Tracking Detectors

Masahiro Morii Harvard University

NEPPSR-V August 14-18, 2006 Craigville, Cape Cod

Basic Tracking Concepts

 Moving object (animal) disturbs the material

- \rightarrow A track \leftarrow
- Keen observers can learn

Identity

• What made the track?

Position

- Where did it go through?
- Direction
 - Which way did it go?
- Velocity
 - How fast was it moving?

14 August 2006

Charged Particles

Charged particles leave tracks as they penetrate material

Discovery of the positron Anderson, 1932

16 GeV π^- beam entering a liquid-H₂ bubble chamber at CERN, circa 1970

 "Footprint" in this case is excitation/ionization of the detector material by the incoming particle's electric charge

Coulomb Scattering

Incoming particle scatters off an electron in the detector

Integrate above minimum energy (for ionization/excitation) and multiply by the electron density

See P. Fisher's lecture from NEPPSR'03

Bethe-Bloch Formula

Average rate of energy loss [in MeV g⁻¹cm²]

$$\frac{1}{dx} = -Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \gamma^2 \beta^2 T_{\text{max}}}{I^2} - \beta^2 - \frac{\delta}{2} \right]$$

$$K = 4\pi N_A r_e^2 m_e c^2$$
$$= 0.307 \,\mathrm{MeVg^{-1}cm^2}$$

I = mean ionization/excitation energy [MeV]

- δ = density effect correction (material dependent)
- What's the funny unit?

Bethe-Bloch Formula

$$\frac{dE}{dx} = -Kz^{2} \frac{Z}{A} \frac{1}{\beta^{2}} \left[\frac{1}{2} \ln \frac{2m_{e}c^{2}\gamma^{2}\beta^{2}T_{\max}}{I^{2}} - \beta^{2} - \frac{\delta}{2} \right]$$

- dE/dx depends only on β (and z) of the particle
- At low β , $dE/dx \propto 1/\beta^2$
 - Just kinematics
- Minimum at $\beta\gamma \sim 4$
- At high β , dE/dx grows slowly
 - Relavistic enhancement of the transverse E field
- At very high β , dE/dx saturates
 - Shielding effect

Minimum Ionizing Particles

14 August 2006

Primary and Secondary Ionization

An electron scattered by a charged particle may have enough energy to ionize more atoms

3 primary + 4 secondary ionizations

- Signal amplitude is (usually) determined by the total ionization
- Detection efficiency is (often) determined by the primary ionization

Gas	Primary [/cm]	Total [/cm]
He	5	16
CO ₂	35	107
C_2H_6	43	113

Ex: 1 cm of helium produce on average 5 primary electrons per mip.

$$\varepsilon = 1 - e^{-5} = 0.993$$

A realistic detector needs to be thicker.

14 August 2006

Multiple Scattering

Particles passing material also change direction

Optimizing Detector Material

- A good detector must be
 - thick enough to produce sufficient signal
 - thin enough to keep the multiple scattering small
- Optimization depends on many factors:
 - How many electrons do we need to detect signal over noise?
 - It may be 1, or 10000, depending on the technology
 - What is the momentum of the particle we want to measure?
 - LHC detectors can be thicker than BABAR
 - How far is the detector from the interaction point?

Readout Electronics

Noise of a well-designed detector is calculable

- Increases with C_d
- Increases with the bandwidth (speed) of the readout
- Equivalent noise charge Q_n = size of the signal that would give S/N = 1

- Typically 1000–2000 electrons for fast readout (drift chambers)
- Slow readout (liguid Ar detectors) can reach 150 electrons

More about electronics by John later today

Silicon Detectors

Imagine a piece of pure silicon in a capacitor-like structure

 $dE/dx_{min} = 1.664 \text{ MeVg}^{-1}\text{cm}^2$ Density = 2.33 g/cm³ Excitation energy = 3.6 eV

10⁶ electron-hole pair/cm

Assume $Q_n = 2000$ electron and require S/N > 10

Thickness > 200 μ m

Realistic silicon detector is a reverse-biased p-n diode

BABAR Silicon Detector

Double-sided detector with AC-coupled readout

Aluminum strips run X/Y directions on both surfaces

Wire Chambers

Gas-based detectors are better suited in covering large volume

- Smaller cost + less multiple scattering
- Ionization < 100 electrons/cm → Too small for detection
 - Need some form of amplification before electronics

