Physics at Hadron Colliders

Run 167139 Event 1191211

Joao Guimaraes da Costa Harvard University

NEWS RELEASE

News Release March 2, 1995

NEWS MEDIA CONTACTS:

Judy Jackson, 708/840-4112 (Fermilab) Gary Pitchford, 708/252-2013 (Department of Energy) Jeff Sherwood, 202/586-5806 (Department of Energy)

PHYSICISTS DISCOVER TOP QUARK

Office of Public Affairs P.O. Box 500 Batavia, IL 60510 630-840-3351 Fax 630-840-8780 E-Mail TOPQUARK@FNAL.GOV

Batavia, IL--Physicists at the Department of Energy's Fermi National Accelerator Laboratory today (March 2) announced the discovery of the subatomic particle called the top quark, the last undiscovered quark of the six predicted by current scientific theory. Scientists worldwide had sought the top quark since the discovery of the bottom quark at Fermilab in 1977. The discovery provides strong support for the quark theory of the structure of matter.

FERMILAB-PUB-95/022-E ODF/PUB/TOP/PUBLIC/3040

Observation of Top Quark Production in $\bar{p}p$ Collisions

Abstract

We establish the existence of the top quark using a 67 pb⁻¹ data sample of $\bar{p}p$ collisions at $\sqrt{s} = 1.8$ TeV collected with the Collider Detector at Fermilab (CDF). Employing techniques similar to those we previously published, we observe a signal consistent with $t\bar{t}$ decay to $WWb\bar{b}$, but inconsistent with the background prediction by 4.8σ . Additional evidence for the top quark is provided by a peak in the reconstructed mass distribution. We measure the top quark mass to be $176 \pm 8(\text{stat.}) \pm 10(\text{svs.})$ GeV/c³, and the $t\bar{t}$ production cross section to be $6.8^{+3.6}_{-3.4}$ pb. $\times 35 \text{ m}_{b}$

The Top Quark

1989-1995: ~110 pb-1 (Run I) A few dozen events

Theorist View

Experimentalist View

Hadron Colliders

Tevatron highest energy collider today

LHC highest energy collider starting 2008

x 30-50 luminosity

Hadron Collider Basics

□Hadrons are composite Really collide broad band of constituent partons □Valence + Sea quarks **Gluons** Momentum fraction carried by parton given by measured parton distribution functions (PDFs) parton-parton CM energy ~ 1/6 beam-beam CM energy Additional particles from "underlying event

Top Quark Production at Hadron Colliders

Parton Distribution Functions

Parton distribution function: $xF(x,\mu^2)$

Effective center of mass energy

Top Quark Pair Production

Theoretical Cross Section

Cacciari et al. JHEP 0404:068 (2004) Kidonakis & Vogt PRD 68 114014 (2003)

Hadron Colliders – Challenges

Trigger

95% Minimum Bias 3% QCD Dijets 1.5% B's 0.5% High Pt <1% Minimum Bias 14% QCD Dijets 66% B's 20% High Pt <1% Minimum Bias <1% QCD Dijets 21% B's 78% High Pt 2% Minimum Bias 2% QCD Dijets

21% B's 75% High Pt Soft QCD QCD Dijets B physics High p_T

Trigger and Data Acquisition

Dataflow of CDF "Deadtimeless" Trigger and DAQ

In modern experiments, acquire LOTS of data in very short time:

- Proton-anti-proton collisions happen at the Tevatron every 396 ns ~ 7 MHz.
- CDF has about 1 Mio electronic channels

 $\Rightarrow O(1 \text{ TBit/sec})$

⇒ Electronics and network
 can't handle that - need to
 select interesting events at
 pallatable rate
 ⇒ Need a Trigger

A CDF VME crate

Theoretical High-Energy Physics

Experimental Hadron-Collider Physics

Physics Signatures

How We Detect Different Particle?

Neutrinos

Detected indirectly → Missing energy

Silicon Detector in Top Quark Discovery

New detection technique

Top quark discovery

4 Silicon Layers

The New Silicon Detector

1.9 meter

7-8 Silicon Layers

Readout channels 48,000 - 730,000

Beampipe (the size of a quarter)

30,000 high-voltage human-hair-thick Gold-plated Tungsten wires in Argon-Ethane gas

Calorimeter (EM)

- Lead-scintillator sandwich
 - Lead initiates γ conversion, bremsstrahlung
 - Scintillators detect lowenergy ionizing electrons and positrons
 - Light guides bring scintillator light out to PMTs
 - 18 radiation lengths
 - □ 1/8" Pb, 5mm scintillator
- Total ionization proportional to initial energy of e, γ

Clean Event: ZW→eeev

Calorimeter (Had)

Steel-scintillator sandwich

- Undergo nuclear interactions in material
- Some (highly variable) energy loss due to nuclear binding energy, neutrons
- Some EM component (π⁰), some ionizing track (p, π[±])
- Huge variation event-toevent in detected energy for same energy particle

Vary wide recolution

Reconstruction of Jets

- Quarks or gluons in final state hadronize, create flow of particles
- Reconstructed as a cluster of energy in the calorimeter
- Momentum of tracks is not used to reconstruct the kinematics of the jet

Dijet event

m_{jj}=1364 GeV (70% of CM energy!)

