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Exercise 587:
Prove this



3

OutlineOutline

h Introduction

hDescriptive Statistics

hProbability

h Inference



4

Introduction Introduction –– 11

h1600s
hPascal, Bernoulli, …

h1700s
hThomas Bayes (1763)
hPierre Simon Laplace (1774)

h1800s
hGeorge Boole (1854)

h1900s
hPearson, Fisher, Neyman, Jeffreys, 

Jaynes, Kendall, Stuart, Kolmogorov…
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To Be Good Or Not To BeTo Be Good Or Not To Be

In 1670 Pascal applied probabilistic reasoning to the 
following interesting hypotheses
G God exists
~G God does not exist

the following two actions
P Lead a pious life
W Lead a worldly life

and assigned payoffs (utilities) to each 
hypothesis / action pair.
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To Be Good Or Not To BeTo Be Good Or Not To Be

God ~ God
P

W

If your Pr(God) > 0, however small, then your expected 
payoff from being pious >> expected payoff from being 
worldly. So if you believe in God, even if only on 
Sundays, the rational course of action is to live a saintly life! 

++∞∞ (eternal bliss!)

++ (worldly pleasures) 

−−∞∞ (eternal damnation!) 

++ (worldly pleasures) 

− (no worldly pleasures) 
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x x xN= ( , , )1 …
Data Standard Model

θ θ θ= ( , , )1 … K

Model of the Week
),,( 1 Mααα …=

??

Introduction Introduction –– 22

Given data we wish to
infer which model 
describes them best
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Definition: A statistic is any function of the data X.

Given a sample X = x1, x2, … xN it is of interest to
compute statistics such as the sample average
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and the sample variance

Descriptive Statistics Descriptive Statistics –– 11
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Descriptive Statistics Descriptive Statistics –– 22
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Consider an ensemble of similar experiments. They could be 
the results of simulations. In general, the statistics will vary
from one experiment to another. 

In developing analyses it is good practice to study ensemble 
averages, denoted <…>, of relevant statistics; e.g., 
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Descriptive Statistics Descriptive Statistics –– 33

x< >Ensemble 
Average

Mean μ

Bias b x μ=< > −
Variance 2

2 2

( )V x x
x x

=< − < > >

= < > − < >

Error xε μ= −
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Descriptive Statistics Descriptive Statistics –– 44

Mean Square 
Error (MSE)

2

2

MSE ( )x
V b

μ=< − >

= +

The MSE is the most widely used measure of closeness of an
ensemble of statistics {x} to the true value μ 

The root mean square (RMS) is simply 

RMS MSE=

Exercise 1:
Show this
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Descriptive Statistics Descriptive Statistics –– 55
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Usually, each term in the sum
is the same

Consequently,
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Descriptive Statistics Descriptive Statistics –– 66

2

2 2

1

2

1 1 1

2 2

2
1

2

1 ( )

1 2 1

1

N

i
i
N N N

i i
i i i

N

i
i

xS x
N

x x
N N N

x
N
x

x x

x

x

=

= = =

=

< > =< − >

=< − + >

= < > − < >

=< > − < >

∑

∑ ∑ ∑

∑

Consider the ensemble average of the sample variance
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Descriptive Statistics Descriptive Statistics –– 77

The ensemble average of the sample variance is
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= − We have a negative bias

Exercise 2:
Show this
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Descriptive Statistics Descriptive Statistics –– 88

Finally, consider the variance of the sample average
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Descriptive Statistics Descriptive Statistics –– 99

Suppose that the data are correlated as follows
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We find that



18

Descriptive Statistics Descriptive Statistics –– SummarySummary

The sample average
is an unbiased estimate
of the ensemble average
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The sample variance
is a biased estimate
of the ensemble variance

( )1 ( 1)x
VV N
N

ρ= + −
The variance of the sample
average decreases like 1/N
until we reach a limit imposed
by the degree of correlation in the data
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Probability Probability –– 11

AA
BBABAB

Probability is a function with range [0,1] defined on sets

Consider the sets A, B, A+B and AB

To each assign the numbers P(A)P(A), P(B)P(B), P(A+B)P(A+B) and P(AB)P(AB)

The rules of probability specify how these numbers are related.

