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What isthe Question?

Often in HEP, we makewe make a series
of measur ements and wish to deducethe
value of a fundamental parameter.

For example, we may measur e the mass
of many B — J/y K decays and

then wish to get the best estimate

of the B mass.

Or, we might measur e the efficiency for
detecting such events asa function of
momentum and then wish to derivea
functional form.

Thequestion is:. What isthe best way
to dothis?



Likelihood M ethod

P(X|o) = Probability of getting a

measurement X on a given event.
o, ISa parameter of set of parameters, which
P depends on.

Suppose we make a series of measur ements,
yielding a set of X;'s. Thelikelihood function
Isdefined as

L =_1ip(xi | o)

The value of o that maximizesL isknown

asthe Maximum Likelihood Estimator
(MLE) of o, which we will denoteas o”.

Note that we often work with In(L).



Example

Suppose we measur e a variable x, which
we believe is Gaussian, and wish to
get the best estimate of the mean and width.
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Maximizing with respect tou and ¢ gives
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Bias, Consistency,
and Efficiency

What does“ best” mean?

We want the estimate of the parameter
to becloseto thetruevalue.

Unbiased = o =ay

Consistent = Unbiased for large N

Efficient = (a" —ot,)” isminimal

Maximum Likelthood Estimators are
NOT unbiased but are consistent and
efficient for large N.



Other Typesof Fits

Chi-square:

|f data is binned and uncertainties
are Gaussian, then maximum likelihood
IS equivalent to a y? fit.

Binned Likelihood:

| f data isbinned and not Gaussian, can
still do abinned likelihood fit. Common case
ISwhen data ar e Poisson distributed.
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Comparison of Fits

Chi-square:
©® Goodness of fit.
® Can plot function with binned data.
® Data must be Gaussian, in particular,
v? doesn’t do well with binswith a small
number of events.
Binned likelihood:
©® Goodnessof fit?
® Can plot function with binned data.
® Still need to be careful of binswith
small number of events(don’t add in
too many zero bins.
Unbinned likelihood:
© Usually most powerful.
® Don’t need to bin data.
® Workswell for multi-dimensional data.
® No goodness of fit estimate.
® Can't plot fit with data.



Examples

Consider again, the mean and width
of a Gaussian.

Notethat the ML E of the mean isunbiased,
But for thewidth squared is not.
However,

~2 Z(Xi_u*)z
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IS unbiased.



Uncertainty on
Parameters

Just asimportant as getting an estimate
of a parameter isknowing the uncertainty
of that estimate.

The maximum likelihood method also
provides an estimate of the uncertainty.

For one parameter, L become Gaussian
for largeN. Thus,
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Weusually writethisas o0 = o0 + Ad.

If oczoc*iAoc,InL:InL*—%



Likelthood Example
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Asymmetric
Uncertainties

Sometimes InL may not be parabolic and
there may be asymmetric uncertainties.
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Wewrite o =0 _,

Note: the AInL = 1/2 interval doesNOT
always give a 68% confidenceinterval.



Correlations

|f there are multiple parameters, things
are more complicated dueto possible

correlations.

Covariance matrix V isgiven by

Vi = (o - a_i)(“j - 06_,-)

V isequal to U, where
U _ 9%InL
' doyoa,




Nor malization

Sometimes, people will say they don’t
need to normalize their probability
distributions. Thisissometimestrue.

For the Gaussian example, iIf we omitted
the normalization factor of 1/+/2nc
we get the mean correct but not the width.
In general, iIf the normalization depends
on any of the parameters of interest,

It must beincluded.

My adviceisalways normalize.



Extended Likelihood

Suppose we have a Gaussian mass
distribution with aflat background
and wish to deter minethe number of
eventsin the Gaussian.
(M-Mg)*
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wherefgisthefraction of signal events
and AM isthe massrange of thefit.

Wecan fit for fgand get Af..
Nfgisagood estimate of the number
of eventsin the Gaussian, but NAfgIs
not a good estimate of the uncertainty
(because fgIsactually binominally distributed.

We can fix this by adding a Poisson term
INn thetotal number of events. Thisiscalled
an Extended Likelihood fit.



Constrained Fits

Supposethereisaparameter in the
likelihood that is somewhat known
from elsewhere. Thisinformation can
beincorporated in thefit.

For example, we we arefitting for the
mass of a particle decay with resolution
6. Supposethe Particle Data Book lists
themassas M, + 6.
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Thisisonly useful of 6,, and the resolution
of thefit (Ac) are comparable.



Simple Monte Carlo
Tests

It iIspossibleto write simple, short, fast
Monte Carlo programsthat generate data
for fitting.

O Testslikelihood function.
® Testsfor bias.
® Teststhat uncertainty from fit iscorrect.

ThisdoesNOT test the correctness of the
model of thedata. For example, if you

think that some data is Gaussian distributed,
but it iIsreally Lorentzian, then thesimple
Monte Carlo test will not reveal this.



Goodness of Fit

Unfortunately, the likelihood method
does not, in general, provide a measure
of the goodness of fit (asa y? fit does).

For example, consider fitting lifetime
data to an exponential.
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Thusthevalue of L at the maximum
depends only on the number of events
and aver age value of the data.



Numerical Methods

Most likelihood fits have many
parameters (perhaps scores) and can’t
be done analytically.

However, numerical methods ar e still
very effective.

MINUIT isa powerful program from
CERN for doing maximum likelihood fits.



Systematic
Uncertainties

When fitting for one parameter, there
often are other parametersthat are
imperfectly known.

It iIstempting to estimate the systematic
uncertainty dueto these parameters by
varying them and redoing thefit.

Because of statistical variations, this
overestimates the systematic uncertainty
(often called double counting).

Best way to estimate such systematicsis
probably with a high statistics Monte
Carlo program.



Summary

Maximum Likelihood methodsarea
power ful tool for extracting measured
parameters from data.

However, it iIsimportant to understand
their proper use and avoid potential
problems.



