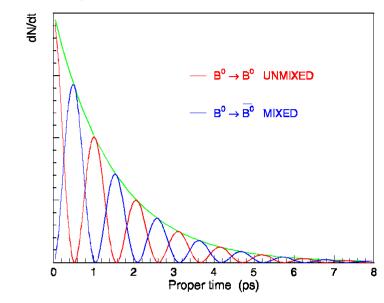
$$| B_H \rangle = p | B^0 \rangle - q | \overline{B}^0 \rangle$$

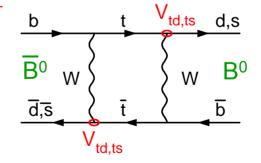
System characterized by mass difference $\Delta m = m_H - m_L$ width difference $\Delta \Gamma = \Gamma_L - \Gamma_H$

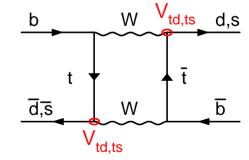
Different time evolution for B_H and B_I

$$\begin{vmatrix} B_H(t) \rangle = \begin{vmatrix} B_H(t=0) \rangle e^{(-im_H - \Gamma_H/2)t} \\ B_L(t) \rangle = \begin{vmatrix} B_L(t=0) \rangle e^{(-im_L - \Gamma_L/2)t} \end{vmatrix}$$

leads to $B^0 \leftrightarrow \overline{B}{}^0$ oscillations with frequency Δm (a.k.a. "mixing")







$$\Delta m_d \propto \left| V_{tb}^* V_{td} \right|^2$$

3 Classes of CP Violation (I)

Need 2 amplitudes with different phase structure contributing to the same decay

- → 3 different ways to achieve this:
- 1) CP violation in decay (a.k.a. direct CP violation)

$$\left| \frac{\mathbf{B}}{\mathbf{f}} \right|^2 \neq \left| \frac{\mathbf{B}}{\mathbf{F}} \right|^2 \quad \text{need} \quad \left| \frac{\left\langle \bar{f} \mid H \mid \overline{B} \right\rangle}{\left\langle f \mid H \mid B \right\rangle} \right| \neq 1$$

two amplitudes with different weak phases & different strong phases e.g. compare BR(B⁺ \rightarrow K⁺ π^0) and BR(B⁻ \rightarrow K⁻ π^0) but strong phases are not known

2) CP violation in mixing (a.k.a. indirect CP violation)

$$\left| \begin{array}{c} \overline{B^0} \ \overline{B^0} \end{array} \right|^2 \neq \left| \begin{array}{c} \overline{B^0} \ \overline{B^0} \end{array} \right|^2 \quad \text{need} \quad \left| \frac{q}{p} \right| \neq 1$$

Need relative phase between mass and width parts of mixing matrix *CP-violating asymmetries expected to be small in Standard Model*

3 Classes of CP Violation (II)

3) CP violation in interference between decays with and without mixing

$$\begin{vmatrix} B^{0} & f \\ + & \neq \\ \hline B^{0} & \overline{B^{0}} & f \end{vmatrix}^{2} \neq \begin{vmatrix} \overline{B^{0}} & \overline{B^{0}} \\ \overline{B^{0}} & B^{0} & f \end{vmatrix}^{2}$$

Final state f is a CP eigenstate (e.g. J/ ψ K⁰_s or π ⁺ π ⁻)

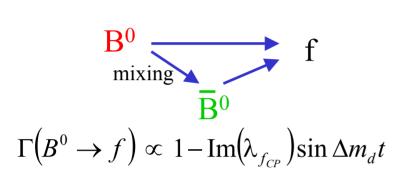
need
$$\operatorname{arg}\left(\frac{q}{p} \frac{\left\langle f \mid H \mid \overline{B}^0 \right\rangle}{\left\langle f \mid H \mid B^0 \right\rangle}\right) \neq 0$$
 to have CPV (no strong phases needed!) which can happen even if $\left|\frac{q}{p}\right| = 1$ and $\left|\frac{\left\langle f \mid H \mid \overline{B}^0 \right\rangle}{\left\langle f \mid H \mid B^0 \right\rangle}\right| = 1$ \longrightarrow only need weak phase

- + asymmetries can be large & do NOT require unknown strong phase
- + small theoretical uncertainties in some cases (e.g. $J/\psi K_s^0$)
- \Rightarrow most promising way to study CPV via measurements of the angles α , β , γ

CP Violation in $B^0 \rightarrow J/\psi K^0_s$ Decays (I)

Consider B⁰ decays into CP eigenstates

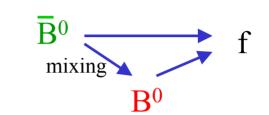
⇒ Interference between amplitudes for decay with and without mixing



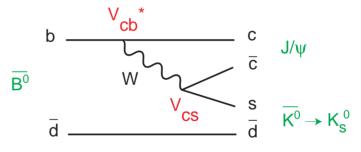
$$\lambda_{f_{CP}} = \frac{q}{p} \frac{\left\langle f \mid H \mid \overline{B}^{0} \right\rangle}{\left\langle f \mid H \mid B^{0} \right\rangle}$$

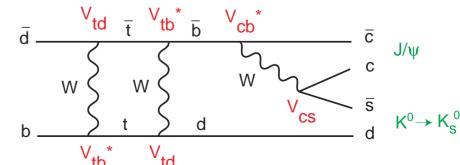
$$\frac{q}{p} = \frac{V_{tb}^* V_{td}}{V_{tb} V_{td}^*} = e^{-i2\beta}$$

 β : weak (CKM) phase from B mixing



$$\Gamma(\overline{B}^0 \to f) \propto 1 + \operatorname{Im}(\lambda_{f_{CP}}) \sin \Delta m_d t$$





CP Violation in B⁰ → J/ψ K⁰s Decays (II)

Expect large CP asymmetry

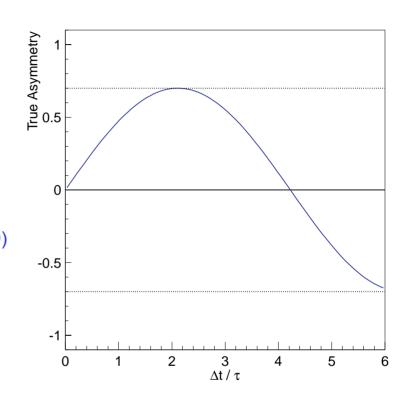
$$a_{J/\psi K_s}(t) = \frac{\Gamma(\overline{B}^0 \to J/\psi K_s^0) - \Gamma(B^0 \to J/\psi K_s^0)}{\Gamma(\overline{B}^0 \to J/\psi K_s^0) + \Gamma(B^0 \to J/\psi K_s^0)}$$
$$= \sin 2\beta \sin \Delta m_d t$$