Venn Diagram
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( ) ( ) ( ) ( )P P PA B A B BAP+ = + −

A and B are mutually exclusivemutually exclusive if

( ) 0P AB =

A and B are exhaustiveexhaustive if

( ) ( ) 1P P BA + =

Exercise 3: Prove theorem

TheoremTheorem

Probability Probability –– 22
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Probability Probability –– 33

AA
BBABAB

Let A and B be sets of propositions, for example,
A = It is a baby
B = It vomits spontaneously

The conditional probability of A given B is defined by

P(A) is the probability of A without
restriction. 

P(A|B) is the probability of A when 
we restrict to the proposition B

)(
)()|(

AP
ABPABP =
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From
we deduce immediately 
BayesBayes’’ TheoremTheorem:

BayesBayes’’ Theorem Theorem –– 11

( | ) ( )( | )
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=
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P PBA A A
P A

PB
B P B

=
=
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BayesBayes’’ Theorem Theorem –– 22

Let B1 and B2 be exhaustive propositions. Consider AB1, AB2.
We can write 

P(AB1) = P(B1|A) P(A) (1)

P(AB2) = P(B2|A) P(A) (2)

Now add Eq.(1) and Eq.(2)

P(AB1) + P(AB2) = [P(B1|A)+P(B2|A)] P(A)
= P(A)

The summation over exhaustive propositions is called
marginalization. It is an extremely important operation.
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Bayes’ Theorem for propositions A, Bk can be written
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BayesBayes’’ Theorem Theorem –– 33

Note that

Exercise 4: Prove this form of Bayes’ Theorem 
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Probability can be interpreted as a degree of belief
Probability can be interpreted as a relative frequency

But What Exactly is Probability ?But What Exactly is Probability ?

Contrast the statements
a) There is a 20% chance of rain on 13 August, 2007

b) There is a 20% chance of rain on Mondays

Statement a) says how much one believes or is invited to 
believe it  will rain today. 

Statement b) states the relative frequency with which
it rains on Mondays. 
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Distributions and Densities Distributions and Densities –– 11

If X can assume a set of values, then Pr(X) is called a
probability distribution function. 

X can be discrete or continuous.

If X is continuous, we can define

Pr( )( ) d Xp X
dX

≡

as the probability density function. Note: probabilities, 
being pure numbers, are dimensionless, whereas 
densities have dimensions of 1/X
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Common Distributions and DensitiesCommon Distributions and Densities
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The Binomial Distribution The Binomial Distribution –– 11

Time →

A Bernoulli trial has two outcomes: SS = success or FF = failure. 
Example: Each collision between protons at the LHC will be
a Bernoulli trial in which something interesting happens (SS) or 
does not (FF). 

Let p = P(SS) be the probability of a success (a redred spot), 
assumed to be the same at each trial. Since SS and FF are 
exhaustive, the probability of a failure is 1 – p. For a given order
O of N trails, the probability P(K,O|N) of exactly K successes, 
and N – K failures is

( , | ) (1 )K N KP O N p pK −= −
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The Binomial Distribution The Binomial Distribution –– 22

( | ) ( , | ) (1 )K N K

O O
K KP N P O N p p −= = −∑ ∑

Time →

If the order O of successes and failures is irrelevant, 
we can eliminate the order from the problem by 
marginalizing over all possible orders

This yields the binomial distribution

( ) KNKN
K ppNpKBinomialK −−≡ )1(),,(~

X ~ means “X is distributed as”
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The Poisson DistributionThe Poisson Distribution

Time →
We expect a = p N, where a is the mean number of 
successes and N the number of trials. When the
probability p is very small, we can take the limit

p → 0 and N → ∞, such that a is constant,
BinomialBinomial(k, N, p) → PoissonPoisson(k, a). 

The Poisson distribution is general regarded as a 
good model of a counting experiment

Exercise 5: Show that Binomial → Poisson, in this limit



InferenceInference
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Inference Inference –– 11

Here is a very general inference procedure:

a) Compute Pr(DataData|ModelModel)

b) Compute Pr(ModelModel|DataData) using Bayes’ theorem:

Pr(ModelModel|DataData) = Pr(DataData|ModelModel) Pr(ModelModel)/Pr(DataData)

Pr(ModelModel) is called the prior. It is the probability
assigned to the ModelModel irrespective of the 
DataData

Pr(DataData|ModelModel) is called the likelihood
Pr(ModelModel|DataData) is called the posterior probability
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posterior densityposterior density prior densityprior density

