Analysis Techniques Probability & Inference

Harrison B. Prosper NEPPSR 2007

Exercise 587: Prove this

Outline

- Introduction
- Descriptive Statistics
- Probability
- Inference

Introduction – 1

- 1600s
 - Pascal, Bernoulli, ...
- 1700s
 - Thomas Bayes (1763)
 - Pierre Simon Laplace (1774)
- 1800s
 - George Boole (1854)
- 1900s
 - Pearson, Fisher, Neyman, Jeffreys, Jaynes, Kendall, Stuart, Kolmogorov...

To Be Good Or Not To Be

In 1670 Pascal applied probabilistic reasoning to the following interesting hypotheses

G God exists

~G God does not exist

the following two actions

P Lead a pious life

W Lead a worldly life

and assigned payoffs (utilities) to each hypothesis / action pair.

To Be Good Or Not To Be

	God	~ God
P	+∞ (eternal bliss!)	– (no worldly pleasures)
W	+ (worldly pleasures)	+ (worldly pleasures)
	-∞ (eternal damnation!)	

If your **Pr**(God) > 0, however small, then your expected payoff from being pious >> expected payoff from being worldly. So if you believe in God, even if only on Sundays, the rational course of action is to live a saintly life!

Introduction – 2

Given data we wish to infer which model describes them best

Model of the Week $\alpha = (\alpha_1, ..., \alpha_M)$

Definition: A **statistic** is any function of the data **X**.

Given a sample $X = x_1, x_2, ... x_N$ it is of interest to compute **statistics** such as the **sample average**

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

and the sample variance

$$S^{2} = \frac{1}{N} \sum_{i=1}^{N} (x_{i} - \overline{x})^{2}$$

Consider an **ensemble** of similar experiments. They could be the results of simulations. In general, the statistics will vary from one experiment to another.

In developing analyses it is good practice to study **ensemble averages**, denoted <...>, of relevant statistics; e.g.,

$$<\overline{x}> = <\frac{1}{N} \sum_{i=1}^{N} x_{i}>$$

$$= \frac{1}{N} \sum_{i=1}^{N} < x_{i}>$$

Ensemble Average

Mean

$$\mu$$

Error

$$\varepsilon = x - \mu$$

Bias

$$b = \langle x \rangle - \mu$$

Variance

$$V = <(x - < x >)^2 >$$

$$= < x^2 > - < x >^2$$

Mean Square Error (MSE)

$$MSE = \langle (x - \mu)^2 \rangle$$
$$= V + b^2$$

Exercise 1: Show this

The MSE is the most widely used measure of closeness of an ensemble of statistics $\{x\}$ to the true value μ

The root mean square (RMS) is simply

$$RMS = \sqrt{MSE}$$

Usually, each term in the sum $<\overline{x}>=\frac{1}{N}\sum_{i=1}^{N}< x_i>$ is the same

Consequently,
$$\langle \overline{x} \rangle = \frac{1}{N} \sum_{i=1}^{N} \langle x \rangle = \langle x \rangle$$

Consider the ensemble average of the sample variance

$$\langle S^{2} \rangle = \langle \frac{1}{N} \sum_{i=1}^{N} (x_{i} - \overline{x})^{2} \rangle$$

$$= \langle \frac{1}{N} \sum_{i=1}^{N} x_{i}^{2} - \frac{2}{N} \sum_{i=1}^{N} x_{i} \overline{x} + \frac{1}{N} \sum_{i=1}^{N} \overline{x}^{2} \rangle$$

$$= \frac{1}{N} \sum_{i=1}^{N} \langle x_{i}^{2} \rangle - \langle \overline{x}^{2} \rangle$$

$$= \langle x^{2} \rangle - \langle \overline{x}^{2} \rangle$$

The ensemble average of the sample variance is

$$< S^2> = < x^2> - < \overline{x}^2>$$

$$= < x^2> - \frac{< x^2>}{N} - \frac{N-1}{N} < x>^2$$

$$= V - \frac{V}{N}$$
 We have a negative bias

Exercise 2: Show this

Finally, consider the variance of the sample average

$$<\Delta \overline{x}^{2}> = \frac{1}{N^{2}} \sum_{i=1}^{N} \sum_{j=1}^{N} <\Delta x_{i} \Delta x_{j}>$$

$$= \frac{1}{N^{2}} \left(\sum_{i=1}^{N} <\Delta x_{i}^{2}> + \sum_{i=1}^{N} \sum_{j\neq i}^{N} <\Delta x_{i} \Delta x_{j}> \right)$$

where

$$\Delta \overline{x} \equiv \overline{x} - \langle x \rangle$$
 and $\Delta x_i \equiv x_i - \langle x \rangle$

