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Huge topic - will pick and choose.

Hopeto give you an under standing of how to correctly
think about statistical problems.

| assume you know a bit about probability (means, variance, etc.)

and some probability distributions (Gaussian, Poisson,
binomial).
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Probability Distributions

(- m)? _
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Binomial P(n|N,p)= n!(NN_ o) p"(1- p) Var(x) = Np(1- p)
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Probability vs Statistics

What isthe difference between probability and statistics?

In probability theory, we know the probability distribution (pdf)
and predict theresultsof trials.

For example, if you flip afair coin 10 times, how often do you
get 7 heads?

In statistics, we take a number of trials (usually small) and
try to say something about the probability distribution
(often an estimate of a parameter).

For example, someonetellsyou they flipped a coin 10 times
and got 7 heads. What isthe estimate of the probability of
getting headson a singleflip? Do you think the coin isfair?
What if it was 70 out of 100, 700 or 1000, or whatever?
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What 1s Random 1n a M easurement?

Y ou have found the Higgs boson and measur e its mass:
M, = 126 + 3GeV/c

ThisdoesNOT mean that the Higgs massisarandom variable
whose mean valueis 126 and rmsis 3.

We often use language that seemsto say this (*the Higgs mass
15126 £ 3", “thereisa 68% probability that the Higgs massis
from 12310 129”7, etc.).

Parameter s of nature are not random variables!

Thisdoes mean: “the probability that my measured interval
of 123 to 129 containsthetruevalue of the Higgs massis 68%..”
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Neyman Construction

We want to construct an interval at confidence level CL such
that if we could repeat the same experiment many times, our

Interval would contain the true value of the parameter afraction
CL of thetime.

For measurements, CL isalmost always 68%, which isthe
area of a Gaussian within 1 standard deviation of the mean.
For limits, people often use a different CL (moreon thislater).

Neyman construction is a frequentist method.

The probability that the intervals containsthetrue value
Is called the cover age.
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Ordering Principle

Thereare2 end pointsto an interval and a confidence level
providesonly 1 criterion.
We need a second criterion, known asthe ordering principle.

There are many possibilities:
1. symmetric about the parameter estimate
2. equal coverage on each side

3. for alikelihood fit, equal value of likelihood at each point
4, etc.

For afrequentist, the important concept isthe coverage, and
any reasonable ordering principleis OK.
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Bayes Theorem

Let x and y berandom variables.

P(x) dx = probability x is between x and x + dx.
P(x|]y) = conditional probability of x, given avalueof y.
Same for P(y) and P(y[x).

P(x]y)P(y)
P(x)

Bayestheorem isa perfectly correct theorem in probability
theory.

Bayestheorem: P(y|x)=
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Bayesian Statistics

L et x be a measurement (or set of measurements), such as
the Higgs mass.
L et mbe a parameter (or set of parameters) the measur ement
probability depends on, such asthetrue Higgs mass (for example,
suppose the measur ed value is Gaussian distributed about the
true mass).
The probability of measuring x is P(x|n). A Bayesian putsthis
Into Bayes theorem giving

p(mix) = PP _ POxImP(m)

P(x) OP(x | MP(mdm

P(mx) iIsknown asthe posterior probability density function (pdf).
Thisisfine, If we put in the correct probability functions.

P(m) should be d(mm, ), in which case P(m|x) becomes d(mm, o).
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Bayesian Statistics |1

Of course, wedon’t know m, . and hence don’t know P(m).

A Bayesian putsin some function helikes, callsit the
prior [often symbolized as p(m)], and proceeds.

Then, the best estimate of misthe onethat maximizes
P(mx) and the CL interval issuch that

(ibp(m| x)dm= CL
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Bayesian Statistics 111

For example, suppose we have one measurement of

the Higgs mass M that is Gaussian distributed about the
true masswith awidth s (which we assume we know)
and assume a constant prior.