Muon Chambers

Consists of drift tubes and scintillators (triggering)

Steel outside hadron calorimetry
 60 cm-1m

Energy Balance and Jets

High Jet ET Cross-Section

m_{jj}=1364 GeV (70% of CM energy!)

Find Z's: Measure cross section

The Top Event

Missing Energy Signature

Finding W's

п

A W is
A high-pT isolated lepton
Large MET

$$\boldsymbol{n}_T^W \equiv \sqrt{\boldsymbol{p}_T^\ell \boldsymbol{p}_T^\nu (1 - \cos(\boldsymbol{\phi}_\ell - \boldsymbol{\varphi}_\nu))}$$

- Robust even though only observing in transverse plane
- Edge ("jacobian edge") tells you mass
- Slope of edge tells $p_T(2^{nd})$ order), resolution, Γ_W
- Tail tells you Γ_w

The b-quark \rightarrow B-Jet

- Massive (~ He nucleus)
- Unstable
 - Spontaneously decays with probability given by its half-life : τ_b is 1.6 x 10⁻¹² s
 - Average proper distance traveled before decay given by γβcτ_b is ~470γβ μm

Most decays happen quickly

 $\gamma\beta C\tau/\gamma\beta$

Top Event Display from CDF: Tagging b-quarks

Start with set of tracks and general location of luminous region

The Beam

Beamline very long

Luminous region σ~30cm

Hadronic interactions have large cross sections

 Multiple interactions in same bunch crossing not uncommon

The luminous region at CDF

 Average location of the pp interaction point per run size magnified 30x (real size 30 μm)

z direction along beampine (proton direction)

Start with set of tracks and general location of luminous region

Find event-by-event primary vertex

Start with set of tracks and general location of luminous region

Find event-by-event primary vertex

Select tracks with large impact parameter inside jet

Make a seed for secondary vertex and form vertex

Iterate: removing tracks with worst chi2

Secondary Vertex Tagging

Mistag rate

Typical top $E_T \sim 40$ GeV

Top b-tag efficiency/event : 69% (2 b's) Fake rate/event : ~4%

Problems: Multiple scattering in material

Problems: Effects from multiple interactions

Number of interactions per crossing

Large 'Contemporary' Silicon **Systems DELPHI (1996)** ~ 1.8m² silicon area 175 000 readout channels

CMS Silicon Tracker (~2007)

- ~12,000 modules
 - ~ 223 m² silicon area
 - ~25,000 silicon wafers
- ~ 10M readout channels

. CDF SVX IIa (2001-)

- ~ 11m² silicon area
- ~ 750 000 readout channels

Large Silicon Detector Systems

Whoops...

P.Collins, ICHEP 2002

Cross Section Measurement

$$\sigma_{t\bar{t}} = \frac{N_{obs} - \hat{N}_{bkg}}{\epsilon_{pretag} \times \epsilon_b \times \int \mathcal{L}dt}$$

- Nobs : Number of observed events
- N_{bkg} : Number of expected background events
- $\varepsilon_{\text{pretag}}$: Efficiency before tagging (incl Acc and BR)
 - ε_{pretag} ~ 7.5%
 - ϵ_{btag}
- : Event tagging efficiency
 - E_{pretag} ~ 69%
 - L dt : Integrated luminosity

Backgrounds

- Single top, WW, WZ, $Z \rightarrow \tau \tau$

- Non-W
 - Fake W-bosons

Top Cross Section (Single Tag)

Sample	Events	tt fraction	σ (<i>tt</i>)
Loose Tagger	174	73%	8.7 ^{+0.9} +1.2 -0.9 -0.9 pb

Top Cross Section (Double Tags)

Sample	Events	tt fraction	<u>σ(<i>tt</i></u>)
Loose Tagger	54	92%	10.1 ^{+1.6} +2.1 pb

Top in radiative corrections

Top Mass Reconstruction

Lepton + Jets

Kinematical Fit

Top Mass Measurement

Effect on Higgs Mass Expectations

World Average: $m_{top} = 172.5 \pm 2.3 \text{ GeV/c}^2 \text{ (CDF + D0)}$

Top Lifetime: Direct Measurement

Toponium? Mass Resonance?

Hadronization:

 $\tau \sim 10^{\text{-}23} \text{ seconds}$

CDF II at Work!

Detector Roll in Feb 2001

No.

There is a control room, too.

A Real Event...

un : 1 42 820 Even 17 ype : DATA | Unpress : 0,1,33,34,35,4,34,7,8,9,10,42,11,44,13,45,14,15,17,49,20,21,23,24,25,24,27,28 F

