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Astro-particle-physics

An operational definition:
Astro-particle-physics

The intersection of elementary particle 
physics (microprocesses) and astro-physical 
phenomena, including cosmology. 
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Outline of Lecture

• Matter and curvature of space-time
• “Standard Cosmology”
• Observational data
• Inflation
• Evidence for dark matter
• Searching for dark matter
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Curvature
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Comments

• Einstein field eqn’s describe local effects of 
curvature (e.g. gravitational lensing, deflection of 
starlight)…and global structure of plausible (and 
implausible?) universes.

• Note: resemblance to e.g. Maxwell’s equations 
with a “source” term (Stress-energy tensor) and a 
“field” term (Curvature)
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Einstein Field Equation

8G T gµν µν µνπ += Λ

Curvature term
Stress-energy tensor

Cosmological constant
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Stress Energy Tensor
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Stress-Energy Tensor

• At first difficult to imagine objects (e.g. 
galaxies) as a hydrodynamic fluid, but this 
approximation is well merited.

• Components of vacuum energy, “normal” 
matter, photons, mysterious other terms.

• Work of cosmologists is to evaluate 
implication of “tweaking” of S-E tensor via 
introduction of new forms of matter
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Curvature I
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Curvature II
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Global Metrics

• Certain global metrics will describe a 
“cosmology” that will satisfies the Einstein-
Field Equations.

• Many have odd features.
• The “standard cosmology” is the Robertson-

Walker metric
– Imbedded expanding 3-sphere – (“expanding 

balloon” analogy)
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Robertson-Walker Metric
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FRW Model

• Describes observational data well
• No guarantees that the global topology is as 

simple as the FRW metric implies (e.g. toroidal 
universes…can you see the back of your head, 
multiply connected etc)

• Simple treatment of Stress-Energy tensor
• Concept of a “co-moving” inertial frame (e.g. 

w.r.t. cosmic microwave background)
• Regions can be out of causal contact
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FRW Stress Energy Terms
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FRW Universe

• Early universe was radiation dominated
• With no vacuum energy, adolescent and late 

universe are matter dominated
• With “inflation” (see ahead) very early 

period where vacuum energy dominated the 
SE tensor
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FRW Universe
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Relation to curvature

1
1
1

Ω >
Ω =
Ω <

Closed

Flat

Open

• Density of universe 
relative to critical 
density relates to 
curvature

• Universe is old, means 
that Ω cannot be too 
large or density was 
too high
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Epochs of FRW Universe

• Planck Era
– Wave function of the universe(?)

• (Inflation – symmetry transition)
• Baryogenesis 
• Nucleosynthesis 
• Neutralization (“freeze out”)
• Star/galaxy formation
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Particle Connections

• The early universe is, in a sense, a laboratory for 
particle interactions
– Baryogenesis – CP violation (GUT scale)
– Inflation – symmetry breaking
– Overall mass – supersymmetry (TeV scale)
– Nuclear synthesis 
– Radiation  - interaction with matter before freeze-out
– Remaining vacuum energy (?) present
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What can we observe?

• Red shift versus distance (R(t)-effectively)
– Cepheids, SN, sizes, luminosity of galaxies

• Age of the universe
– Radioactive clocks (U238 to U235 ratio)
– Stellar populations

• Cosmic microwave background radiation
• Structure formation (distribution of mass)
• Nuclear abundances 
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Uranium Isotopic Content
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Red Shift Versus Distance

• The farther away you look, the more red-
shift one sees.    

• Effects of 
– Recessional velocity associated with expansion 

of universe
– Looking “backward in time”
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Age/Mass/Curvature

• Combination overconstrains FRW model
• Depending on test – 10-20 Gyr=age (14.37 Gyr?)
• Hubble constant measurements, Ωo=1 (flat)
• Contributions to Ω

– Luminous matter
– Dark baryons (jupiters…)
– Halos
– Unclustered
– Vacuum energy
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Cosmic Distance Ladder

• Parallax – near star distances
• Kinds of stars, luminosity, spectrum
• Cepheids – variable stars with well defined 

periodicity/luminosity
• Supernovae – universal brightness curve
• SZE effect – using cosmic microwave 

background as “standard candle”
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Mass Contributions(Circa 1989)
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Recent Fits

• 70% “dark energy”
• 24% “dark matter”
• 4% baryonic matter
• Mainly from Supernova survey (Perlmutter 

et al.) 
• New projects will help elucidate this
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Dark Energy