	Encounters/cm	$t_{99}(\mathrm{mm})$	Free electrons/c	m
He	5	9.2	16	
Ne	12	3.8	42	
\mathbf{Ar}	25	1.8	103	From PDG
Xe	46	1.0	340	A. Cattai and G. Rolandi
CH_4	27	1.7	62	
$\rm CO_2$	35	1.3	107	
$\mathrm{C_{2}H_{6}}$	43	1.1	113	

Gas Amplification

String a thin wire (anode) in the middle of a cylinder (cathode)

- Apply high voltage
- Electrons drift toward the anode, bumping into gas molecules
- Near the anode, E becomes large enough to cause secondary ionization
- Number of electrons doubles at every collision

Avalanche Formation

Avalanche forms within a few wire radii

- Electrons arrive at the anode quickly (< 1ns spread)
- Positive ions drift slowly outward
 - Current seen by the amplifier is dominated by this movement

Signal Current

Assuming that positive ion velocity is proportional to the E field, one can calculate the signal current that flows between the anode and the cathode

$$I(t) \propto \frac{1}{t+t_0}$$

- This "1/*t*" signal has a very long tail
 - Only a small fraction (~1/5) of the total charge is available within useful time window (~100 ns)
 - Electronics must contain differentiation to remove the tail

Gas Gain

■ Gas gain increases with HV up to 10⁵−10⁶

- With $Q_n = 2000$ electrons and a factor 1/5 loss due to the 1/t tail, gain = 10⁵ can detect a single-electron signal
- What limits the gas gain?
 - Recombination of electron-ion produces photons, which hit the cathode walls and kick out photo-electrons
 - → Continuous discharge
 - Hydrocarbon is often added to suppress this effect

Drift Chambers

Track-anode distance can be measured by the drift time

Drift Velocity

Simple stop-and-go model predicts

- $\vec{v}_D = \frac{e\tau}{m}\vec{E} = \mu\vec{E}$
- τ = mean time between collisions
- μ = mobility (constant)
- This works only if the collision cross section σ is a constant
- For most gases, σ is strongly dependent on the energy ε
 - v_D tends to saturate
 - It must be measured for each gas
 - *c.f.* μ is constant for drift of positive ions

Drift Velocity

- Example of v_D for Ar-CF₄-CH₄ mixtures
 "Fast" gas
- Typical gas mixtures have $v_D \sim 5 \text{ cm}/\mu \text{s}$
 - e.g. $Ar(50)-C_2H_6(50)$
 - Saturation makes the *x*-*t* relation linear
- "Slow" gas mixtures have v_D ∝ E
 e.g. CO₂(92)-C₂H₆(8)

T. Yamashita et al., NIM A317 (1992) 213

Spatial Resolution

• Typical resolution of a drift chamber is $50-200 \mu m$

Diffusion: random fluctuation of the electron drift path

 $\sigma_{r}(t) = \sqrt{2Dt}$ D = diffusion coefficient

Smaller cells help
"Slow gas" has small D
Micro vertex chambers (e.g. Mark-II)

- Primary ionization statistics
 - Where is the first-arriving electron?

Electronics

- How many electrons are needed to register a hit?
- Time resolution (analog and digital)
- Calibration of the x-t relation
- Alignment

Other Performance Issues

• dE/dx resolution – particle identification

- Total ionization statistics, # of sampling per track, noise
- 4% for OPAL jet chamber (159 samples)
- 7% for BABAR drift chamber (40 samples)
- Deadtime how quickly it can respond to the next event
 - Maximum drift time, pulse shaping, readout time
 - Typically a few 100 ns to several microseconds
- Rate tolerance how many hits/cell/second it can handle
 - Ion drift time, signal pile up, HV power supply
 - Typically 1–100 kHz per anode
 - Also related: radiation damage of the detector

Design Exercise

• Let's see how a real drift chamber has been designed

Example: BABAR drift chamber

Requirements

• Cover as much solid angle as possible around the beams

- Cylindrical geometry
- Inner and outer radii limited by other elements
 - Inner radius ~20 cm: support pipe for the beam magnets
 - Out radius ~80 cm: calorimeter (*very* expensive to make larger)
- Particles come from decays of *B* mesons
 - Maximum $p_t \sim 2.6 \text{ GeV}/c$
 - Resolution goal: $\sigma(p_t)/p_t = 0.3\%$ for 1 GeV/c
 - Soft particles important → Minimize multiple scattering!
 - Separating π and *K* important $\rightarrow dE/dx$ resolution 7%
- Good (not extreme) rate tolerance
 - Expect 500 k tracks/sec to enter the chamber

