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Introduction Introduction –– 11
hTypical tasks in an analysis

hGenerating simulated data

hConstructing likelihood function

hConstructing functions

hConstructing prior density

hComputing posterior density

hOptimization
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Introduction Introduction –– 22

Inferences can done, at all stages, using Bayes’ theorem
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Data partitioned into M bins and modeled by a sum of N
sources of strength p. The numbers A are the source 
distributions for the mth model.

1

( | , , ) exp( ) !i

M
D

i i
i

P D a p d d Dm
=

= −∏

1

( , , ) ( ) exp( ) !ji
N

A
ji ji ji

j

a p p a a Amπ π
=

= −∏

Example: Top Mass Example: Top Mass –– Run IRun I
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To Bin Or Not To Bin To Bin Or Not To Bin –– 11

hBinned – Pros
hLikelihoods can be modeled accurately
hNo fitting is required
hBins with low counts can be handled precisely
hStatistical uncertainties easily handled 

hBinned – Cons
hInformation loss can be severe
hSuffers from the curse of dimensionality
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To Bin Or Not To Bin To Bin Or Not To Bin –– 22

hUn-Binned – Pros
hNo loss of information (in principle)

hUn-Binned – Cons
hFitting required
hCan be difficult to model data accurately
hIf done badly, can suffer from the curse of 

dimensionality
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EgEg: Cross Section Measurement : Cross Section Measurement –– 11
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Exercise 8:  Derive the
posterior density p(σ|D),
assuming a π(σ) = 1
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EgEg: Cross Section Measurement : Cross Section Measurement –– 22
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where K is the 
number of events
and a(x) and b(x) are
the effective luminosity 
and background densities

Consider making the bins smaller and smaller
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the likelihood becomes
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EgEg: Cross Section Measurement : Cross Section Measurement –– 33
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The un-binned likelihood function

is an example of a marked Poisson likelihoodmarked Poisson likelihood. Each event is 
“marked” by the signal/background discriminating variable xi, 
which can be multi-dimensional.

In principle, this is a much more efficient way to measure
a cross section. The downside is the need to model
the densities a(x) and b(x).
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Kernel Density Estimation Kernel Density Estimation –– 11
The idea is to approximate a density by a sum over 

kernels, one placed at each of the N points xi of the 
training sample.

hh is a smoothing parameter, called the bandwidthbandwidth, that 
is adjusted to provide the best approximation to the 
unknown density p(x). 

If h is too small, the model will be very spiky; if h is too 
large, important features of the true density p(x) may 
be lost. 

1

1ˆ ( )
N

i

i h
p

N
zxx k

=

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠
∑



14

Kernel Density Estimation Kernel Density Estimation –– 33

Why does this work? Consider the limit as N → ∞ of

In the limit N → ∞, the true density p(x) will be 
recovered provided that h → 0 in such a way that
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Kernel Density Estimation Kernel Density Estimation –– 44

As long as the kernel behaves sensibly in the N → ∞
limit any kernel will do. In practice, the most 
commonly used kernel is the Gaussian, one for each 
dimension:

One advantage of the KDE approximation is that it 
contains very few adjustable parameters, namely, the 
bandwidths hi, a rough estimate of which is
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σi is standard deviation of
the data in the ith dimension
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How is the value of the smoothing parameter to be chosen?
One way, is to minimize the Kullback-Leibler divergence: 

Kernel Density Estimation Kernel Density Estimation –– 55
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Kernel Density EstimationKernel Density Estimation
Practical Issues

hOne difficulty with smoothing globally is that in 
regions where the density of points is relatively 
low, the kernels will tend to be too far apart.

hA sharp boundary is difficult to model unless a 
way is found, in effect, to continue the data across 
the boundary. 

hEvery evaluation of p(x) requires the evaluation of 
N (d-dimensional) kernels. If N is large this can be 
computationally burdensome. 
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Function Approximation Function Approximation –– 11
We are interested in the relationship between “inputsinputs”, 

or “featuresfeatures”

x = (x1,x2,..., xn)

and some “outputoutput”, or “responseresponse”, y, where 

y = f(x)

But usually neither f(x) nor the form of the probability 
model Pr(x,y) that generated the data is known
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Function Approximation Function Approximation –– 22

Given NN examples (x,y)1, (x,y)2,…(x,y)N we wish to 
construct an approximation to y = f(x).