• Non-zero vacuum energy contributions to FRW 
universe can produce unusual effects 
– Inflation
– “acceleration” of Hubble Expansion

• Recent surveys of redshift versus distance sets 
scale – is suggestive of a vacuum energy 
contribution (equivalent to Λ term in Einstein eqn)

• ΩM versus    ΩΛ
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The Sunyaev-Zel'dovich 
Effect

• Future path to elucidating the Hubble curve
• CMB photons scatter from ionized electrons 

in galaxy, giving a measure of temperature, 
and can be compared to redshift 
measurements to get larger distance 
measurements

• Existence proof by J. Carlstrom (U. 
Chicago)
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SZE effect
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Isotropy Problem

• At time of neutralization, 105 causally 
disconnected regions

• CMB uniform to about 1 part in 104 (most 
angular scales, subtracting out earth’s 
motion wrt co-moving frame)

• Finite horizon makes it “impossible” to 
achieve this isotropy
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Other unresolved issues

• From Grand-unification, theories predict a 
density of monopoles, cosmic strings, etc, 
which is not observed

• Flatness, Ω = 1 (identically?)
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Inflation

• After GUT symmetry breaking – a phase 
transition associated with a Higgs-like potential 
creates a very rapid expansion
– Starts at 10-34 sec, lasts 10-32 sec
– Spreads out universe by factor of 10-43 

• Preserves uniformity after causal disconnect
• Spreads out monopoloes
• Gives flat universe
• Variation: chaotic inflation 
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Higgs Potential
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Inflationary potential

( )V φ

iφ eφ σ
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Dark Mass

• Evidence
– Ω=1 discrepancy
– Gravitational lensing
– Supercluster velocities (Virgo infall)
– Galactic rotation curves

• Origins
– High velocity massive particles
– Large population of “dark” galaxies
– Significant vacuum energy contributions
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Dark Mass Candidates

• Must be weakly interacting (broad 
distribution, no radiation damping)

• Neutrinos not favored
• Axions – associated with strong CP 

problem – perhaps
• Supersymmetric matter

– Neutralinos
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χ0

v/c ≈ 10-3

Nucleus
Recoils

Dense Energy Deposition
v/c small; Bragg

γ

Electron
Recoils

Background

Neutrons same, 
but σ≈1020

higher - shield

v/c ≈ 0.3
Sparse Energy Deposition

Er

Er

Density/Sparsity 
Basis of Discrimination
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Dark Matter Detection

• Velocity of earth wrt WIMP cloud
– Whatever that is!!!  300 km/sec minimum
– 100 GeV scale – massive critters

• Backgrounds are the devil!!! 
– Cosmics
– Residual radiation in materials

• CDMS (cryo dark matter search)
– Solid state detectors – measure both phonons and

ionization loss of recoil nuclei
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The Experiments

CDMS - Ge/Si, measure ionization (Q) and heat/phonons (P)
Recoil/γ discrimination: Q/P
2 Detector Types, 2 sites! Updated Result

ZEPLIN 1 - Liq Xe, measure scintillation
Recoil/γ discrimination: Pulse Shape in Time
2 more ZEPLIN’s - add ionization    New Result

DRIFT - CS2, measure ionization (Q)
Recoil/γ discrimination: Spatial Distribution of Q
Directionality
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χ0

Nucleus
Recoils

Er

Silicon, Sulphur
Germanium
Iodine, Xenon

∝A2

MWIMP=100 GeV
σ = 10-42 cm2/nucleon

Slope: Maxwell-Boltzmann
WIMPs in Galaxy Diffraction off Nucleus
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CDMS Data 

616 Neutrons (external source)

1334 Photons (external source)

233 Electrons 
(tagged contamination)

Inner Ionization 
Electrode

Outer Ionization
Electrode

Calibration

Shared: 4.4 kg-d

Inner: 12 kg-d

13 nucl. recoil

10 nucl. recoilShallow:
Neutrons
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WIMP/nucleon σ≈10-42 cm
Exper.
CDMS
DAMA

Theory
SUSY,
various constraints
including Big Bang
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Not covered here

• CMB (Scott)
• Nuclear abundances (Scott)
• CP violation, baryogenesis (Kate)
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Conclusions/caveats

• It would be interesting to dig up this talk in 
10 years and see how things stand up
– Will Dark Energy Survive?
– Will we find WIMP’s or understand dark 

matter?
– Will symmetry breaking shed light on inflation?
– What does a TeV scale Planck scenario imply?
– Will FRW models still be the standard?