Standard Model fit yields $\sin 2\beta = 0.75 \pm 0.09 \quad \text{S.Mele, PRD59, 113011 (1999)}$

Small branching ratio

BR(B⁰
$$\rightarrow$$
 J/ ψ K⁰) = (8.9 ±1.2) x 10⁻⁴
BR(J/ ψ \rightarrow I⁺ I⁻) = (5.9 ±0.1) x 10⁻²

- \Rightarrow combined BR $\approx 10^{-4}$ for e & μ modes
- + Need to reconstruct $J/\psi \rightarrow e^+ e^-$, $\mu^+ \mu^-$ and $K^0 s \rightarrow \pi^+ \pi^-$ (account for detector and selection efficiency ~50%)
- ⇒ Requires very large sample of B mesons

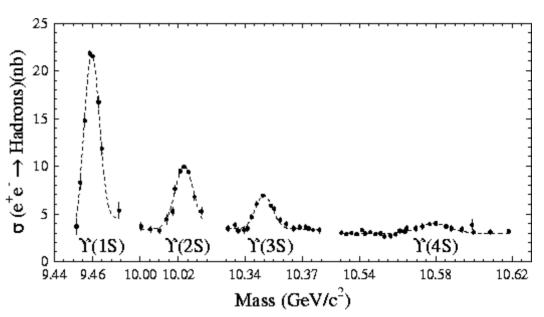


e⁺ e⁻ B Factories

GOAL: Produce 30-100 million B B events/year to study CP violation in B decays

via $e^+e^- \rightarrow \Upsilon(4s) \rightarrow B^0 \overline{B^0} (50\%)$

B+ B- (50%)

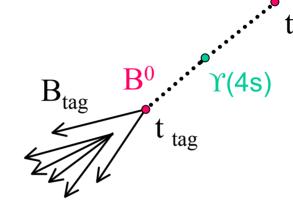


- High signal-to-background ratio σ_{bb} / $\sigma_{hadrons} \approx 0.22$ with $\sigma_{bb} = 1.05$ nb
- Clean events <# tracks> \approx 11 & able to reconstruct π^0 and γ
- No fragmentation products (low combinatorial background)
- Strong kinematical constraints $(p_{\Upsilon(4s)}$ and $p_B^*)$ for background suppression

Υ (4s) \rightarrow B⁰ \overline{B} ⁰

- B⁰ \overline{B}^0 system in coherent L=1 state
- B⁰ and B

 evolve IN PHASE
 - \Rightarrow always one B⁰ and one \overline{B}^0 until one of them decays at time t = t _{tag}



- Other B continues to evolve until it decays at time t = t CP
- Consider other B decays into CP eigenstate f_{CP}
 If B_{tag} is B⁰ at time t_{tag} then probability to observe other B decay into f_{CP} is

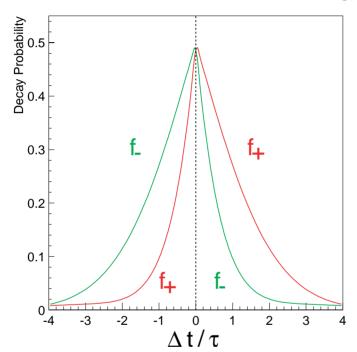
$$f_{+} = \frac{1}{4} \Gamma e^{-\Gamma |\Delta t|} \left[1 + \operatorname{Im}(\lambda_{f_{CP}}) \sin \Delta m_{d} \Delta t \right] \qquad \text{with } \Delta t = t_{CP} - t_{\text{tag}}$$

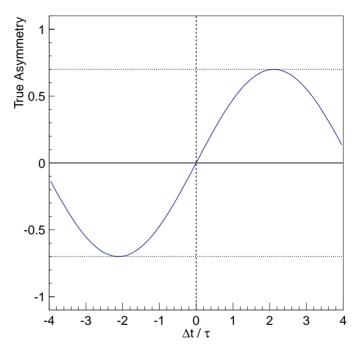
if B_{tag} is B^0 at time t_{tag} then

$$f_{-} = \frac{1}{4} \Gamma e^{-\Gamma|\Delta t|} \left[1 - \operatorname{Im}(\lambda_{f_{CP}}) \sin \Delta m_d \Delta t \right]$$

