

Astro-particle-physics

An operational definition:

Astro-particle-physics

The intersection of elementary particle physics (microprocesses) and astro-physical phenomena, including cosmology.

Outline of Lecture

- Matter and curvature of space-time
- "Standard Cosmology"
- Observational data
- Inflation
- Evidence for dark matter
- Searching for dark matter

Curvature

CURVED SPACETIME

Comments

- Einstein field eqn's describe local effects of curvature (e.g. gravitational lensing, deflection of starlight)...and global structure of plausible (and implausible?) universes.
- Note: resemblance to e.g. Maxwell's equations with a "source" term (Stress-energy tensor) and a "field" term (Curvature)

Einstein Field Equation

Cosmological constant

Stress Energy Tensor

$$T^{\alpha\beta}(x) = \sum_{n} p_{n}^{\alpha}(t) \frac{dx_{n}^{\beta}(t)}{dt} \delta^{3}(x - x_{n}(t))$$

Relativistic hydrodynamic assumption

$$T^{\alpha\beta} = (\rho + p)U^{\alpha}U^{\beta} + pg^{\alpha\beta}$$

$$g_{\mu\nu} = \frac{\partial \xi^{\alpha}}{\partial x^{\mu}} \frac{\partial \xi^{\beta}}{\partial x^{\nu}} \eta_{\alpha\beta}$$

$$p \qquad \text{pressure}$$

$$\rho \qquad \text{density}$$

$$U^{\alpha} \qquad 4 \text{ velocity}$$

John Huth, Harvard NESPR 02

Stress-Energy Tensor

- At first difficult to imagine objects (e.g. galaxies) as a hydrodynamic fluid, but this approximation is well merited.
- Components of vacuum energy, "normal" matter, photons, mysterious other terms.
- Work of cosmologists is to evaluate implication of "tweaking" of S-E tensor via introduction of new forms of matter

$$g_{\mu\nu} = \frac{\partial \xi^{\alpha}}{\partial x^{\mu}} \frac{\partial \xi^{\beta}}{\partial x^{\nu}} \eta_{\alpha\beta}$$

$$\Gamma^{\lambda}_{\mu\nu} = \frac{\partial x^{\lambda}}{\partial \xi^{\alpha}} \frac{\partial^{2} \xi^{\alpha}}{\partial x^{\mu} \partial x^{\nu}}$$

$$\eta_{\alpha\beta} = diag(-1,1,1,1)$$

 ξ^{α} Freely falling coord

 χ^{μ} Any coord

Curvature II

$$R_{\mu\nu} = R^{\lambda}_{\mu\lambda\kappa}$$

$$R = g^{\mu\kappa} R_{\mu\kappa}$$

$$R^{\lambda}_{\mu\lambda\kappa} = \frac{\partial \Gamma^{\lambda}_{\mu\nu}}{\partial x^{\kappa}} - \frac{\partial \Gamma^{\lambda}_{\mu\kappa}}{\partial x^{\nu}} + \Gamma^{\eta}_{\mu\nu} \Gamma^{\lambda}_{\kappa\eta} - \Gamma^{\eta}_{\mu\kappa} \Gamma^{\lambda}_{\nu\eta}$$

Global Metrics

- Certain global metrics will describe a "cosmology" that will satisfies the Einstein-Field Equations.
- Many have odd features.
- The "standard cosmology" is the Robertson-Walker metric
 - Imbedded expanding 3-sphere ("expanding balloon" analogy)

Robertson-Walker Metric

$$d\tau^{2} = dt^{2} - R^{2}(t) \left\{ \frac{dr^{2}}{1 - kr^{2}} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta d\phi^{2} \right\}$$

 $d\tau$

Proper time interval

R(t)

"Radius of Universe"

k

Sign of curvature (+1=closed, 0=flat, -1=open)

FRW Model

- Describes observational data well
- No guarantees that the global topology is as simple as the FRW metric implies (e.g. toroidal universes...can you see the back of your head, multiply connected etc)
- Simple treatment of Stress-Energy tensor
- Concept of a "co-moving" inertial frame (e.g. w.r.t. cosmic microwave background)
- Regions can be out of causal contact

FRW Stress Energy Terms

$$T_{\nu}^{\mu} = diag(\rho, -p, -p, -p)$$

$$(p(t), \rho(t))$$

$$1st law of thermodynamics$$

$$d(\rho R^{3}) = -pd(R^{3})$$

$$(p = \frac{1}{3}\rho) \Rightarrow \rho \propto R^{-4}$$
 Radiation
$$(p = 0) \Rightarrow \rho \propto R^{-3}$$
 Matter
$$(p = -\rho) \Rightarrow \rho \propto (const.)$$
 Vacuum energy