Suppose that the data are correlated as follows

$$<\Delta x_i \Delta x_j> = \rho V$$

We find that

$$\langle \Delta \overline{x}^2 \rangle = \frac{1}{N^2} \left(\sum_{i=1}^N \langle \Delta x_i^2 \rangle + \sum_{i=1}^N \sum_{j \neq i}^N \langle \Delta x_i \Delta x_j \rangle \right)$$
$$= \frac{V}{N} \left(1 + (N-1)\rho \right)$$

Descriptive Statistics – Summary

The **sample average** is an unbiased estimate of the ensemble average

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

The sample variance is a biased estimate of the ensemble variance

$$S^{2} = \frac{1}{N} \sum_{i=1}^{N} (x_{i} - \overline{x})^{2}$$

The variance of the sample average decreases like 1/N until we reach a limit imposed by the degree of correlation in the data

$$V_{\overline{x}} = \frac{V}{N} \left(1 + (N - 1) \rho \right)$$

Probability

Probability – 1

Probability is a function with range [0,1] defined on sets

Consider the sets A, B, A+B and AB

To each assign the numbers P(A), P(B), P(A+B) and P(AB)

The rules of probability specify how these numbers are related.

Probability – 2

Theorem

$$P(\mathbf{A} + \mathbf{B}) = P(\mathbf{A}) + P(\mathbf{B}) - P(\mathbf{A}\mathbf{B})$$

A and B are mutually exclusive if

$$P(AB) = 0$$

A and B are exhaustive if

$$P(A) + P(B) = 1$$

Exercise 3: Prove theorem

Probability – 3

Let A and B be sets of **propositions**, for example,

A = It is a baby

B = It vomits spontaneously

The conditional probability of A given B is defined by

$$P(A \mid B) = \frac{P(AB)}{P(B)}$$

P(A) is the probability of A *without* restriction.

P(A|B) is the probability of A when we *restrict* to the proposition B

$$P(B \mid A) = \frac{P(AB)}{P(A)}$$

Bayes' Theorem – 1

From we deduce immediately Bayes' Theorem:

$$P(AB) = P(B \mid A)P(A)$$
$$= P(A \mid B)P(B)$$

$$P(B \mid A) = \frac{P(A \mid B)P(B)}{P(A)}$$

Bayes' Theorem – 2

Let B_1 and B_2 be exhaustive propositions. Consider AB_1 , AB_2 . We can write

$$P(AB_1) = P(B_1|A) P(A) \tag{1}$$

$$P(AB_2) = P(B_2|A) P(A)$$
 (2)

Now add Eq.(1) and Eq.(2)

$$P(AB_1) + P(AB_2) = [P(B_1|A) + P(B_2|A)] P(A)$$

= $P(A)$

The summation over exhaustive propositions is called marginalization. It is an extremely important operation.

Bayes' Theorem – 3

Bayes' Theorem for propositions A, B_k can be written

$$P(B_k | A) = \frac{P(A | B_k)P(B_k)}{\sum_{n} P(A | B_n)P(B_n)}$$

Note that
$$\sum_{k} P(B_k \mid A) = 1$$

Exercise 4: Prove this form of Bayes' Theorem

But What Exactly is Probability?

Probability can be *interpreted* as a **degree of belief**Probability can be *interpreted* as a **relative frequency**

Contrast the statements

- a) There is a 20% chance of rain on 13 August, 2007
- b) There is a 20% chance of rain on Mondays

Statement a) says how much one **believes** or is invited to **believe** it will rain today.

Statement b) states the *relative frequency* with which it rains on Mondays.

