

Superconducting RF Accelerators: Why all the interest?

William A. Barletta Director, United States Particle Accelerator School Dept. of Physics, MIT

The HEP prespective

Why do we need RF structures & fields?

Possible DC accelerator?

$$\nabla \times \mathbf{E} = -\frac{d\mathbf{B}}{dt}$$

or in integral form

$$\oint_C \mathbf{E} \cdot d\mathbf{s} = -\frac{\partial}{\partial t} \int_S \mathbf{B} \cdot \mathbf{n} \, da$$

... There is no acceleration without time-varying magnetic flux

We can vary B in an RF cavity

RF cavities: Basic concepts

✤ Fields and voltages are complex quantities

Basic principles: Reciprocity & superposition

==>

* If you can kick the beam, the beam can kick you

Total cavity voltage =
$$V_{generator} + V_{beam-induced}$$

Basic principles: Energy conservation

✤ Total energy in the particles and the cavity is conserved

→ Beam loading

Lumped circuit analogy of resonant cavity

$$Z(\omega) = \left[j\omega C + (j\omega L + R)^{-1} \right]^{-1}$$
$$\left| Z(\omega) \right| \sim \left[\left(1 + \frac{\omega^2}{\omega_o^2} \right) + (\omega RC)^2 \right]^{-1}$$

The resonant frequency is $\omega_0 = \frac{1}{\sqrt{LC}}$

Figure of Merit: Accelerating voltage

* The voltage varies during the time that bunch takes to cross the gap

 \rightarrow reduction of the peak voltage by Γ

Figure of merit from circuits - Q

$$Q = \frac{\omega_o \circ Energy \ stored}{Time \ average \ power \ loss} = \frac{2\pi \circ Energy \ stored}{Energy \ lost \ per \ cycle}$$

$$\mathscr{O} = \frac{\mu_o}{2} \int_{v} |H|^2 dv = \frac{1}{2} L I_o I_o^*$$
$$\langle \mathscr{O} \rangle = \frac{R_{surf}}{2} \int_{s} |H|^2 ds = \frac{1}{2} I_o I_o^* R_{surf}$$

$$R_{surf} = \frac{1}{Conductivity \circ Skin \ depth} \sim \omega^{1/2}$$

$$\therefore Q = \frac{\sqrt{L/C}}{R_{surf}} = \left(\frac{\Delta\omega}{\omega_o}\right)^{-1}$$

What makes SC RF attractive?

Recall the circuit analog

As
$$R_{surf} = > 0$$
, the Q = $> \infty$.

In practice,

$$Q_{\rm nc} \sim 10^4$$
 $Q_{\rm sc} \sim 10^{11}$

Figure of merit for accelerating cavity: power to produce the accelerating field

Resistive input (shunt) impedance at ω_0 relates power dissipated in walls to accelerating voltage

$$R_{in} = \frac{\langle V^2(t) \rangle}{\mathscr{P}} = \frac{V_o^2}{2\mathscr{P}} = Q_v \sqrt{L/C}$$

Linac literature more commonly defines "shunt impedance" without the "2"

$$\mathcal{R}_{in} = \frac{V_o^2}{\mathcal{P}} \sim \frac{1}{R_{surf}}$$

For SC-rf Ø is reduced by orders of magnitude BUT, it is deposited @ 2K

Translate circuit model back to directly driven, re-entrant RF cavity model

In an ideal pillbox, ω_0 is independent of L

Simple consequences of pillbox model

- * Increasing R lowers frequency => Stored Energy, $\mathcal{C} \sim \omega^{-2}$
- $\# \qquad \qquad & \mathcal{E} \sim E_z^2$
- * Beam loading lowers E_z for the next bunch
- * Lowering ω lowers the fractional beam loading
- # Raising ω lowers $Q \sim \omega^{-1/2}$
- ** If time between beam pulses, $T_s \sim Q/\omega$ almost all \mathcal{E} is lost in the walls

The beam tube makes the field modes (& cell design) more complicated

✤ Peak E no longer on axis

$$\Rightarrow E_{pk} \sim 2 - 3 \times E_{acc}$$
$$\Rightarrow FOM = E_{pk}/E_{acc}$$

- ₩ ω_o sensitive to cavity length
 → Mechanical tuning & detuning
- Beam tubes add length & \$'s w/o acceleration

Comparison of SC and NC RF

Superconducting RF

- ₭ High gradient=> 1 GHz, meticulous care
- * Mid-frequencies ==> Large stored energy, \mathcal{C}_s
- * Large \mathcal{C}_s ==> very small $\Delta E/E$
- # Large Q
 ==> high efficiency

Normal Conductivity RF

- # High gradient ==> high frequency (5 - 17 GHz)
- # High frequency ==> low stored energy
- * Low \mathscr{E}_s ==>~10x larger $\Delta E/E$
- * Low Q ==> reduced efficiency

Linacs can be considered as a series of distorted pillbox cavities...