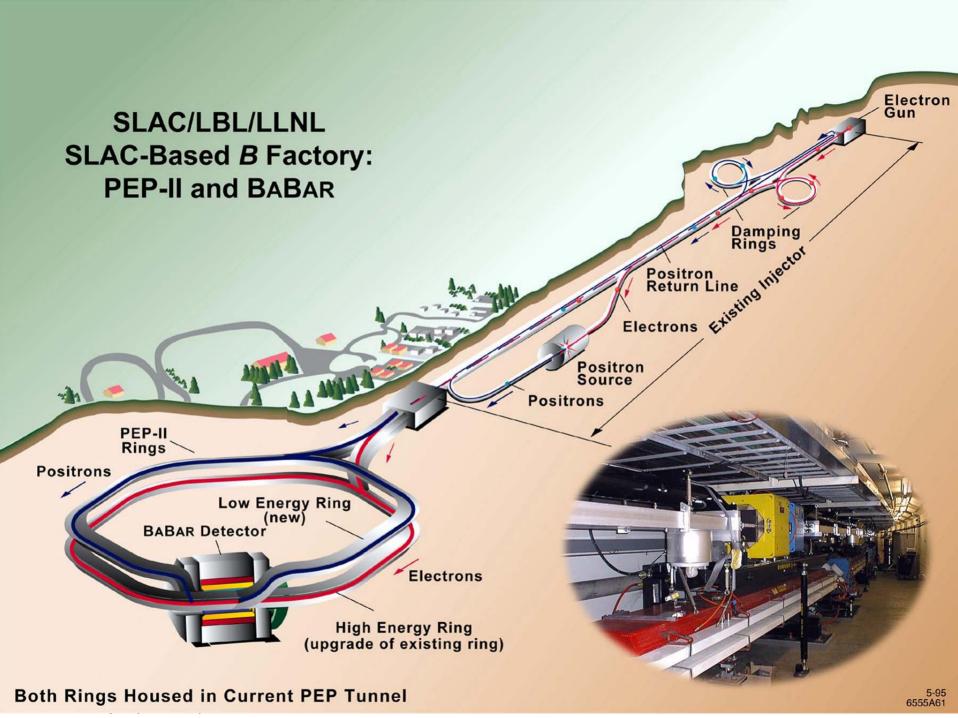
Υ (4s) \rightarrow B⁰ \overline{B} ⁰

- Different time evolution for B⁰(t = t_{tag}) \rightarrow f_{CP} and \overline{B}^0 (t = t_{tag}) \rightarrow f_{CP} decays
- Asymmetry depends on $\Delta t = t_{CP} t_{tag}$ (NB: Δt can be > 0 or < 0)

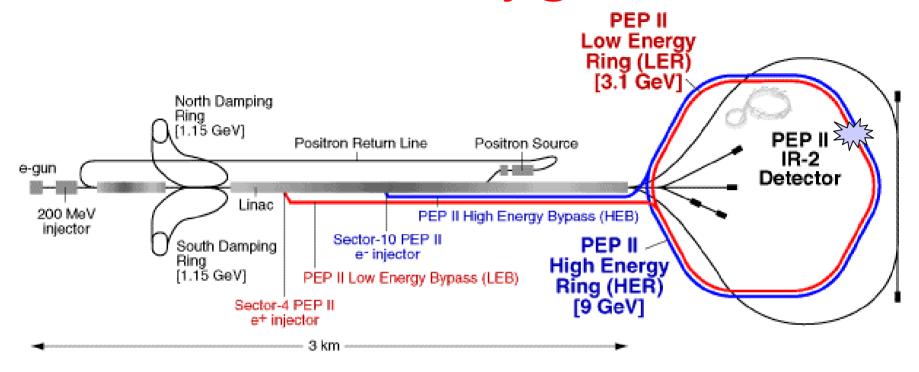




- $\Upsilon(4s)$ rest frame: B mesons produced nearly at rest $p_R^* = 340 \text{ MeV/c}$
 - \rightarrow avg distance traveled before decay <L*> = 30 μ m (given τ_B = 1.55 ps)
- ⇒ Symmetric e⁺ e⁻ collider (e.g. CESR) does not allow time reconstruction
- \Rightarrow Need unequal beam energies to boost $\Upsilon(4s)$ system and measure Δt

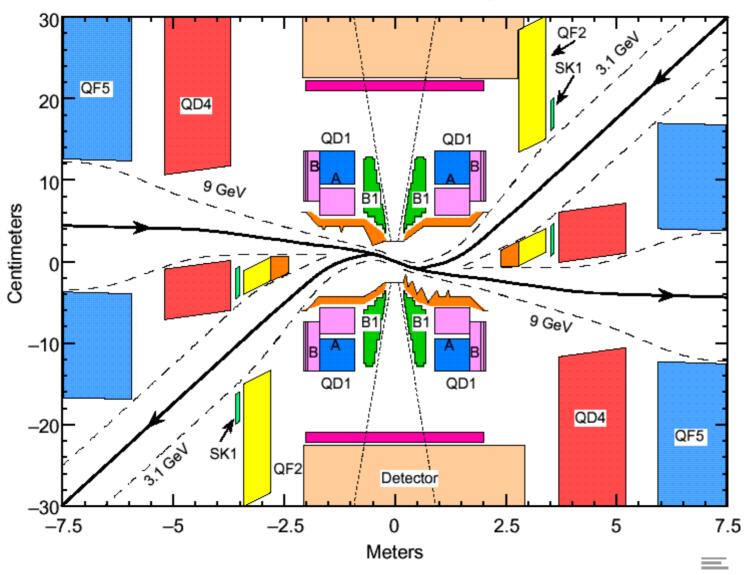


PEP-II B Factory @ SLAC



- E(e⁺) = 3.1 GeV and E(e⁻) = 9.0 GeV \Rightarrow $\beta\gamma$ = 0.55 \Rightarrow <L> = 260 μ m
- Peak luminosity = 3.0 x 10³³ cm⁻² s⁻¹ (design)
 4.6 x 10³³ cm⁻² s⁻¹ (achieved)
- Number of bunches = 800
- Positron current = 1775 mA, Electron current = 1060 mA
- IP beam sizes = 150 μm in x, 5 μm in y