Momentum Resolution

In a *B* field, p_t of a track is given by

 $p_T = 0.3 B \rho$

 If N measurements are made along a length of L to determine the curvature

$$\frac{\sigma(p_T)}{p_T} = \frac{\sigma_x p_T}{0.3BL^2} \sqrt{\frac{720}{N+4}}$$

Given L = 60 cm, a realistic value of N is 40

To achieve 0.3% resolution for 1 GeV/c

$$\frac{\sigma_x}{B} = 80 \,\mu \mathrm{m/T}$$

• We can achieve this with $\sigma_x = 120 \ \mu m$ and $B = 1.5 \ T$

Masahiro Morii

L

Multiple Scattering

- Leading order: $\theta_0 = \frac{13.6 \text{ MeV}}{\beta cp} z \sqrt{L/X_0}$
 - Impact on p_T measurement $\sigma(p_T) = p_T \theta_0 = 0.0136 \sqrt{L/X_0}$
 - For an argon-based gas, $X_0(Ar) = 110$ m, L = 0.6 m → $\sigma(p_T) = 1$ MeV/c → Dominant error for $p_T < 580$ MeV/c
 - We need a lighter gas!
- $He(80)-C_2H_6(20)$ works better
 - $X_0 = 594 \text{ m} \Rightarrow \sigma(p_T) = 0.4 \text{ MeV/c}$
- We also need light materials for the structure
 - Inner wall is 1 mm beryllium $(0.28\% X_0)$
 - Then there are the wires

Wires

- Anode wires must be thin enough to generate high E field, yet strong enough to hold the tension
 - Pretty much only choice:
 20 µm-thick Au-plated W wire
 - Can hold ~60 grams
 - BABAR chamber strung with 25 g
- Cathode wires can be thicker
 - High surface field leads to rapid aging
 - Balance with material budget
 - **BABAR** used 120 μ m-thick Au-plated Al wire
- Gas and wire add up to $0.3\% X_0$

Wire Tension

- Anode wire are located at an unstable equilibrium due to electrostatic force
 - They start oscillating if the tension is too low
 - Use numerical simulation (e.g. Garfield) to calculate the derivative dF/dx
 - Apply sufficient tension to stabilize the wire
 - Cathode wire tension is often chosen so that the gravitational sag matches for all wires
- Simulation is also used to trace the electron drift and predict the chamber's performance

Cell Size

- Smaller cells are better for high rates
 - More anode wires to share the rate
 - Shorter drift time \rightarrow shorter deadtime
- Drawbacks are
 - More readout channels \rightarrow cost, data volume, power, heat
 - More wires \rightarrow material, mechanical stress, construction time
- Ultimate limit comes from electrostatic instability
 - Minimum cell size for given wire length
- BABAR chose a squashed hexagonal cells
 - 1.2 cm radial × 1.6 cm azimuthal
 - 96 cells in the innermost layer

End Plate Close Up

Wire Stringing In Progress

Gas Gain and Electronics

• With He(80)- $C_2H_6(20)$, we expect 21 primary ionizations/cm

- Simulation predicts ~80 μ m resolution for leading electron
- Threshold at 2–3 electrons should give 120 μ m resolution
- Suppose we set the threshold at 10000 *e*, and 1/5 of the charge is available (1/*t* tail) → Gas gain ~ 2×10⁴
 - Easy to achieve stable operation at this gas gain
 - Want to keep it low to avoid aging
- Drift velocity is $\sim 25 \ \mu m/ns$
 - Time resolution must be <5 ns</p>
 - Choose the lowest bandwidth compatible with this resolution
 - Simulation suggests 10–15 MHz

Actual Performance

Further Reading

- F. Sauli, Principles of Operation of Multiwire Proportional and Drift Chambers, CERN 77-09
- C. Joram, *Particle Detectors*, 2001 CERN Summer Student Lectures
- U. Becker, *Large Tracking Detectors*, NEPPSR-I, 2002
- A. Foland, *From Hits to Four-Vectors*, NEPPSR-IV, 2005