There are two general approaches to the problem:

Machine Learning
Teach a “machine” to learn f(x) by feeding it 
examples, that is, training datatraining data TT.

Bayesian Inference
Infer f(x) given the likelihood of the training data TT
and a prior on the space of functions f(x). 
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Machine Learning Machine Learning –– 11

Given N examples (x,y)1, (x,y)2,…(x,y)N we proceed as 
follows

We specify:
hA function classfunction class Fw = { f(x, w) }
hA loss functionloss function L(y, f)
hA constraintconstraint C(w) on the parameters w

L(y, f) measures how much we lose if we make a poor 
choice from the function class.
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Machine Learning Machine Learning –– 22
Fw

f(x, w*)

min L(y, f)

C(w)

We choose a function f by minimizing the loss L(y, f), 
subject to the constraint C(w). But, unfortunately, 
the choice can be quite unstable as we move from one 
example (x,y) to another.



23

Machine Learning Machine Learning –– 33

To get a more stable choice we minimize not the loss, 
but rather its ensemble averageensemble average, called the riskrisk

where Pr(x,y) = p(x,y) dxdy

But, again, we do not know R(f ) so, in practice, we 
minimize the empirical riskempirical risk:
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Bayesian Approach Bayesian Approach –– 11

Ingredients:
Pr(TT|ff) the likelihood   likelihood   (of examples)
Pr(ff) the prior prior (over functions)

Then compute:
Pr(ff|TT) the posteriorposterior

using Bayes’ theorem:

Pr(ff|TT) = Pr(TT|ff) Pr(ff) / Pr(TT) 
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In practice, we choose some function class

Fw = { f(x, ww) }

of parameterized functions f(x, ww) and make inferences 
on the parameters:

Pr(ww|TT) = Pr(TT|ww) Pr(ww) / Pr(TT)

Pr(ww|TT) assigns a probability to each element of the 
parameter space and hence to each function, f, in Fw. 

Bayesian Approach Bayesian Approach –– 22
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Bayesian Approach Bayesian Approach –– 33

Given Pr(ww|TT), how do we pick a function from Fw?

One way is to pick f(x, w*w*) such that w*w* maximizes the 
posterior probability Pr(ww|TT).

Another is to compute the average

f(x|TT) = ∫ f(x, ww) Pr(ww|TT)



Signal/Background DiscriminationSignal/Background Discrimination
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Signal/Background Discrimination Signal/Background Discrimination –– 11

Background density
p(x, B) = p(x|B) p(B)

Signal density
p(x, S) = p(x|S) p(S)

de
ns

ity
p

(x
)

x

Consider the problem in 1-dimension

x0

y = 0 y = 1

We wish to minimize the misclassification rate
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Signal/Background Discrimination Signal/Background Discrimination –– 22

The cost C of a misclassification is given by
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where H(x) is the Heaviside step function 

H(x) = 1 if x > 0, 0 otherwise

and CS and CB are costs of misclassifying a signal 
event and background event, respectively

Signal lossSignal loss

BackgroundBackground
contamination
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Signal/Background Discrimination Signal/Background Discrimination –– 33

gives the BayesBayes discriminantdiscriminant
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The Bayes discriminant, which holds also in the
multivariate case, is optimal in that it minimizes 
the error rate. 
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Signal/Background Signal/Background DisriminationDisrimination –– 44

It is called the BayesBayes discriminant because it is just 
Bayes’ theorem in disguise:

Any classifier that achieves the minimum error rate 
is said to have reached the BayesBayes limitlimit.
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TutorialTutorial

hLearn Python

hFor a given top quark mass hypothesis, construct 
likelihood function p(x|mt) using KDE method with 
N=5000 points

hCompute log-likelihood for K = 2000 events 

hPlot l(mt) vs mt
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