(M-M,)°

1 5 2
\/Z_pSe ? p(Mh) _ 1 e_(M;;'Z\/')

P(M, M) =

N\ 1 i -22
O— s M, )JdM
\/Z_pse p( h) h

This gives exactly the same best estimate and confidence
Interval as afrequentist analysis (not true for other priors).
A constant prior can’t be normalized and isknown as

an improper prior. However, it cancelsin the formula,

so Bayesiansdon’t let this slow them down.
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Bayesian Statistics 1V

|f pushed hard, a Bayesian will (usually) admit that
P(mx) isnot a probability but will call it a“degree of belief”
or “betting odds.”

However, they treat it like a probability and talk about it
that way (if it walkslike a duck, quackslikea duck, ...).

| have no idea what the mathematics of a “ degree of belief”
IS.

|n fairnessto Bayesians (which is not something | feel compelled
to be), they correctly point out that how we approach things
In lifeisusually very Bayesian.
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Problemswith Bayes Statistics

1. Prior dependence (answer depends on choice of prior).

2. Metric dependence (interval dependson whether we
analyze M, or M, 2, for example).

3. Logically (philosophically?) bother some.
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Quote from LouisLyons

Bayesians addressthe question everyoneisinterested in
by using assumptionsthat no one believes.

Frequentists use impeccable logic to deal with an issue of
no interest to anyone.

L ouisLyons

Academic Lecture at Fermilab
August 17, 2004
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Nulsance Parameters

Suppose we count the number of events n of some type and
want to convert to a cross section, which depends also on things
like background b, efficiency e, and integrated luminosity L.
(n- b)
el

In general, b, e, and L will also have uncertainties, which we
must take into account in our statistics. These are known

as nuisance parameters (they are necessary, but not what
we areprimarily interested in).

A Bayesian hasno problems - heor shejust treatsthese as
having some probability distribution and proceeds.

A frequentist wants a confidence interval that correctly
coversfor all truevaluesof mb, e and L.

S =
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Mixed Statistics

Sometimes, people integrate over the nuisance parameters
(avery Bayesian way to approach life) and then do frequentist
statistics using the resulting distribution.

Thisisa mixed method.
Thisisnot so common in parameter estimation (herewe
usually have a separ ate systematic uncertainty for

uncertaintiesin the nuisance parameters), however, it
IS quite common for setting limits.
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Bias and Coverage

However you define your statistical method, it isvery
Important that you check (unlessit isa known method
that someone else has alr eady checked):

1. Bias, that is, if you could repeat your experiment many
times, the aver age of the best estimator s should bethetrue value.

2. Coverage, that is, if you could repeat your experiment many
times, your confidence interval should contain thetrue value
68% of thetime. Under coverageisconsidered very

bad. Over coverageismildly bad.

Physicists are very good at inventing their own methods, which
must be checked.
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Simple (aka“Toy”) Monte Carlo

A good way to check biasand coverageisa“toy” (I prefer
“simple’) Monte Carlo, in which a ssimple model of the
statisticsistested using computer random number generators.

Be sureto use a good random generator, a good model of
your problem, and proper ensembles.

Simple Monte Carlos ar e extremely power toolsfor checking
and understanding bias, cover age, sensitivity, etc.

August 15, 2006 Craig Blocker  NEPPSR, 2006 17



Efficiency

Binomial vs Poisson Uncertainties

Y ou calculate efficiency in a bin by dividing number of good eventsn by
the number of candidate events N, e = n/N.
Sometimes people will say that since they are counting the number
of good events, the uncertainty is On, giving plots like this.
Since thereisa maximum number of good events, the
correct uncertainty is binomial, giving this plot.
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L imits - Frequentist

Suppose we ar e counting sometype of event (e.g., how many
Higgs eventswe see). If misthe expected number, then
e nt

P(n) = n!

If n,,c events are observed, we may want to set an
upper limit m on m Wedefinethe upper limit at a
given confidence level (CL) asthe msuch that the
probability of getting the observed number of events

or fewer iIsl1-CL.

Nops A~ M
g 1 L
n=0 n!
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ZeroIntervals

Suppose we are doing a limit, and we know that the background
level Is 3 events. Furthermore, suppose we observe O events
and use CL =90%.

ke - (m_+b) +p)
g e""(m +b)

=0 n!

—em*3) -1_cL =01

Thereisno non-negative m that satisfiesthis equation!
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Feldman-Cousins

To solvethis problem and othersfor parameters near
physical boundaries, Feldman and Cousins proposed
a new ordering principlein the Neyman construction.

