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What is the Question?
Often in HEP, we make we make a series
of measurements and wish to deduce the
value of a fundamental parameter.

For example, we may measure the mass
of many B → J/ψ KS decays and
then wish to get the best estimate
of the B mass.

Or, we might measure the efficiency for
detecting such events as a function of
momentum and then wish to derive a
functional form.

The question is:  What is the best way
to do this?



Likelihood Method
P(X|α) ≡ Probability of getting a
               measurement X on a given event.
α is a parameter of set of parameters, which
P depends on.

Suppose we make a series of measurements,
yielding a set of Xi’s.  The likelihood function
is defined as
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The value of α that maximizes L is known
as the Maximum Likelihood Estimator
(MLE) of α, which we will denote as α*.

Note that we often work with ln(L).



Example

Suppose we measure a variable x, which
we believe is Gaussian, and wish to
get the best estimate of the mean and width.
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Bias, Consistency,
and Efficiency

What does “best” mean?

We want the estimate of the parameter
to be close to the true value.

Unbiased ⇒  

Consistent ⇒  Unbiased for large N

Efficient ⇒                      is minimal

Maximum Likelihood Estimators are
NOT unbiased but are consistent and
efficient for large N.
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Other Types of Fits

Chi-square:
     If data is binned and uncertainties
are Gaussian, then maximum likelihood
is equivalent to a χ2 fit.

Binned Likelihood:
     If data is binned and not Gaussian, can
still do a binned likelihood fit.  Common case
is when data are Poisson distributed.
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Comparison of Fits

Chi-square:
     ➊  Goodness of fit.
     ➋  Can plot function with binned data.
     ➌  Data must be Gaussian, in particular,
           χ2 doesn’t do well with bins with a small
           number of events.
Binned likelihood:
     ➊  Goodness of fit?
     ➋  Can plot function with binned data.
     ➌  Still need to be careful of bins with
           small number of events (don’t add in
           too many zero bins.
Unbinned likelihood:
     ➊  Usually most powerful.
     ➋  Don’t need to bin data.
     ➌  Works well for multi-dimensional data.
     ➍  No goodness of fit estimate.
     ➎  Can’t plot fit with data.



Examples

Consider again, the mean and width
of a Gaussian.
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Note that the MLE of the mean is unbiased,
But for the width squared is not.
However,

is unbiased.
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Uncertainty on
Parameters

Just as important as getting an estimate
of a parameter is knowing the uncertainty
of that estimate.
The maximum likelihood method also
provides an estimate of the uncertainty.
For one parameter, L become Gaussian
for large N.  Thus,
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Likelihood Example
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Asymmetric
Uncertainties

Sometimes lnL may not be parabolic and
there may be asymmetric uncertainties.

We write α α α
α= −

+
−

+*

Note:  the ∆lnL = 1/2 interval does NOT
always give a 68% confidence interval.
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Correlations
If there are multiple parameters, things
are more complicated due to possible
correlations.

Covariance matrix V is given by

Vij i i j j= −( ) −( )α α α α

V is equal to U-1, where

Uij = − ∂
∂α ∂α

2 ln L

i j

0

0 . 5

1

1 . 5

2

2 . 5

3

0 1 2 3 4 5

α

β

α−
α+

∆lnL =0.5



Normalization

Sometimes, people will say they don’t
need to normalize their probability
distributions.  This is sometimes true.

For the Gaussian example, if we omitted
the normalization factor of 
we get the mean correct but not the width.
In general, if the normalization depends
on any of the parameters of interest,
it must be included.

My advice is always normalize.
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Extended Likelihood
Suppose we have a Gaussian mass
distribution with a flat background
and wish to determine the number of
events in the Gaussian.
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where fS is the fraction of signal events
and ∆M is the mass range of the fit.

We can fit for fS and get ∆fS.
NfS is a good estimate of the number
of events in the Gaussian, but N∆fS is
not a good estimate of the uncertainty
(because fS is actually binominally distributed.

We can fix this by adding a Poisson term
in the total number of events.  This is called
an Extended Likelihood fit.



Constrained Fits
Suppose there is a parameter in the
likelihood that is somewhat known
from elsewhere.  This information can
be incorporated in the fit.

For example, we we are fitting for the
mass of a particle decay with resolution
σ.   Suppose the Particle Data Book lists
the mass as M0 ± σΜ.
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This is only useful of σM and the resolution
of the fit (∆σ) are comparable.



Simple Monte Carlo
Tests

It is possible to write simple, short, fast
Monte Carlo programs that generate data
for fitting.  

➊  Tests likelihood function.
➋  Tests for bias.
➌  Tests that uncertainty from fit is correct.

This does NOT test the correctness of the
model of the data.  For example, if you
think that some data is Gaussian distributed,
but it is really Lorentzian, then the simple
Monte Carlo test will not reveal this.



Goodness of Fit
Unfortunately, the likelihood method
does not, in general, provide a measure
of the goodness of fit (as a χ2 fit does).

 For example, consider fitting lifetime
data to an exponential.
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Thus the value of L at the maximum
depends only on the number of events
and average value of the data. 



Numerical Methods
Most likelihood fits have many
parameters (perhaps scores) and can’t
be done analytically.

However, numerical methods are still
very effective.

MINUIT is a powerful program from
CERN for doing maximum likelihood fits.



Systematic
Uncertainties

When fitting for one parameter, there
often are other parameters that are 
imperfectly known.

It is tempting to estimate the systematic
uncertainty due to these parameters by
varying them and redoing the fit.

Because of statistical variations, this
overestimates the systematic uncertainty
(often called double counting).

Best way to estimate such systematics is
probably with a high statistics Monte
Carlo program.



Summary
Maximum Likelihood methods are a
powerful tool for extracting measured
parameters from data.

However, it is important to understand
their proper use and avoid potential
problems.