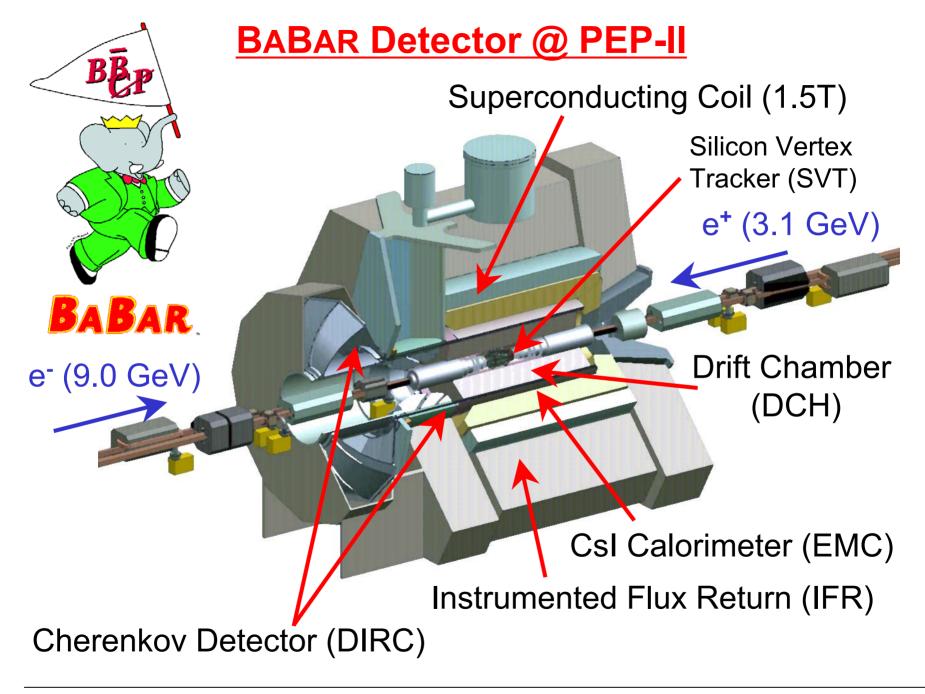
PEP-II B Factory @ SLAC



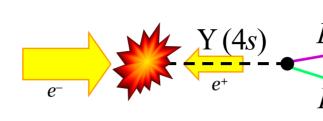
BABAR Collaboration @ SLAC

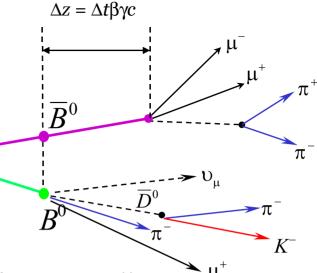
Collaboration meeting @ SLAC July 2002

9 Countries 76 Institutions 550 Physicists July 2002



sin 2β (Blind) Analysis at BaBar





- 1. Fully reconstruct B decay to CP eigenstate (eigenvalue $\eta_{CP} = \pm 1$)
- 2. Determine B^0 or \overline{B}^0 flavor of the other (tagging) B meson
- 3. Reconstruct decay vertices of both B mesons

$$\Delta z = z_{CP} - z_{tag}$$
 $<\Delta z> = 260 \mu m$
 $\Delta t = \Delta z / (\gamma \beta c)$ SIGNED!

4. Extract sin 2β with unbinned maximum likelihood fit (value hidden to avoid bias)

$$A_{CP}(\Delta t) = \frac{F_{+}(\Delta t) - F_{-}(\Delta t)}{F_{+}(\Delta t) + F_{-}(\Delta t)} \cong -\eta_{CP}(D\sin 2\beta) (\sin \Delta m_{d} \Delta t)$$

$$F_{+}(\Delta t) = \frac{1}{4} \Gamma e^{-\Gamma|\Delta t|} \left[1 \pm (-\eta_{CP}) D\sin 2\beta \sin \Delta m_{d} \Delta t \right] \otimes R(\Delta t)$$

Experimental effects: Dilution D = (1 - 2w) and resolution function $R(\Delta t)$

$$\sigma(\sin 2\beta) \propto 1 / (N \epsilon_{tag} D^2)^{1/2}$$

Exclusive B Reconstruction (I)

Exploit two kinematical constraints:

→ Beam energy substituted mass

$$m_{ES} = \sqrt{E_{beam}^{*2} - \vec{p}_{Brec}^{*2}}$$

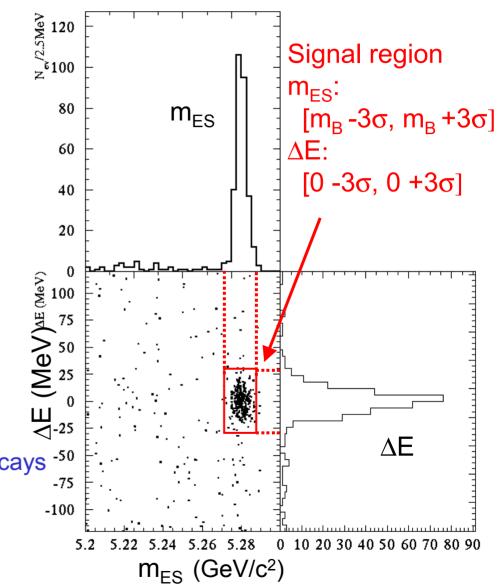
resolution ~ 2.6 MeV/c² dominated by beam energy spread

→ Energy difference

$$\Delta E = E_{Brec}^* - E_{beam}^*$$

resolution ~10-40 MeV depending on decay mode

suppress background from other B decays



Exclusive B Reconstruction (II)

Full reconstruction of B decay into

\rightarrow *CP-odd eigenstates:* $\eta_{CP} = -1$

- B $^{0} \rightarrow$ J/ ψ K $^{0}_{s}$ J/ $\psi \rightarrow$ e $^{+}$ e $^{-}$, μ^{+} μ^{-}
- B⁰ \rightarrow ψ (2s) K⁰_s ψ (2s) \rightarrow e⁺ e⁻, μ ⁺ μ ⁻, J/ ψ π ⁺ π ⁻
- B $^0
 ightarrow \chi_{c1} \ K_s^0$ $\chi_{c1}
 ightarrow J/\psi \, \gamma$
- $\begin{array}{c} \bullet \; \mathsf{B^0} \to \eta_c \; \mathsf{K^0}_s \\ & \eta_c \to \mathsf{K^0}_s \; \mathsf{K^+} \; \pi^- \, , \; \mathsf{K^+} \; \mathsf{K^-} \; \pi^0 \end{array}$

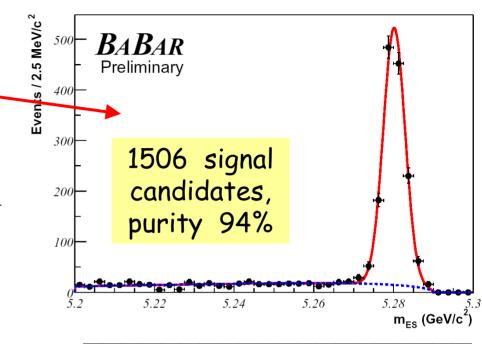
with ${\rm K^0_s} \to \pi^+ \, \pi^-$ (and $\pi^0 \, \pi^0$ for J/ ψ mode) $\overline{\chi}^{-150}$

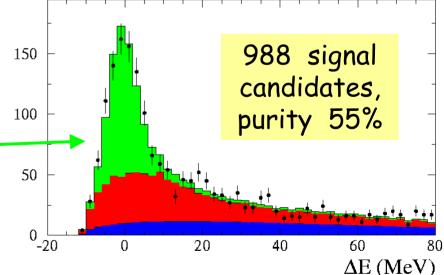
\rightarrow CP-even eigenstates: η_{CP} = +1

