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Statistics
Craig Blocker, Brandeis

NEPPSR, 2006

Huge topic - will pick and choose.

Hope to give you an understanding of how to correctly
think about statistical problems.

I assume you know a bit about probability (means, variance, etc.)
and some probability distributions (Gaussian, Poisson,
binomial).
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Probability Distributions
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Probability vs Statistics
What is the difference between probability and statistics?

In probability theory, we know the probability distribution (pdf)
and predict the results of trials.

For example, if you flip a fair coin 10 times, how often do you
get 7 heads?

In statistics, we take a number of trials (usually small) and
try to say something about the probability distribution
(often an estimate of a parameter).

For example, someone tells you they flipped a coin 10 times
and got 7 heads.  What is the estimate of the probability of
getting heads on a single flip?  Do you think the coin is fair?
What if it was 70 out of 100, 700 or 1000, or whatever?
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What is Random in a Measurement?
You have found the Higgs boson and measure its mass:

Mh =  126 ± 3 GeV/c2.

This does NOT mean that the Higgs mass is a random variable 
whose mean value is 126 and rms is 3.
We often use language that seems to say this (“the Higgs mass
is 126 ± 3”, “there is a 68% probability that the Higgs mass is
from 123 to 129”, etc.).

Parameters of nature are not random variables!

This does mean: “the probability that my measured interval
of 123 to 129 contains the true value of the Higgs mass is 68%.”
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Neyman Construction
We want to construct an interval at confidence level CL such
that if we could repeat the same experiment many times, our
interval would contain the true value of the parameter a fraction
CL of the time.

For measurements, CL is almost always 68%, which is the
area of a Gaussian within 1 standard deviation of the mean.
For limits, people often use a different CL (more on this later).

Neyman construction is a frequentist method.

The probability that the intervals contains the true value
is called the coverage.
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Ordering Principle

There are 2 end points to an interval and a confidence level
provides only 1 criterion.
We need a second criterion, known as the ordering principle.

There are many possibilities:
1.  symmetric about the parameter estimate
2.  equal coverage on each side
3.  for a likelihood fit, equal value of likelihood at each point
4.  etc.

For a frequentist, the important concept is the coverage, and
any reasonable ordering principle is OK.
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Bayes Theorem
Let x and y be random variables.

P(x) dx = probability x is between x and x + dx.
P(x|y) = conditional probability of x, given a value of y.
Same for P(y) and P(y|x).

Bayes theorem:

Bayes theorem is a perfectly correct theorem in probability
theory.
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Bayesian Statistics
Let x be a measurement (or set of measurements), such as
the Higgs mass.
Let µ be a parameter (or set of parameters) the measurement
probability depends on, such as the true Higgs mass (for example,
suppose the measured value is Gaussian distributed about the
true mass).
The probability of measuring x is P(x|µ).  A Bayesian puts this
into Bayes theorem giving

∫ µµµ
µµ
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P(µ|x) is known as the posterior probability density function (pdf).
This is fine, if we put in the correct probability functions.
P(µ) should be δ(µ-µtrue), in which case P(µ |x) becomes δ(µ-µtrue).
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Bayesian Statistics  II
Of course, we don’t know µtrue and hence don’t know P(µ).

A Bayesian puts in some function he likes, calls it the
prior [often symbolized as π(µ)], and proceeds.

Then, the best estimate of µ is the one that maximizes
P(µ|x) and the CL interval is such that
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Bayesian Statistics  III
For example, suppose we have one measurement of
the Higgs mass M that is Gaussian distributed about the
true mass with a width σ (which we assume we know)
and assume a constant prior.
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∫
This gives exactly the same best estimate and confidence
interval as a frequentist analysis (not true for other priors).
A constant prior can’t be normalized and is known as
an improper prior.  However, it cancels in the formula,
so Bayesians don’t let this slow them down.
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Bayesian Statistics  IV
If pushed hard, a Bayesian will (usually) admit that
P(µ|x) is not a probability but will call it a “degree of belief”
or “betting odds.”

