New England Particle Physics Student Retreat VI

Cape Cod, August 13-17, 2007

A week-long retreat for students interested in pursuing graduate study in experimental particle physics or astrophysics

http://physids.bu.edu/neppsr

Ulrich Heintz

Craigville Conference Cente

800-

Boston U. Brandeis · Brown · H

Tufts • U. Mass. Amherst • Yale

Outline

- Fermilab
- QCD
- b-quark physics
- electroweak physics
- top quark physics
- the Higgs boson
- new physics
- summary

accelerator
experiments
- D0
- CDF

The Tevatron

collides beams of protons and antiprotons

E = 1 TeV

- beam energy = 980 GeV
- 2×10¹¹ protons in 36 bunches
- 2×10¹⁰ antiprotons in 36 bunches
- time between collisions = 396 ns

The CDF experiment

8/15/2007

Tevatron performance

peak luminosity = 2.8×10^{32} cm⁻²s⁻¹

most luminous hadron collider ever

8/15/2007

why is the Tevatron interesting?

we have data at the highest com energy

the physics landscape in 1984

- 1974: J/Ψ discovery (BNL/SPEAR)
- 1975: SPEAR jets observed
- 1976: Open charm, tau discoveries (SPEAR)
- 1977: Upsilon discovery (FNAL)
- 1982: Open beauty meson discovery (CLEO)
- 1983: W/Z discoveries (CERN)
- 1984: High p_T jets seen at UA2 UA1: Monojets (jets with large missing E_T) ?? UA1/UA2: anomalous $Z \rightarrow \ell^+ \ell^- \gamma$?? UA1: W \rightarrow t b top evidence ??

There was a sense of excitement and discovery in the air skepticism about tantalizing fluctuations was suspended.

Paul Grannis

A decade of discovery!

QCD

Events Total cross section in 1fb⁻¹ QCD allows to calculate Total inelastic 102 production cross sections - mb 104 bĎ 1x1011 10⁶ -μb W 6x10⁶ 108 6x10⁵ - nb 10¹⁰ tť 14,000 10^{12'} 5,000 - pb single top 100 10-14 ~10 Higgs (ZH + WH) - fb 10¹⁶⁾ 180 200 140 160 120 100 Higgs mass (GeV)/c²

8/15/2007

b-quark physics

B_s mixing new states

B_s mixing

mixing measurements in $\rm B_{d}$ and $\rm B_{s}$ systems allow access to CKM elements

Δm_d is well measured 0.509§0.004 ps⁻¹

B_s mixing

- measurement of production flavor
 - OS kaon charge b!c!K⁻
 - SS kaon charge
 - lepton charge b!X l⁻ but b!c!X⁺
 - jet charge

- measurement of decay flavor
 - reconstruct specific decay mode
- measurement of proper decay time

$$-\tau = m_B L_T/p_T$$

B_s mixing

$$\Delta m_s = 18.56 \pm 0.87 \ {\rm ps}^{-1}$$

B_s mixing

Wolfenstein parametrization of CKM matrix

$$\begin{pmatrix} \mathbf{V}_{ud} & \mathbf{V}_{us} & \mathbf{V}_{ub} \\ 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ \mathbf{V}_{cd} & \mathbf{V}_{cs} & \mathbf{V}_{cb} \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ \mathbf{V}_{td} & \mathbf{V}_{ts} & \mathbf{V}_{tb} \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

discovery of the $\Xi_{\rm b}$ baryon

how to discover a new particle?

discovery of the $\Xi_{\rm b}$ baryon

discovery of the Ξ_b baryon

Run 179200, Event 55278820, $M(\Xi_b) = 5.788$ GeV

is one event enough to discover a particle?

Horwitz, The Physics Teacher, Volume 2, Issue 8, pp. 366-395 (1964)

W boson massdiboson couplings

W boson mass

at tree level

W boson mass

at tree level

loop corrections

8/15/2007

Higgs mass constraint

34

		m _T fit	W→ev	₩→μν	common
		stat	48	54	0
		lepton energy	30	17	17
	CDF II preliminary	pdf	11	11	11
GeV	1500	QED radiation	11	12	11
\$ / 0.5		syst	39	27	26
vents		total error	62	60	
	1000 - + + + + + + + + + + + + + + + + +	MeV 1 0 90 m _T (ev)	100 (GeV)		
/15/	2007	U. Heintz - NEPPSR 2007			37

lepton energy calibration

calibrate track momentum with $\mu^+\mu^-$ resonances

lepton energy calibration

transfer momentum calibration to electron energy with electrons from W decays

W boson mass

trilinear gauge couplings

radiation zero in Wy

interference between tree level diagrams:

-2

-1

cancellation for $\cos\theta_{q\gamma} = -(1+2Q_d)^{\frac{1}{2}}$

8/15/2007

U. Heintz - NEPPSR 2007

2 3 4 (Lepton Charge)*(η,-η)

discovery
mass
properties
single top production

top quark discovery

- need weak isospin partner to the b-quark
- in 1995 CDF and DØ observe an excess of events consistent with

top quark production

top-antitop pair production

 $\sigma(tt) \rightarrow QCD$ coupling mass branching fractions structure of Wtb vertex

 electroweak production of top guarks -s channel (tb) t channel (tqb)

lifetime tagging of b-jets

- b lifetime 1/4 1.6 ps
 - travels a few mm before decaying

large impact parameter

secondary vertex

15/200

primary vertex

single top quark production

select events with high p_T lepton, missing p_T , 2 jets at least one jet tagged as b-jet

best channels S/B ≈ 1/20 signal < background uncertainty

need advanced techniques

- decision trees
- neural networks
- matrix element discriminants

 σ (*tb*+*tqb*) = 4.9 ± 1.4 pb Compatibiliy with SM = 11%

8/15/2007

measurement of |V_{tb}|

 $\sigma(tb, tqb) \propto |V_{tb}|^2 \rightarrow \text{calculate a posterior in } |V_{tb}|^2$

assume

- sm top decay: $|V_{td}|^2$ + $|V_{ts}|^2$ << $|V_{tb}|^2$ and pure V–A coupling do not assume
 - three quark families and unitarity of 3\times 3 CKM matrix

lepton+jets event kinematics

 jet_1 (b)

 $- m(j_3, j_4) = m_W$

 $-m(j_2,j_3,j_4)=m_t$

|et⊿

 $p_T = -\sum p_T$

- 2 unknowns
 - p_z^{ν} and m_t
- 4 constraints
 - $m(e,v) = m_W$ jet₂ duadratic equation for $p_z(v)$
 - choose smaller value
 - $m(e, v, j_1) = m_t$
- perform 2-C kinematic fit for m_t

jet₃

e,µ

lepton+jets event kinematics

- complications
 - combinatorics
 - $j_1, j_2, j_3, j_4 \rightarrow b, b, W$ (12 permutations)
 - $b, j_2, j_3, j_4 \rightarrow b, b, W$ (8 permutations)
 - b,b,j₃,j₄ \rightarrow b,b,W (2 permutations)
 - gluon radiation
 - initial state radiation
 - momentum from initial quark/antiquark or spectators \rightarrow overestimate m_t
 - final state radiation
 - momentum from t or b quarks \rightarrow underestimate m_t
- many techniques

matrix element method

- probability density for an event *o* if the mass of the top quark is *m*_{top^t fraction} jet scale parameter
- combine all events in a joint likelihood
- and maximize wrt m_t , α_{jes} , f_{top}
- calculate signal probability pdf

|M|² dLIPS

normalization

transfer function parametrize detector response

8/15/2007

top quark mass

result for e+jets and μ +jets combined: m_{top} = 170.5§2.4§1.2 GeV

8/15/2007

8/15/2007

Higgs boson mass

standard model Higgs boson searches

the Higgs mechanism

the Higgs field with its "mexican hat" potential breaks the $SU(2)\times U(1)$ symmetry

three Higgs degrees of freedom become the longitudinal components of the W and Z bosons

fermions acquire mass through their Yukawa couplings to the Higgs

one Higgs degree of freedom represents a massive scalar particle

only free parameter is its mass

Higgs at Tevatron

... but when it didn't ...

8/15/2007

U. Heintz - NEPPSR 2007

62

Higgs production at the Tevatron

	H	Cross Section (pb)	ZH	gg→H WH	√s = 1.96 TeV
Y	►Z	10	0 120	140 16	0 180 200
channel	σ	B _H	B _{W/Z}	σ£Β	m _H
WH! Iv bb	0.18 pb	0.8	0.22	0.032 pb	115 GeV
ZH! vv bb	0.11 pb	0.8	0.20	0.018 pb	115 GeV
ZH! IIbb	0.11 pb	0.8	0.067	0.006 pb	115 GeV
H! WW! Iv Iv	0.3 pb	1.0	0.047	0.014 pb	160 GeV
WH!WWW!IvIvX	0.05 pb	1.0	0.083	0.004 pb	160 GeV

WH! Iv bb

select events with high p_T lepton, missing p_T , 2 jets

8/15/2007

WH! Iv bb

select events with high p_T lepton, missing p_T , 2 jets

8/15/2007

WH! lv bb

select events with high p_T lepton, missing p_T , 2 jets

8/15/2007

8/15/2007

ZH ! II bb

8/15/2007

8/15/2007

CDF results

8/15/2007

combined limits

where is all the new stuff?

- no leptoquarks
- no heavy W/Z bosons
- no compositeness
- no extra dimensions
- no technicolor
- no SUSY
the legacy of the Tevatron

- significant increase in sophistication of collider physics analyses
- the top quark discovery
- precision electroweak measurements
 - top quark mass
 - W boson mass
- QCD, bottom, charm physics
- no new physics the sm is rock solid
- Higgs boson (limit/hint/discovery?)