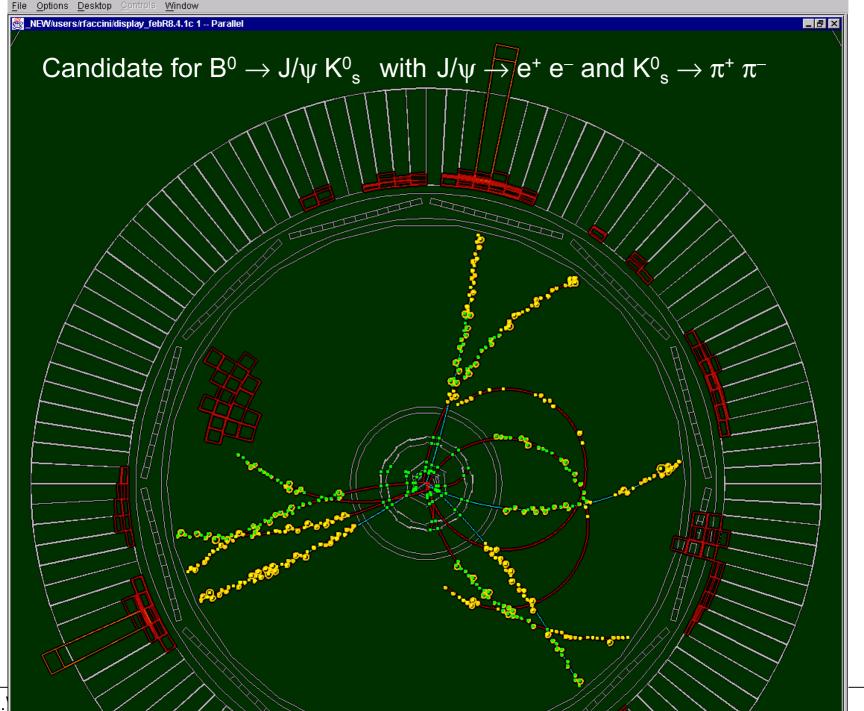
• $B^0 \rightarrow J/\psi K_1^0$

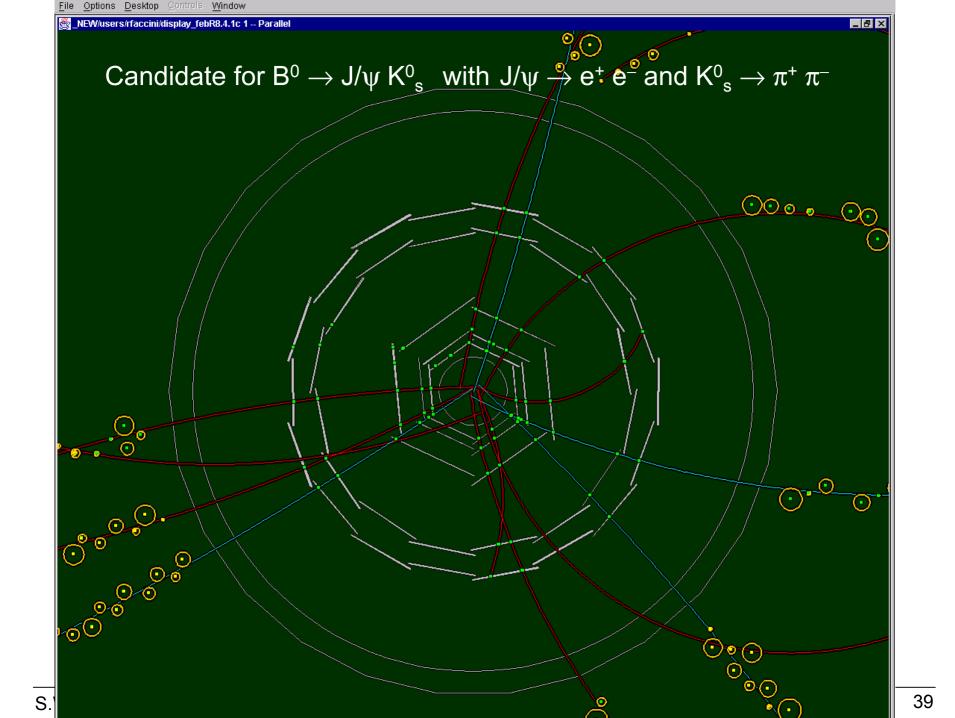
→ CP-mixed eigenstates:

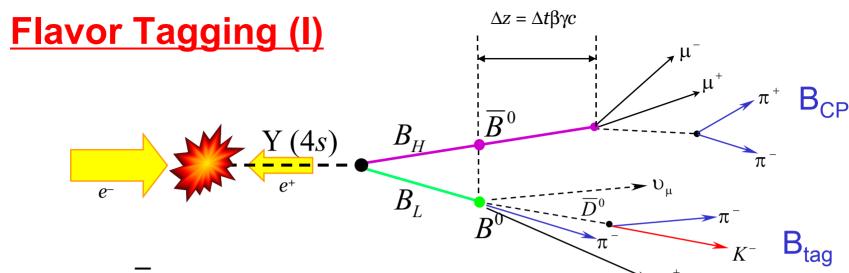
• B⁰ \rightarrow J/ ψ K*⁰ (K*⁰ \rightarrow K⁰_s π ⁰)











Need to tag B^0 or $\overline{B}{}^0$ flavor of other (B_{tag}) meson

 B_{CP} has flavor opposite that of B_{tag} at t = t_{tag}

Examine all charged particles in the event not included in B_CP reco

<u>Ingredients:</u>

- Lepton charge $(B \rightarrow I^+ X \text{ vs. } \overline{B} \rightarrow I^- X)$
- Kaon charge (b \rightarrow c \rightarrow s transition \Rightarrow B \rightarrow K⁺ X vs. \overline{B} \rightarrow K⁻ X)
- Slow pion charge $(B \to D^{*-} X \Rightarrow slow \pi^-)$
- Cascade lepton charge

Flavor Tagging (II)

Tag performance extracted directly from data:

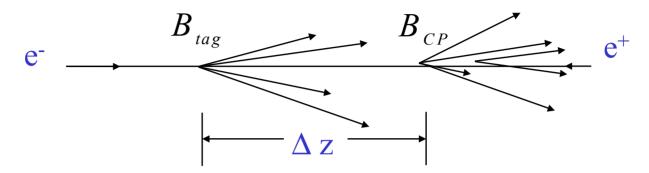
- reconstruct one B decay to flavor eigenstate $D^{*-}I^+\nu_I$, $D^{(*)-}\pi^+$, $D^{(*)-}\rho^+$, ...
- ullet tag the rest of the event and measure both mistag rate w and Δm_d