However, they treat it like a probability and talk about it
that way (if it walks like a duck, quacks like a duck, ...).

I have no idea what the mathematics of a “degree of belief”
is.

In fairness to Bayesians (which is not something I feel compelled
to be), they correctly point out that how we approach things
in life is usually very Bayesian.
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Problems with Bayes Statistics

1.  Prior dependence (answer depends on choice of prior).

2.  Metric dependence (interval depends on whether we
analyze Mh or Mh

2, for example).

3.  Logically (philosophically?) bothersome.
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Quote from Louis Lyons

Bayesians address the question everyone is interested in
by using assumptions that no one believes.

Frequentists use impeccable logic to deal with an issue of
no interest to anyone.

Louis Lyons
Academic Lecture at Fermilab
August 17, 2004
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Nuisance Parameters
Suppose we count the number of events n of some type and
want to convert to a cross section, which depends also on things
like background b, efficiency ε, and integrated luminosity L.

L
)bn(

ε
−

=σ

In general, b, ε, and L will also have uncertainties, which we
must take into account in our statistics.  These are known
as nuisance parameters (they are necessary, but not what
we are primarily interested in).
A Bayesian has no problems - he or she just treats these as
having some probability distribution and proceeds.
A frequentist wants a confidence interval that correctly
covers for all true values of µ, b, ε, and L.
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Mixed Statistics
Sometimes, people integrate over the nuisance parameters
(a very Bayesian way to approach life) and then do frequentist
statistics using the resulting distribution.

This is a mixed method.

This is not so common in parameter estimation (here we
usually have a separate systematic uncertainty for 
uncertainties in the nuisance parameters), however, it
is quite common for setting limits.
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Bias and Coverage
However you define your statistical method, it is very 
important that you check (unless it is a known method
that someone else has already checked):

1.  Bias, that is, if you could repeat your experiment many
times, the average of the best estimators should be the true value.

2.  Coverage, that is, if you could repeat your experiment many
times, your confidence interval should contain the true value
68% of the time.  Under coverage is considered very
bad.  Over coverage is mildly bad.

Physicists are very good at inventing their own methods, which
must be checked.
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Simple (aka “Toy”) Monte Carlo

A good way to check bias and coverage is a “toy” (I prefer
“simple”) Monte Carlo, in which a simple model of the
statistics is tested using computer random number generators.

Be sure to use a good random generator, a good model of
your problem, and proper ensembles.

Simple Monte Carlos are extremely power tools for checking
and understanding bias, coverage, sensitivity, etc.
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Binomial vs Poisson Uncertainties
You calculate efficiency in a bin by dividing number of good events n by
the number of candidate events N, ε = n/N.
Sometimes people will say that since they are counting the number
of good events, the uncertainty is √n, giving plots like this.
Since there is a maximum number of good events, the
correct uncertainty is binomial, giving this plot.
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Limits - Frequentist
Suppose we are counting some type of event (e.g., how many
Higgs events we see).  If µ is the expected number, then

!n
e

)n(P
nµ

=
µ−

If nobs events are observed, we may want to set an
upper limit µL on µ.  We define the upper limit at a
given confidence level (CL) as the µ such that the
probability of getting the observed number of events
or fewer is 1 - CL.

CL1
!n

eobs Ln

0n

n
L −=

µ∑
=

µ−



August 15, 2006 Craig Blocker      NEPPSR, 2006 20

Zero Intervals
Suppose we are doing a limit, and we know that the background
level is 3 events.  Furthermore, suppose we observe 0 events
and use CL = 90%.
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There is no non-negative µL that satisfies this equation!
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Feldman-Cousins
To solve this problem and others for parameters near
physical boundaries, Feldman and Cousins proposed
a new ordering principle in the Neyman construction.
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Here, µ* is the most likely value of µ for a given x.
Consider a case where P is a Gaussian with unit width,
µ is a parameter that cannot be negative (like mν), and
CL = 68%.
For a given µ, find the xL and xU such that
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Feldman-Cousins II

x

µ

xL

xU

For a measured
value of x, the xU and
xL curves give the
confidence interval
in µ.

