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Introduction — 1

® Typical tasks in an analysis
® Generating simulated data

® Constructing likelihood function

® Constructing functions
® Constructing prior density
°* Computing posterior density

° Optimization




Introduction — 2

Inferences can done, at all stages, using Bayes’ theorem

posterior density  likelihood prior density
0(0, 1| X) = p(x|8,1) (6, 4)
[ p(x|6,2) (6, 2)d6d 2

marginalization

p(@1%) = | p(6, 21 X)dA




Example: Top Mass — Run |

Data partitioned into M bins and modeled by a sum of N
sources of strength p. The numbers A are the source
distributions for the mth model.

N
model di — Z pjaji
j=1
M
likelihood ~ P(D|a, p,m)=] [exp(—d;)d® /D!
I=1
N
prior z(a,p,m)= n(p)H exp(—aji)ajiAji /Aji !
j=1

posterior P(m| D)= j : j P(a, p,m|D)dadp




P(M|d)

Example: Top Mass — Run |
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To Bin Or Not To BiIn -1

°* Binned — Pros
° Likelihoods can be modeled accurately
° No fitting is required
° Bins with low counts can be handled precisely
° Statistical uncertainties easily handled

° Binned — Cons
° Information loss can be severe
° Suffers from the curse of dimensionality




To Bin Or Not To Bin — 2

®* Un-Binned — Pros
° No loss of information (in principle)

°* Un-Binned — Cons
° Fitting required
® Can be difficult to model data accurately

° If done badly, can suffer from the curse of
dimensionality




Eg: Cross Section Measurement — 1

The standard cross section probability model is

model d. =aoc+h

M
ikelihood ~ P(D|o,a,b)=] [exp(-d;)d® /D!
=1

prior z(o,a,b)=7z(a,blo)z(o)

—Hexp( ala)(a la)h /Al

Exercise 8: Derive the
posterior density p(c|D),
assuming a n(c) = 1

X

H exp(—b, / B)(b; / 5)° /B;!
( )




Eg: Cross Section Measurement — 2

Consider making the bins smaller and smaller

d. = j d (x)dx ~[a(x.)o +b(x )]AX

|
the likelihood becomes

P(D]o,a,b) =exp(-_[a(x)o +b(x)]Ax)

K
where K is the XH[a(Xi)0'+b(Xi )]AX
number of events |

and a(x) and b(x) are
the effective luminosity  EXP(—ao — b)H[a(X )o +b(x)]

and background densities =1
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Eg: Cross Section Measurement — 3

The un-binned likelihood function

pP(D|o,a,b)=exp(—ac — b)lﬁ[[a(xi Yo +b(x)]

Is an example of a marked Poisson likelihood. Each event is
“marked” by the signal/background discriminating variable X,
which can be multi-dimensional.

In principle, this is a much more efficient way to measure
a cross section. The downside is the need to model
the densities a(x) and b(x).
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Kernel Density Estimation




Kernel Density Estimation — 1

The idea is to approximate a density by a sum over
kernels, one placed at each of the N points x; of the

training sample.

A 1 &
p(x)=N;k(

X—LZ

h

J

h is a smoothing parameter, called the bandwidth, that
Is adjusted to provide the best approximation to the

unknown density p(x).

If h is too small, the model will be very spiky; if h is too
large, important features of the true density p(x) may

be lost.
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Kernel Density Estimation — 3

Why does this work? Consider the limit as N — « of

. 1 o, (|[X—2
p(x)=N;k( : ]

ﬁ(x)—>jk(

(X=7)
h

j p(z)dz

In the limit N — <, the true density p(x) will be
recovered provided that h — 0 in such a way that

{

X—Z
h

j—)é(x—z)
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Kernel Density Estimation — 4

As long as the kernel behaves sensibly inthe N — «
limit any kernel will do. In practice, the most
commonly used kernel is the Gaussian, one for each
dimension:

i 2
d s d
K (|x—2]/h)=exp| - {X ZJ'] 12 |IT]h 2z
j-1

=AU

One advantage of the KDE approximation is that it
contains very few adjustable parameters, namely, the
bandwidths h;, a rough estimate of which is

1/(d+4)
h =o. 4 o, IS standard deviation of
J "1 (d+2)N the data in the it dimension
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Kernel Density Estimation — 5

How is the value of the smoothing parameter to be chosen?
One way, is to minimize the Kullback-Leibler divergence:

- p(x)
d(p, p)—jp(x)ln[ If)(X)jolx

= [ PO In p(x)dx— [ p(x)In p(x)dx

1S, .
~ constant—ﬁz Inp(x.)
=1

1 &, .
Or, equivalently, minimize ——Zm p(Xi) with
respect to the bandwidth N =2
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Kernel Density Estimation
Practical Issues

° One difficulty with smoothing globally is that in
regions where the density of points is relatively
low, the kernels will tend to be too far apart.