R(x) =PI
P(x| )

Here, nt isthe most likely value of mfor a given x.
Consider acasewhere P isa Gaussian with unit width,

mis a parameter that cannot be negative (likem,), and
CL =68%.
For agiven m find thex, and x, such that

6UP(X |mdx =CL and R(x,)=R(x,)
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Feldman-Cousins||

For a measured

SF value of x, the x, and
4.5 X, curvesgivethe
- confidence interval
3.5 Inm
3
E Feldman-Cousins
m- 25 avoids zero intervals,
53 coverscorrectly,
WE smoothly transitions
1 from 1-sided to 2-sided
u.si— Intervals, and approaches
“.z_ “standard” intervals
for x >> 0.
For x =0, interval is0t00.99 For x=2.2,interval is1.2t0 3.2
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Flip-flopping

From Feldman, NEPPSR IV, “many physicistsliketo
1. pretend they measureQOif x<0
2. give upper limit if x < 3s
3. give 2-sided interval if x > 3s”.

Thisisknown asflip-flopping. Inthiscase, it isimpossible
to construct proper freguentist intervals.

Feldman-Cousins gives a smooth transition from 1-sided
Intervals (limits) to 2-sided intervals (measur ements).

However, you haveto understand that if your interval does
not contain 0, thisdoesn’t mean you have good evidence
for adiscovery.
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Bayesian Limits

A Bayesian deter mines an upper limit m by

(‘5‘ P(m| x)dm= CL

For a Poisson process with no background and using
aflat prior, thisgivesthe samelimit as a frequentist

calculation.
Bayesian limits
1. depend on the prior
2. aremetric dependent
3. 1n general, do not cover correctly.
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Nulsance Par ameter s

Nuisance parameters usually are quite important in limits.

For example, we may look for a number of events of some
type and wish to put a limit on the cross section by correcting
for the background and efficiency, both of which usually
have uncertainties.

Frequentists require correct coverage for any true value of
the parameters, including the nuisance parameters. This
usually leadsto very long and intensive Monte Carlo
calculations (particularly if there many nuisance parameters).

Bayesian just include the nuisance parameter distributions
In their “probability” functions and then happily integrate
over them.
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Truncated Gaussian Efficiency

Bayesians can get undesired effects.

For example, if you
1. aredoing a counting experiment (i.e., Poisson process),
2. assumethe efficiency eis Gaussian distributed,
3. truncatethe Gaussian so that e® 0, and
4. you useaflat prior, then
you will find that the posterior density isnot normalizable.

People often put in a cutoff (either knowingly or unknowingly),
but then the limit is cutoff dependent.

You can also changetheflat prior or change what you assume
for an efficiency distribution.
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Sensitivity
In Feldman-Cousins and other methods, it is possible

that fluctuations will cause an experiment with larger
background to have alower limit that a better experiment

with less background.

In order that people can evaluate your experimental results
properly, it isimportant to also give the sensitivity, which
Isdefined asthe average limit that would be set if

thetrue parameter valueisO.

A ssimple Monte Carlo isa good way to calculate
the sensitivity.
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Recommendations

Whether you are a Frequentist, Bayesian, or mixed (Frayesian??),
you should

1. Check your statistics processfor biasand coverage,
particularly if the method is not standard (even if you
are a Bayesian).

Remember what your measurement isactually saying.
Tell people explicitly what you did.

Quote your sensitivity.

Not undercover.

g s wWN
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Statistics Refer ences

LouisLyons Lectures.
http://www-ppd.fnal.gov/EPPOffice-w/Academic L ectures/

Colin Gay, Likelihood methods, NEPPSR V, IV, (...?)

C. Blocker, Likelihood methods, NEPPSR |V, |11, |

Gary Feldman, Statistics of Small Numbers, NEPPSR |V

PDG: http://pdg.lbl.gov
CDF Statistics.

http://www-cdf.fnal.gov/physics/statisticd statistics home.html
Babar: http://www.dac.stanford.edu/BFROOT /www/Statistics/

and referencestheran.
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