Method	ε _{tag} (%)	w (%)	Q (%)
Lepton	9.1 ± 0.2	3.3 ± 0.6	7.9 ± 0.3
Kaon I	16.7 ± 0.2	10.0 ± 0.7	10.7 ± 0.4
Kaon II	19.8 ± 0.3	20.9 ± 0.8	6.7 ± 0.4
Inclusive	20.0 ± 0.3	31.5 ± 0.9	2.7 ± 0.3
All	65.5 ± 0.5		28.1 ± 0.7

Effectiveness $Q = \varepsilon (1 - 2w)^2$ $= \varepsilon D^2$

Proper Time Difference $\Delta t = \Delta z / (\gamma \beta c)$

Measure decay vertex positions for B_{CP} and B_{tag} along boost direction



\rightarrow B_{CP} vertex:

* Geometric & kinematic fit $\sigma_7 \sim 65 \mu m$

\rightarrow B_{tag} vertex:

- * Fit remaining tracks
- * Use beam spot constraint
- * Iterate to remove trks with large χ^2 (minimize bias from charm decays)
- * Include resultant K_s trajectory and B_{cP} momentum vector

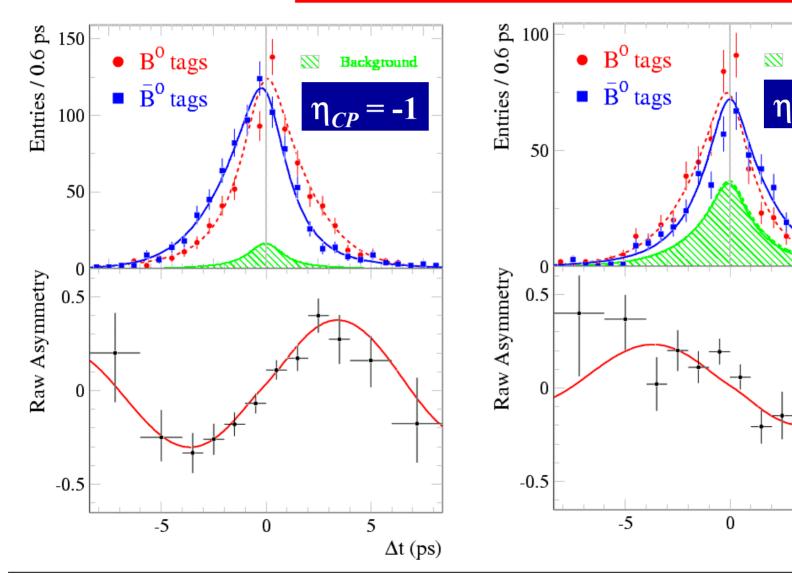
$$\sigma_z \sim 110 \, \mu \text{m}$$

 \rightarrow dominates Δz resolution + introduces $\delta z \sim 25 \,\mu m$ bias from charm

sin 2β Measurement

• BaBar 88 x 10⁶ BB pairs:

$$\sin 2\beta = 0.741 \pm 0.067 \ (stat) \pm 0.033 \ (syst)$$



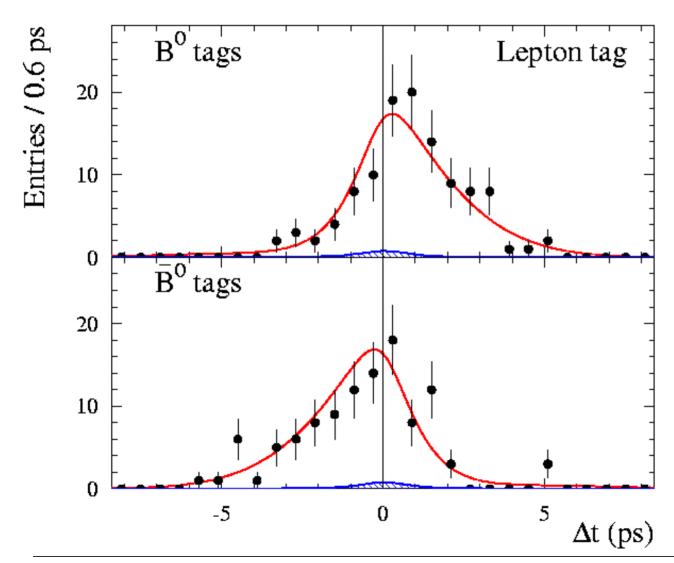
 Δt (ps)

5

Background

sin 2β Measurement with Lepton Tags Only

• 220 lepton-tagged η_f = -1 events



98% purity
3.3% mistag rate
20% better ∆t
resolution

 $\sin 2\beta = 0.79 \pm 0.11$

World sin 2β Measurements

$$\sin 2\beta = 0.734 \pm 0.055$$

In excellent agreement with value determined indirectly from other

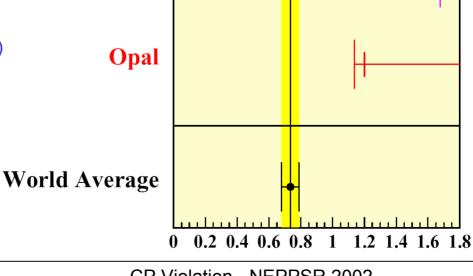
B and K decay measurements:

 $\sin 2\beta = 0.75 \pm 0.09$

S.Mele, PRD59, 113011 (1999)



Opal



 $0.741\pm0.067\pm0.033$

 $0.719\pm0.074\pm0.035$

 $0.79^{+0.41}_{-0.44}$

 $0.84^{+0.82}_{-1.04}\pm0.16$

 $3.20^{+1.8}_{-2.0}\pm0.5$

 0.734 ± 0.055

CP Violation in Decay

CP Violation in decay:
$$\left| \frac{B}{-} \right|^2 \neq \left| \frac{\overline{B}}{-} \right|^2$$

Search for CP violation in charmless B decays (b \rightarrow u or b \rightarrow s transitions)