FRW Universe

- Early universe was radiation dominated
- With no vacuum energy, adolescent and late universe are matter dominated
- With "inflation" (see ahead) very early period where vacuum energy dominated the SE tensor

Relation to curvature

$$\Omega > 1$$
 Closed

$$\Omega = 1$$
 Flat

$$\Omega < 1$$
 Open

- Density of universe relative to critical density relates to curvature
- Universe is old, means that Ω cannot be too large or density was too high

21 Aug 03

John Huth, Harvard NESPR 02

Epochs of FRW Universe

- Planck Era
 - Wave function of the universe(?)
- (Inflation symmetry transition)
- Baryogenesis
- Nucleosynthesis
- Neutralization ("freeze out")
- Star/galaxy formation

Particle Connections

- The early universe is, in a sense, a laboratory for particle interactions
 - Baryogenesis CP violation (GUT scale)
 - Inflation symmetry breaking
 - Overall mass supersymmetry (TeV scale)
 - Nuclear synthesis
 - Radiation interaction with matter before freeze-out
 - Remaining vacuum energy (?) present

What can we observe?

- Red shift versus distance (R(t)-effectively)
 - Cepheids, SN, sizes, luminosity of galaxies
- Age of the universe
 - Radioactive clocks (U²³⁸ to U²³⁵ ratio)
 - Stellar populations
- Cosmic microwave background radiation
- Structure formation (distribution of mass)
- Nuclear abundances

Uranium Isotopic Content

$$\lceil ^{235}U/^{238}U \rceil \cong 1.71$$

 $\left\lceil {^{235}U}/{^{238}U} \right\rceil \cong 0.00732$

Production abundances

Observed abundances

$$\Delta t = \frac{\ln\left[\frac{235}{U}\right]^{238}U}{\tau_{235}^{-1} - \tau_{238}^{-1}} = 6.6Gyr$$

Red Shift Versus Distance

- The farther away you look, the more redshift one sees.
- Effects of
 - Recessional velocity associated with expansion of universe
 - Looking "backward in time"

Galaxy megasurveys now mapping mass distribution over huge volumes (2dF and SDSS)

Age/Mass/Curvature

- Combination overconstrains FRW model
- Depending on test -10-20 Gyr=age (14.37 Gyr?)
- Hubble constant measurements, Ω_0 =1 (flat)
- Contributions to Ω
 - Luminous matter
 - Dark baryons (jupiters...)
 - Halos
 - Unclustered
 - Vacuum energy

Cosmic Distance Ladder

- Parallax near star distances
- Kinds of stars, luminosity, spectrum
- Cepheids variable stars with well defined periodicity/luminosity
- Supernovae universal brightness curve
- SZE effect using cosmic microwave background as "standard candle"

Mass Contributions(Circa 1989)

$$\Omega_{LUM} \square 0.01$$
 Luminous

$$\Omega_{Halo} \ge 0.1 \square 10 \Omega_{LUM}$$
 Halo

$$\Omega_b \ge 0.015$$
 Baryonic

Assuming critical density

$$\Omega_{unclustered} = 0.8$$

Smooth at 10-30 Mpc distance scales

John Huth, Harvard NESPR 02

Recent Fits

- 70% "dark energy"
- 24% "dark matter"
- 4% baryonic matter
- Mainly from Supernova survey (Perlmutter et al.)
- New projects will help elucidate this

Dark Energy

- Non-zero vacuum energy contributions to FRW universe can produce unusual effects
 - Inflation
 - "acceleration" of Hubble Expansion
- Recent surveys of redshift versus distance sets scale is suggestive of a vacuum energy contribution (equivalent to Λ term in Einstein eqn)
- Ω_{M} versus Ω_{Λ}

John Huth, Harvard NESPR 02

The Sunyaev-Zel'dovich Effect

- Future path to elucidating the Hubble curve
- CMB photons scatter from ionized electrons in galaxy, giving a measure of temperature, and can be compared to redshift measurements to get larger distance measurements
- Existence proof by J. Carlstrom (U. Chicago)

Isotropy Problem

- At time of neutralization, 10⁵ causally disconnected regions
- CMB uniform to about 1 part in 10⁴ (most angular scales, subtracting out earth's motion wrt co-moving frame)
- Finite horizon makes it "impossible" to achieve this isotropy

Other unresolved issues

- From Grand-unification, theories predict a density of monopoles, cosmic strings, etc, which is not observed
- Flatness, $\Omega = 1$ (identically?)