Feldman-Cousins
avoids zero intervals,
covers correctly,
smoothly transitions
from 1-sided to 2-sided
intervals, and approaches
“standard” intervals
for x >> 0.

For x = 0, interval is 0 to 0.99 For x = 2.2, interval is 1.2 to 3.2 
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Flip-flopping
From Feldman, NEPPSR IV, “many physicists like to

1. pretend they measure 0 if x < 0
2. give upper limit if x < 3σ
3. give 2-sided interval if x > 3σ”.

This is known as flip-flopping.  In this case, it is impossible
to construct proper frequentist intervals.

Feldman-Cousins gives a smooth transition from 1-sided
intervals (limits) to 2-sided intervals (measurements).

However, you have to understand that if your interval does
not contain 0, this doesn’t mean you have good evidence
for a discovery.
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Bayesian Limits
A Bayesian determines an upper limit µL by

CLd)x|(P
L
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For a Poisson process with no background and using
a flat prior, this gives the same limit as a frequentist
calculation.
Bayesian limits

1. depend on the prior
2. are metric dependent
3. in general, do not cover correctly.
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Nuisance Parameters
Nuisance parameters usually are quite important in limits.

For example, we may look for a number of events of some
type and wish to put a limit on the cross section by correcting
for the background and efficiency, both of which usually
have uncertainties.

Frequentists require correct coverage for any true value of
the parameters, including the nuisance parameters.  This
usually leads to very long and intensive Monte Carlo
calculations (particularly if there many nuisance parameters).

Bayesian just include the nuisance parameter distributions
in their “probability” functions and then happily integrate
over them.
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Truncated Gaussian Efficiency
Bayesians can get undesired effects.

For example, if you
1.  are doing a counting experiment (i.e., Poisson process),
2.  assume the efficiency ε is Gaussian distributed,
3.  truncate the Gaussian so that ε ≥ 0, and
4.  you use a flat prior, then

you will find that the posterior density is not normalizable.

People often put in a cutoff (either knowingly or unknowingly),
but then the limit is cutoff dependent. 
You can also change the flat prior or change what you assume
for an efficiency distribution.
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Sensitivity
In Feldman-Cousins and other methods, it is possible
that fluctuations will cause an experiment with larger
background to have a lower limit that a better experiment
with less background.

In order that people can evaluate your experimental results
properly, it is important to also give the sensitivity, which
is defined as the average limit that would be set if
the true parameter value is 0.

A simple Monte Carlo is a good way to calculate
the sensitivity.
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Recommendations
Whether you are a Frequentist, Bayesian, or mixed (Frayesian??),
you should

1.  Check your statistics process for bias and coverage,
particularly if the method is not standard (even if you
are a Bayesian).

2.  Remember what your measurement is actually saying.
3.  Tell people explicitly what you did.
4.  Quote your sensitivity.
5.  Not undercover.



August 15, 2006 Craig Blocker      NEPPSR, 2006 29

Statistics References

Louis Lyons’ Lectures:
http://www-ppd.fnal.gov/EPPOffice-w/Academic_Lectures/

Colin Gay, Likelihood methods, NEPPSR V, IV, (...?)
C. Blocker, Likelihood methods, NEPPSR IV, III, I
Gary Feldman, Statistics of Small Numbers, NEPPSR IV

PDG:    http://pdg.lbl.gov
CDF Statistics:

http://www-cdf.fnal.gov/physics/statistics/ statistics_home.html
Babar:    http://www.slac.stanford.edu/BFROOT/www/Statistics/

and references therein.