In warm linacs "nose cones" optimize the voltage per cell with respect to resistive dissipation

US PARTICLE ACCELERATOR SCHOOL

Linacs cells are linked to minimize cost

==> coupled oscillators ==>multiple modes

Modes of a two-cell cavity

9-cavity TESLA cell

Enter Superconductivity

The Convergence of Classical Concepts cares 1990

Figure 1-2. Heike Kamerlingh Onnes. Conservation III and Entry and 1911

Electrons in Solids - naïve picture

Energy distribution of electrons in normal conductors

Electron-Phonon interaction ==> electron pairs - BCS theory

An e⁻ moving thru a conductor attracts nearby ions. The lattice deformation causes another e⁻, with opposite "spin", to move into region of higher + charge density.

The two e⁻ are held together with a binding energy, 2Δ

In superconductors interaction of electrons with lattice phonons ==> pairs (bosons)

Possibility of Bose condensate at T_{critical}

Two fluid model:

For $T_c > T > 0$, excitation of unpaired electrons

$$n_{
m normal} \propto \exp\left(-\frac{\Delta}{k_{
m B}T}\right)$$

where 2Δ is the energy to break apart the Cooper pairs, until no electrons are paired above T_c

DC conductivity in superconductors

DC resistance = 0
because unpaired electrons are shorted out by Cooper pairs.

RF Resistance in Superconductors

 ■ RF resistance is finite because Cooper pairs have inertia → unpaied electrons "see" an electric field.

$$R_{\rm s} = A_{\rm s}\omega^2 \exp\left(-\frac{\Delta(0)}{k_{\rm B}T}\right)$$

More resistance the more the sc pairs are jiggled around

More resistance the more unpaired electrons are excited

In practice several effects limit the most important measure of cell performance

Multipacting Solution

✤ First spherical, later elliptical shape cells.

350-MHz LEP-II cavity (CERN)

Electrons drift to equator Electric field at equator is ≈ 0 \rightarrow MP electrons don't gain energy \rightarrow MP stops

Thermometry at a quench point

Why do we need beams?

Collide beams

FOMs: Collision rate, energy stability, Accelerating field

Examples: LHC, ILC, RHIC

In LHC storage rings...

- ℁ Energy lost in walls must be small
 - $\rightarrow R_{surf}$ must be small

SC cavities were the only practical choice

- To deliver required luminosity (500 fb⁻¹ in 4 years) ==>
 - powerful polarized electron & positron beams (11 MW /beam)
 - tiny beams at collision point ==> minimizing beam-structure interaction
- To limit power consumption ==> high "wall plug" to beam power efficiency
 - Even with SC rf, the site power is still 230 MW !

Intense secondary beams

1 MW target at SNS

FOM: Secondaries/primary Examples: spallation neutrons, neutrino beams

The Spallation Neutron Source

==> miniscule beam loss into accelerator

==> large aperture in cavities ==> large cavities

==> low frequency

==> high energy stability

==>large stored energy

==> high efficiency at E_z

==> SC RF

Proton Intensity Frontier Option: Project X

Matter to energy: Synchrotron radiation science

Synchrotron light source (pulsed incoherent X-ray emission)

FOM: Brilliance v. λ

 $\mathbf{B} = ph/s/mm^2/mrad^2/0.1\%\,B\mathbf{W}$

Pulse duration

Science with X-rays Imaging Spectroscopy

Matter to energy: Energy Recovery Linacs Hard X-rays ==> ~5 GeV

Synchrotron light source (pulsed incoherent X-ray emission)

Pulse rates -kHz => MHz

X-ray pulse duration ≤ 1 ps

High average e-beam brilliance & e-beam duration ≤ 1 ps

⇒ One pass through ring
⇒ Recover beam energy
⇒ High efficiency

 \Rightarrow SC RF

on) Main Linac Nain Linac Linector Dump

Even higher brightness requires coherent emission ==> FEL

Free electron laser

FOM: Brightness v. λ Time structure

Full range of FEL-based science requires...

- # Pulses rates 10 Hz to 10 MHz (NC limited to ~ 100 Hz)
 - → High efficiency
- ℁ Pulse duration 10 fs 1 ps
- ₩ High gain
 - → Excellent beam emittance
 - ==> Minimize wakefield effect
 - ==> large aperture
 - ==> low frequency
 - → Stable beam energy & intensity
 - ==> large stored energy in cavities
 - ==> high Q

==> SC RF