→ measure decay rate asymmetry

$$A_{CP} = \frac{\Gamma(\overline{B} \to \overline{f}) - \Gamma(B \to f)}{\Gamma(\overline{B} \to \overline{f}) + \Gamma(B \to f)}$$

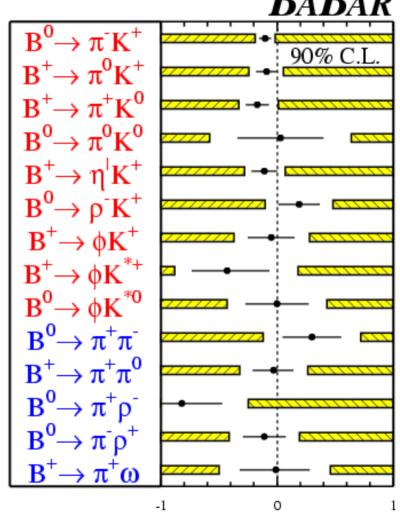
No evidence for direct CPV yet Uncertainties at the 5-40% level

(similar results from CLEO and BELLE)

Most precise for $B^0 \to K^+\pi^-$ with

$$A_{CP} = -0.102 \pm 0.050 \text{ (stat)}$$

 $\pm 0.016 \text{ (syst)}$



CP Violation in Mixing

CP Violation in mixing:

$$\left| \begin{array}{c} B^0 \overline{B^0} \\ \hline \end{array} \right|^2 \neq \left| \begin{array}{c} \overline{B^0} \overline{B^0} \\ \hline \end{array} \right|^2$$

Measure asymmetry in semileptonic decays

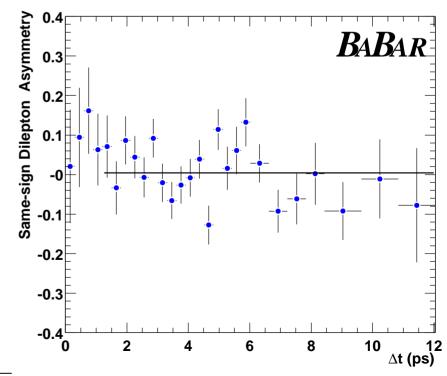
$$a_{SL} = \frac{\Gamma(\overline{B}^0 \to l^+ \nu_l X) - \Gamma(B^0 \to l^- \overline{\nu}_l X)}{\Gamma(\overline{B}^0 \to l^+ \nu_l X) + \Gamma(B^0 \to l^- \overline{\nu}_l X)} = \frac{1 - |q/p|^4}{1 + |q/p|^4}$$

Rate of "wrong" sign leptons (from mixing)

BaBar:
$$a_{SL}$$
 = 0.005 ± 0.012(stat)
± 0.014(syst)

$$\Rightarrow$$
 | q/p | = 0.998 ± 0.006(stat)
± 0.007(syst)

Consistent with small predicted violation



"The" Unitarity Triangle (II)

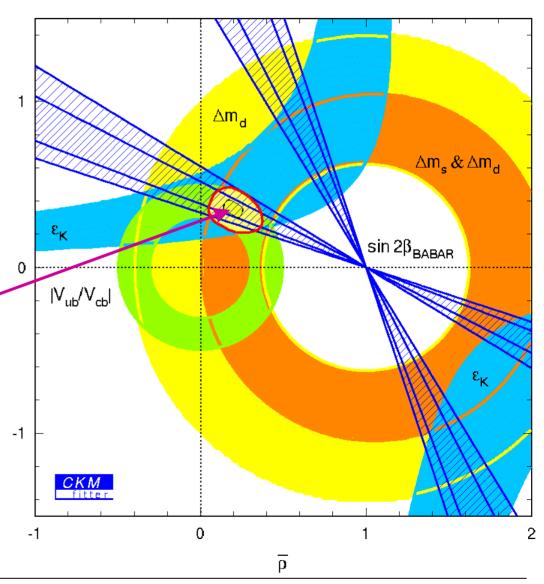
Without sin 2β , ρ and η poorly constrained by exp^t (large theory uncertainties)

- $|V_{ub}| = |A λ³ (ρ − iη)|$ B → X_u I v decays (b → u)
- $|V_{td}| = |A λ³ (1 ρ iη)|$ B⁰ - \overline{B} ⁰ oscill. freq. (d → t)
- > CPV in Kaon decays ϵ_{K} measurement (s \rightarrow c)

All constraints are consistent with one another

GOAL:

Stringent test of SM via precise measurements of the sides and angles of the unitarity triangle



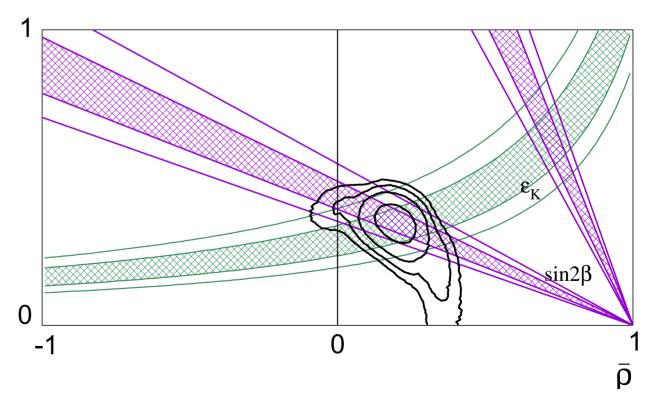
"The" Unitarity Triangle (III)

We can now check the consistency of the CKM picture of CPV Compare constraints from:

- 1. CPV in the kaon system ($\varepsilon_{\rm k}$)
- 2. CPV in b \rightarrow ccs (e.g. B⁰ \rightarrow J/ ψ K⁰_s)
- 3. $|V_{ub}|$ and $|V_{td}|$ from b \rightarrow u decay rate and B mixing frequency

Excellent consistency between the different observables

CKM matrix provides coherent framework (so far...)