Distributions and Densities – 1

If X can assume a set of values, then Pr(X) is called a probability distribution function.

X can be discrete or continuous.

If X is continuous, we can define

$$p(X) \equiv \frac{d \Pr(X)}{dX}$$

as the **probability density function**. Note: probabilities, being pure numbers, are *dimensionless*, whereas densities have dimensions of 1/X

Common Distributions and Densities

Uniform(x)	1
Binomial(k, n, p)	$\binom{n}{k} p^k (1-p)^{n-k}$
Poisson(k,a)	$a^k \exp(-a)/k!$
Gaussian (x, μ, σ)	$\exp(-(x-\mu)^2/2\sigma^2)/\sigma\sqrt{2\pi}$
Chisq(x,n)	$x^{n/2-1} \exp(-x/2)/2^{n/2}\Gamma(n/2)$
Gamma(x,a,b)	$x^{b-1}a^b \exp(-ax)/\Gamma(b)$
Exp(x,a)	$a \exp(-ax)$

The Binomial Distribution – 1

A Bernoulli trial has two outcomes: S = success or F = failure. Example: Each collision between protons at the LHC will be a Bernoulli trial in which something interesting happens (S) or does not (F).

Let p = P(S) be the probability of a success (a **red** spot), assumed to be the **same at each trial**. Since S and F are **exhaustive**, the probability of a failure is 1 - p. For a given order O of N trails, the probability P(K, O|N) of **exactly** K successes, and N - K failures is

$$P(K, O | N) = p^{K} (1-p)^{N-K}$$

The Binomial Distribution – 2

If the order O of successes and failures is irrelevant, we can eliminate the order from the problem by *marginalizing* over all possible orders

Time
$$\rightarrow$$

$$P(K \mid N) = \sum_{O} P(K, O \mid N) = \sum_{O} p^{K} (1-p)^{N-K}$$

This yields the binomial distribution

$$K \sim Binomial(K, p, N) \equiv \binom{N}{K} p^K (1-p)^{N-K}$$

X ~ means "X is distributed as"

The Poisson Distribution

We expect $\mathbf{a} = \mathbf{p} \mathbf{N}$, where \mathbf{a} is the mean number of successes and \mathbf{N} the number of trials. When the probability \mathbf{p} is very small, we can take the limit

$$p \to 0$$
 and $N \to \infty$, such that **a** is **constant**, **Binomial** $(k, N, p) \to$ **Poisson** (k, a) .

The Poisson distribution is general regarded as a good model of a **counting experiment**

Exercise 5: Show that *Binomial* → *Poisson*, in this limit

Inference

Inference - 1

Here is a very general inference procedure:

- a) Compute Pr(Data|Model)
- b) Compute Pr(Model|Data) using Bayes' theorem:

```
Pr(Model|Data) = Pr(Data|Model) Pr(Model)/Pr(Data)
```

Pr(Model) is called the **prior**. It is the probability assigned to the Model *irrespective* of the Data

Pr(Data | Model) is called the likelihood

Pr(Model|Data) is called the posterior probability

Inference – 2

In practice, inference is done using the continuous form of Bayes' theorem:

posterior density

likelihood prior density

$$p(\theta, \lambda \mid x) = \frac{p(x \mid \theta, \lambda) \pi(\theta, \lambda)}{\int p(x \mid \theta, \lambda) \pi(\theta, \lambda) d\theta d\lambda}$$
 θ are the

parameters of interest

marginalization

$$p(\theta \mid x) = \int_{\lambda} p(\theta, \lambda \mid x) d\lambda \quad \text{referred to as} \quad \text{nuisance}$$

λ denote all other parameters in the problem, which are parameters

Inference - 3

Model Selection (hypothesis testing)

posterior evidence prior

$$P(m \mid x) = \frac{p(x \mid m) P(m)}{p(x)}$$

The **evidence** for model **m** is defined by

$$p(x \mid m) = \int p(x \mid \theta_m, \lambda_m, m) \pi(\theta_m, \lambda_m \mid m) d\theta_m d\lambda_m$$

Inference - 4

posterior odds

Bayes factor

prior odds

$$\frac{P(m \mid x)}{P(n \mid x)} = \left(\frac{p(x \mid m)}{p(x \mid n)}\right) \quad \frac{P(m)}{P(n)}$$

The Bayes factor can be used to choose between two competing models m and n.