∫=
λ

λλθθ dxpxp )|,()|(
marginalizationmarginalization

( | , ) ( , )( , | )
( | , ) ( , )
p xp x

p x d d
θ λ θ λθ λ

θ λ θ λ λ
π

θπ
=

∫

likelihoodlikelihood

θ are the 
parameters of interest λ denote all other

parameters in the
problem, which are 
referred to as 
nuisance 
parameters

Inference Inference –– 22

In practice, inference is done using the continuous 
form of Bayes’ theorem:
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posteriorposterior priorprior

( | ) ( | , , ) ( , | )m m m m m mp x pm x m d dmθ λ θ λ θπ λ= ∫

( | ) ( )( | )
( )

mp mm x PP x
p x

=

evidenceevidence

Inference Inference –– 33

Model Selection (hypothesis testing)

The evidence for model m is defined by
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posterior oddsposterior odds prior oddsprior odds

( | ) ( | ) ( )
( | ) ( | ) ( )

P x p x P
P x p x

m m m
Pn n n

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

BayesBayes factorfactor

Inference Inference –– 44

The Bayes factor can be used to choose between two
competing models m and n. 

It can also be used to optimize analyses….
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ModelModel

DatumDatum

LikelihoodLikelihood

bsn +=
s is the mean signal count

b is the mean background 
count

Task: Infer s, given N

N

Prior informationPrior information

max0

ˆ

ss
bb
<<

± δ

( | , ) ( , )P N s b Poisson N s b= +

An Example An Example –– 11
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Apply Bayes’ theorem:

π(s,b) is the prior density for s and b

It encodes somehow our prior knowledge of the signal and 
background means.

The encoding is difficult and controversial. 

priorpriorlikelihoodlikelihoodposteriorposterior

An Example An Example –– 22

( | , ) ( , )( , | )
( | , ) ( , )
P N b bp b N

P N b b
s ss

ds s sdb
π

π
=

∫∫
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First factor the prior

An Example An Example –– 33

( | ) ( | , ) ( )s sl N P N b b dbπ≡ ∫
Define the marginal likelihood

( , ) ( | ) ( )
( ) ( )

s b b s
b

s
s

π π π
π π

=
=

( | ) ( )( | )
( | ) ( )

s ss
s

l Np
N s

N
l ds

π
π

=
∫

And write the posterior density for the signal as
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The background prior density
Suppose that the background has been estimated from a 
Monte Carlo simulation of the background process, yielding
B events that pass certain cuts. 

We assume that the probability for the count B is given by 
P(B|λ) = Poisson(B, λ), where λ is the (unknown) mean count 
of the Monte Carlo background. We can make an inference 
about λ by applying Bayes’ theorem to the Monte Carlo 
background experiment

An Example An Example –– 44

( | ) ( )( | )
( | ) ( )

P Bp B
P B d

λ π λλ
λ π λ λ

=
∫
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The background prior density…
Assume a prior of the form π(λ) = λp. The case p = 0, is called
the flat prior. Using the flat prior, we find

p(λ|B) = Gamma (λ, 1, B+1) (= λB exp(–λ)/B!).

Assume that the mean background count b in the actual 
experiment is related to the mean count λ in the Monte Carlo 
experiment via b = k λ, where k is an accurately 
known scale factor, for example, the ratio of the data and Monte
Carlo integrated luminosities. The background can be estimated 
as follows

An Example An Example –– 55

ˆ ,k kb B b Bδ= =
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The background prior density…
The posterior density p(λ|B) now serves as the prior density
for the background b in the real experiment

π(b) = p(λ|B), since b = kλ.  

We can write

An Example An Example –– 66

( | ) ( | , ) ( )l N s k P N s k k dλ π λ λ= ∫

( | ) ( )( | )
( | ) ( )
l N s sp s N
l N s s ds

π
π

=
∫
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An Example An Example –– 77
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∫
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∑

The calculation of the marginal likelihood can be done

Exercise 6: Give a full derivation of this result
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The signal prior density
We know it is positive and finite! It is far from clear how 
to translate this prior knowledge into a prior density π(s). 

We shall simply adopt a flat prior for the signal π(s) = 1 as 
a matter of convention. 

And FinallyAnd Finally

Exercise 7: Derive a formula for p(s|N) and plot the 
posterior density for N = 5, B = 20, k = 0.1.
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