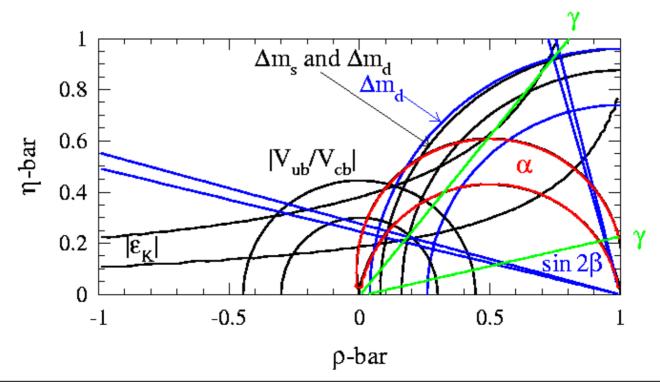


"The" Unitarity Triangle (IV)

Possible situation in 2007 showing inconsistency between the measurement of the sides and of the angles of the triangle:

- Assume uncertainties of 3% in $|V_{cb}|$, 10% in $|V_{ub}|$, <1% in Δm_d and Δm_s
- \triangleright Assume uncertainties of 1% in sin 2 β , 5° in α and 10° in γ

Inconsistency between constraints might look like:



Summary

CP Violation:

- New window into the Standard Model of Particle Physics, relevant to matter-antimatter asymmetry of the Universe, sensitive to New Physics
- CKM quark mixing matrix for 3 families of quarks contains an irreducible phase that induces CP violation in weak charged current interactions
- B Factories have observed (large) CP violation for the first time outside of the neutral kaon system (B⁰ \rightarrow J/ ψ K⁰_s decays)
- Current data is in excellent agreement with the CKM picture of CPV
- Probing of the SM continues with larger data samples at the B Factories and begins at the Fermilab Tevatron

Additional Slides

CP Violation in the Standard Model (I)

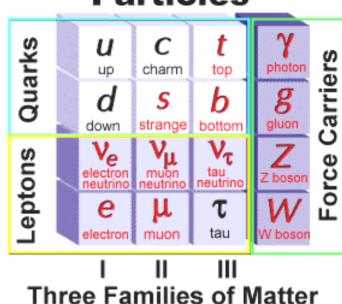
(Electroweak) Standard Model:

 Three families of quarks and leptons arranged in left-handed doublets and right-handed singlets

$$\begin{pmatrix} u \\ d \end{pmatrix}_{I}$$
, $\begin{pmatrix} v_e \\ e \end{pmatrix}_{I}$, u_R , d_R , e_R for 1^{st} family

- Local gauge invariance under
 U(1)_Y ⊗ SU(2)_L symmetry groups yields
 electromagnetic and weak interactions
- Field equations (Lagrangian) describe electromagnetic (\mathcal{L}_{EM}), charged current weak (\mathcal{L}_{CC}), and neutral current weak (\mathcal{L}_{NC}) interactions, also "Yukawa" interactions between Higgs field ϕ and fermions (\mathcal{L}_{Y} to provide mass to the fermions)

Elementary Particles



CP Violation in the Standard Model (II)

Higgs coupling to fermions:

For the first family we have

$$\mathcal{L}_Y = g_e \, \overline{L} \, \phi \, e_R + g_d \, \overline{Q}_L \phi \, d_R + g_u \, \overline{Q}_L \phi^c u_R + h.c.$$

where
$$L = \begin{pmatrix} v_e \\ e \end{pmatrix}_L$$
, $Q_L = \begin{pmatrix} u \\ d \end{pmatrix}_L$, $\phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}$, $\phi^c = \begin{pmatrix} -\phi^{0*} \\ \phi^- \end{pmatrix}$

Note: separate terms for up-type quarks (Q = +2/3 e) and down-type quarks (Q = -1/3 e)

After spontaneous symmetry breaking, we obtain quark mass terms

$$\mathcal{L}_{Y}^{\text{quark mass}} = \begin{pmatrix} \overline{u} & \overline{c} & \overline{t} \end{pmatrix}_{L} \widetilde{M}_{U} \begin{pmatrix} u \\ c \\ t \end{pmatrix}_{R} + \begin{pmatrix} \overline{d} & \overline{s} & \overline{b} \end{pmatrix}_{L} \widetilde{M}_{D} \begin{pmatrix} d \\ s \\ b \end{pmatrix}_{R}$$

CP Violation in the Standard Model (III)

Quark mass matrices:

In general, mass matrices \widetilde{M}_U and \widetilde{M}_D are not diagonal

 \Rightarrow Need to diagonalize those with matrices V^{up} and V^{down}

$$\mathcal{L}_{Y}^{\text{quark mass}} = \begin{pmatrix} \overline{u} & \overline{c} & \overline{t} \end{pmatrix}_{L} V_{L}^{up\dagger} M_{U} V_{R}^{up} \begin{pmatrix} u \\ c \\ t \end{pmatrix}_{R} + \begin{pmatrix} \overline{d} & \overline{s} & \overline{b} \end{pmatrix}_{L} V_{L}^{down\dagger} M_{D} V_{R}^{down} \begin{pmatrix} d \\ s \\ b \end{pmatrix}_{R}$$

⇒ Redefine quark eigenstates to get

$$\mathcal{L}_{Y}^{\text{quark mass}} = \begin{pmatrix} \overline{u} & \overline{c} & \overline{t} \end{pmatrix}_{L} M_{U} \begin{pmatrix} u \\ c \\ t \end{pmatrix}_{R} + \begin{pmatrix} \overline{d} & \overline{s} & \overline{b} \end{pmatrix}_{L} M_{D} \begin{pmatrix} d \\ s \\ b \end{pmatrix}_{R}$$

CP Violation in the Standard Model (IV)

Charged-current Weak Interaction:

Redefinition of quark mass eigenstates has non-trivial consequence:

$$\mathcal{L}_{CC} = rac{\mathcal{G}}{\sqrt{2}} ig(\overline{u} \quad \overline{c} \quad \overline{t} ig)_{L} \, \gamma^{\mu} \, V_{L}^{up} \, V_{L}^{down\dagger} ig(egin{matrix} d \\ s \\ b \end{pmatrix}_{L} W_{\mu}^{+} + h.c.$$

$$V_{CKM} = V_L^{up} V_L^{down\dagger}$$

$$= \frac{g}{\sqrt{2}} (\overline{u} \quad \overline{c} \quad \overline{t})_L \gamma^{\mu} \begin{pmatrix} d' \\ s' \\ b' \end{pmatrix}_L W_{\mu}^{+} + h.c.$$

- \rightarrow Eigenstates for weak interactions (d', s', b') are linear combinations of mass eigenstates (d, s, b):
- (CKM) mixing matrix