Inflation

- After GUT symmetry breaking a phase transition associated with a Higgs-like potential creates a very rapid expansion
 - Starts at 10^{-34} sec, lasts 10^{-32} sec
 - Spreads out universe by factor of 10⁻⁴³
- Preserves uniformity after causal disconnect
- Spreads out monopoloes
- Gives flat universe
- Variation: chaotic inflation

Higgs Potential

Higgs Potential

$$V(\phi) = -\frac{1}{2}m^2\phi^2 + \frac{1}{4}\lambda\phi^4$$

Minima of Higgs potential

$$\sigma_{\pm} = \pm \sqrt{\frac{m^2}{\lambda}}$$

Inflationary potential

Dark Mass

Evidence

- $-\Omega=1$ discrepancy
- Gravitational lensing
- Supercluster velocities (Virgo infall)
- Galactic rotation curves

Origins

- High velocity massive particles
- Large population of "dark" galaxies
- Significant vacuum energy contributions

CMB alone

 $\Omega_{\rm m}$ h percival et al., ,astro-ph/0105252: likelihood surfaces for the best fit linear power spectrum

0.4

N Clusters

✓ BBN

■ CMB

0.8

СМВ

0.06

CMB+

- + IRAS PCSz power spectrum
- + Hubble param. prior h=0.7

$$\Omega_{\rm dm} = 0.24 + /-0.06$$
 $\Omega_{\rm b} = 0.04 + /-0.02$

Galaxy clustering: the 2dF galaxy redshift survey > 160 000 galaxies

$$\Omega_{\rm m}$$
 = 0.29 +/- 0.04

0.2

$$\Omega_{\rm b} = 0.04 + /-0.02$$

Dark Mass Candidates

- Must be weakly interacting (broad distribution, no radiation damping)
- Neutrinos not favored
- Axions associated with strong CP problem perhaps
- Supersymmetric matter
 - Neutralinos

if SUSY exists and R-parity (-1)3(B-L)+2S is conserved

=> LSP is stable: potential DM candidate!

in general: mixture of photino, zino and higgsinos

$$\chi = \alpha \tilde{\gamma} + \beta \tilde{Z} + \gamma \tilde{H}_1^0 + \delta \tilde{H}_2^0$$

⇒prediction of masses, scattering cross sections

⇒elastic χ nucleus cross section dominated by SI part

Nucleus Recoils

 $v/c \approx 10^{-3}$

Dense Energy Deposition v/c small; Bragg

Neutrons same, but $\sigma \approx 10^{20}$ higher - shield

Electron Recoils

Sparse Energy Deposition

Density/Sparsity Basis of Discrimination

John Huth, Harvard NESPR 02

Dark Matter Detection

- Velocity of earth wrt WIMP cloud
 - Whatever that is!!! 300 km/sec minimum
 - 100 GeV scale massive critters
- Backgrounds are the devil!!!
 - Cosmics
 - Residual radiation in materials
- CDMS (cryo dark matter search)
 - Solid state detectors measure both phonons and ionization loss of recoil nuclei

Study the low energy SUSY theories which arise from GUT, supergravity or string theories, reduce > 100 MSSM parameters to 5-7...

When masses and couplings fixed: calculate the WIMP-nucleus cross section (from χ-quark cross section, QCD, nuclear physics...)

Theorists survey a large set of models with masses and couplings within a plausible range; impose laboratory and relic density constraints plots of elastic scattering cross sections versus neutralino mass

in general: σ: 10-5 and 10-11 pb

sensitivity of current experiments: ~ 10-6 pb

DATA listed top to bottom on plot

Baltz and Gondolo, spin indep, sigma in MSSM, with muon g=2 constraint

V. Bedny akov et al., Z.Phys. A 557 (1997) 339 SUSY MSSM

Mandie, Piece, Gondole, Murayama mS UGRA M3<1TeV (hepph0008022

Blis et al., Spin indep, sigma in CMSSM

Baltz and Gondolo, spin indep, sigma in MSSM, without muon g=2 constraint

The Experiments

CDMS - Ge/Si, measure ionization (Q) and heat/phonons (P)
Recoil/γ discrimination: Q/P
2 Detector Types, 2 sites! Updated Result

ZEPLIN 1 - Liq Xe, measure scintillation

Recoil/γ discrimination: Pulse Shape in Time

2 more ZEPLIN's - add ionization New Result

DRIFT - CS_2 , measure ionization (Q) Recoil/ γ discrimination: Spatial Distribution of Q Directionality

CDMS detectors

Ultra-pure Si and Ge crystals: 1cm thick; 7.5cm diameter.

measure phonons and ionization signals after an interaction

discrimination between nuclear and electron recoils

nuclear recoils: WIMPs, n

electron recoils: γ,e

Not covered here

- CMB (Scott)
- Nuclear abundances (Scott)
- CP violation, baryogenesis (Kate)

Conclusions/caveats

- It would be interesting to dig up this talk in 10 years and see how things stand up
 - Will Dark Energy Survive?
 - Will we find WIMP's or understand dark matter?
 - Will symmetry breaking shed light on inflation?
 - What does a TeV scale Planck scenario imply?
 - Will FRW models still be the standard?