It can also be used to optimize analyses....

Model

$$n = s + b$$

Prior information

$$\hat{b} \pm \delta b$$

$$0 < s < s_{\text{max}}$$

s is the mean signal count

b is the mean background count

Task: Infer s, given N

Datum

N

Likelihood

$$P(N \mid s,b) = Poisson(N, s+b)$$

Apply Bayes' theorem:

posterior likelihood prior
$$p(s,b \mid N) = \frac{P(N \mid s,b) \pi(s,b)}{\iint P(N \mid s,b) \pi(s,b) ds db}$$

 $\pi(s,b)$ is the prior density for s and b

It *encodes* somehow our prior knowledge of the signal and background means.

The encoding is difficult and controversial.

First factor the prior

$$\pi(\mathbf{s}, b) = \pi(b \mid \mathbf{s}) \pi(\mathbf{s})$$
$$= \pi(b) \pi(\mathbf{s})$$

Define the marginal likelihood

$$l(N \mid s) \equiv \int P(N \mid s, b) \pi(b) db$$

And write the posterior density for the signal as

$$p(s \mid N) = \frac{l(N \mid s) \pi(s)}{\int l(N \mid s) \pi(s) ds}$$

The background prior density

Suppose that the background has been estimated from a Monte Carlo simulation of the background process, yielding B events that pass certain cuts.

We assume that the probability for the count B is given by $P(B|\lambda) = Poisson(B, \lambda)$, where λ is the (unknown) mean count of the Monte Carlo background. We can make an inference about λ by applying Bayes' theorem to the Monte Carlo background experiment

$$p(\lambda \mid B) = \frac{P(B \mid \lambda) \pi(\lambda)}{\int P(B \mid \lambda) \pi(\lambda) d\lambda}$$

The background prior density...

Assume a prior of the form $\pi(\lambda) = \lambda^p$. The case p = 0, is called the **flat prior**. Using the flat prior, we find

$$p(\lambda|B) = Gamma(\lambda, 1, B+1) (= \lambda^B \exp(-\lambda)/B!).$$

Assume that the mean background count b in the actual experiment is related to the mean count λ in the Monte Carlo experiment via $b = k \lambda$, where k is an accurately known scale factor, for example, the ratio of the data and Monte Carlo integrated luminosities. The background can be estimated as follows

$$\hat{b} = \mathbf{k} B$$
, $\delta b = \mathbf{k} \sqrt{B}$

The background prior density...

The posterior density $p(\lambda|B)$ now serves as the **prior density** for the background **b** in the real experiment

$$\pi(b) = p(\lambda|B)$$
, since $b = k\lambda$.

We can write
$$l(N \mid s) = k \int P(N \mid s, k\lambda) \pi(k\lambda) d\lambda$$

$$p(s \mid N) = \frac{l(N \mid s) \pi(s)}{\int l(N \mid s) \pi(s) ds}$$

The calculation of the marginal likelihood can be done

$$l(N \mid s) = \int_{\lambda}^{\infty} P(N \mid s, k\lambda) \pi(k\lambda) d\lambda$$

$$= \int_{0}^{\infty} \frac{e^{-(s+k\lambda)} (s+k\lambda)^{N}}{N!} \frac{e^{-\lambda} \lambda^{B}}{B!} d\lambda$$

$$= e^{-s} \sum_{r=0}^{N} \frac{s^{r}}{r!} \frac{k^{N-r}}{(1+k)^{N-r+B+1}} \frac{\Gamma(N-r+B+1)}{(N-r)!B!}$$

Exercise 6: Give a full derivation of this result

And Finally

The signal prior density

We know it is positive and finite! It is far from clear how to translate this prior knowledge into a prior density $\pi(s)$.

We shall simply adopt a flat prior for the signal $\pi(s) = 1$ as a matter of **convention**.

Exercise 7: Derive a formula for p(s|N) and plot the posterior density for N = 5, B = 20, k = 0.1.