® A sharp boundary is difficult to model unless a
way is found, in effect, to continue the data across
the boundary.

° Every evaluation of p(x) requires the evaluation of
N (d-dimensional) kernels. If N is large this can be
computationally burdensome.
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Function Approximation




Function Approximation — 1

We are interested in the relationship between “inputs”,
or “features”

X = (X4, X0yeees Xp)
and some “output”, or “response”, y, where
y = f(x)

But usually neither f(x) nor the form of the probability
model Pr(x,y) that generated the data is known
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Function Approximation — 2

Given N examples (X,Y)q, (X,¥),,---(X,¥)y We wish to
construct an approximation to y = f(x).

There are two general approaches to the problem:

Machine Learning

Teach a “machine” to learn f(x) by feeding it
examples, that is, training data T.

Bayesian Inference

Infer f(x) given the likelihood of the training data T
and a prior on the space of functions f(x).
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Machine Learning — 1

Given N examples (X,¥)4, (X,¥),,--.(X,Y¥)y We proceed as
follows

We specify:
° A function class F,={f(x,w)}
°* A loss function L(y, f)
° A constraint C(w) on the parameters w

L(y, f) measures how much we lose if we make a poor
choice from the function class.
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Machine Learning — 2

min L(y, f)
C(w)

f(x, w*)

We choose a function f by minimizing the loss L(y, 1),
subject to the constraint C(w). But, unfortunately,

the choice can be quite unstable as we move from one
example (x,y) to another.
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Machine Learning — 3

To get a more stable choice we minimize not the loss,
but rather its ensemble average, called the risk

R(f) = [ Ly, f(xw))Pr(x,y)
X,y
where Pr(x,y) = p(x,y) dxdy

But, again, we do not know R(f ) so, in practice, we
minimize the empirical risk:

R(H) == D L0 F (X, W)
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Bayesian Approach —1

Ingredients:
Pr(T|f) the likelihood (of examples)
Pr(f) the prior (over functions)

Then compute:
Pr(f|T) the posterior

using Bayes’ theorem:

Pr(f|T) = Pr(T|f) Pr(f) / Pr(T)
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Bayesian Approach — 2
In practice, we choose some function class
Fo = {f(x, W)}

of parameterized functions f(x, w) and make inferences
on the parameters:

Pr(w|T) = Pr(T|w) Pr(w) / Pr(T)

Pr(w|T) assigns a probability to each element of the

parameter space and hence to each function, f, in F,,,.
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Bayesian Approach — 3

Given Pr(w|T), how do we pick a function from F,?

One way is to pick f(x, w*) such that w* maximizes the
posterior probability Pr(w|T).

Another is to compute the average

f(x|T) = | f(x, w) Pr(w|T)
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Signal/Background Discrimination




Signal/Background Discrimination — 1

Consider the problem in 1-dimension

Signal density
p(x, S) = p(x|S) p(S)

A

> — | Background density
@ = | p(x B)=p(x|B) p(B)
) o

O

We wish to minimize the misclassification rate
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Signal/Background Discrimination — 2

The cost C of a misclassification is given by

C= CSI H (X, —X)P(X,S)dX Signal loss
+ CBI H(Xx—X,)p(X,B)dx Background

contamination

where H(X) is the Heaviside step function
H(x) =1 if x> 0, 0 otherwise

and Cg and Cg are costs of misclassifying a signal
event and background event, respectively
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Signal/Background Discrimination — 3
Minimizing
C =Cq [ H (% —X) p(x,S)dx+Cq [ H (x—X,) p(x, B)dX

with respect to the decision boundary x,

0=C, .'§(x0 —X) p(X, S)dx—CB_[5(x— X,) P(X, B)dx
=Cs (%), 5)—Cg p(Xy, B)

Cs _ P(%19)p(S)

gives the Bayes discriminant |I

Cs  p(x|B)p(B)
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Signal/Background Disrimination — 4

The Bayes discriminant, which holds also in the
multivariate case, is optimal in that it minimizes
the error rate.

_p(IS)p(S)
p(x| B) p(B)

It is called the Bayes discriminant because it is just
Bayes’ theorem in disguise:

;
S[X)=—0
pP(S | x) _

Any classifier that achieves the minimum error rate
IS said to have reached the Bayes limit.
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Tutorial

® Learn Python

® For a given top quark mass hypothesis, construct
likelihood function p(x|m,) using KDE method with
N=5000 points

®* Compute log-likelihood for K = 2000 events
K K
I(mt) = _InH p(Xi | mt) = _Zlnp(xi | mt)
=1 =1

° Plot I(m,) vs m,
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