Likelihood Methods: A Companion to the NEPPSR analysis project

Colin Gay, Yale University

NEPPSR, 2006

Outline

- We have arranged a "hands-on" mini-course on fitting techniques using the ROOT framework
- To fit data, we often use the MINUIT package from CERN, which is a fitting engine for numerically minimizing
- It is built-in to ROOT, or can be called stand-alone
- Instead of using it as a black box, we thought we'd show how conceptually simple its operation really is
- Quick review of some basics of probabilities
- Maximum Likelihood basics
- Properties of the ML method, using specific examples

and YES, there will be a test (Especially for repeat NEPPSR offenders)

NEPPSR, 2006

Probability Basics

- Suppose X is a random variable. The probability of throwing X between x, x+dx is P(x)dx
 - P(x) is called the *probability density function (pdf)* for X

$$\int P(x)dx = 1$$

- The *Expectation value* of a function f(x) over P(x) is: $E(f) = \int f(x)P(x)dx$
- The most common expectations we use are the first few moments of the pdf:

$$E(1) = \int 1P(x)dx = 1$$
 normalization

$$E(x) = \int xP(x)dx = \overline{x}$$
 mean

$$E((x - \overline{x})^2) = \int (x - \overline{x})^2 P(x)dx = \sigma^2$$
 variance

• See Craig Blocker's talk for a more detailed introduction NEPPSR, 2006 Colin Gay, Yale University

Probability Basics

- The Conditional Probability P(x|a) is the pdf for X, given that a is true
- For example, P(x|d) = probability that our detector measures a particle passing a wire at distance x, given that the particle is truly at distance d
- Or: P(m|m₀) = probability of measuring mass m given the true mass is m₀
- We use pdfs all the time in our Monte Carlos: we know true value of masses, trajectories, etc, and turn into finite samples of quantities reconstructed by our detector via these pdfs
- Our job with real data is the inverse: Given a finite sample of measurements of a quantity, to infer our pdf and true value for the quantity

NEPPSR, 2006

Samples

- Let X have pdf P(x). A Sample of size N is a set of {x_i} of N throws of X.
- When we plot, e.g., the mass of all of our reconstructed top quarks, we are visualizing our sample pulled from the pdf P(m|m₀), where m₀ is the true top mass
- Our job is, based on our finite sample, to estimate the true value m_0 , and to quantify how certain our estimation is
- For this, we need an *estimator* for m₀
- Some estimators are better than others
 - e.g. My estimator is "150 GeV", no matter what
 - This is an estimator, but not a very good one!

- What properties would we like in our estimators?
- Consistent: As our sample size N increases, we'd like our estimator to converge to the true value. Such an estimator is called *consistent*.
- Efficient: There is a theoretical minimum for the variance of an estimator about the true value, given a sample of size N (called the Minimum Variance Bound)
 - An estimator with variance equal to the MVB is *efficient*
- Unbiased: An estimator whose expectation value (mean) is equal to the true value is called *unbiased*

Maximum Likelihood Estimators

- Suppose we have a sample of N measurements of a variable m, and we know the pdf for m is P(m|m₀).
 - However, we don't know m₀ in fact, it is the physics quantity we are interested in measuring

lihood
$$L(m_0) = \prod_{i=1}^N P(m_i \mid m_0)$$

- The Maximum Likelihood Estimator (MLE) m^* for m_0 is the value of m_0 that maximizes the joint likelihood
- MLEs are not always unbiased, but are consistent and efficient. They are also asymptotically normal.
- Extracting the MLE for a quantity is called "fitting" the data

Form the *like*

Least-squares fit (review?)

- First fit most of us learn is a least-squares or χ^2 fit
- Put data into histogram bins: centers x_i , value y_i with uncertainty σ_i
- Choose function $f(x_i | \vec{\theta})$ which predicts the bin contents y_i as a function of the "fit parameters" $\vec{\theta}$

• Form
$$\chi^2 = \sum \frac{(f(x_i | \vec{\theta}) - y_i)^2}{\sigma_i^2}$$

• The Least-Squares Principle states that the best estimate for the parameters $\vec{\theta}$ are the ones which minimize χ^2

Binned vs Unbinned fits

- The LSQ fit is an example of a binned fit
- A LSQ fit has the nice property that in addition to supplying the fit parameters, it also tells us how "good" the fit function approximates the data
- Binned fits with few (or zero) events per bin are problematic
- Gaussian approx of uncertainty σ_i on bin contents is 0
 - Contribution to χ^2 undefined
 - Root just ignores these bins => fit biased high
- Likelihood fits give us the ability to deal with data in an unbinned way
 - Ideal for small statistics, or sparse data

NEPPSR, 2006

MLE Properties – NEPPSR project

- I'll develop the concepts of the ML fit using an analytically solvable case
- You will write a fitting program, fit to data supplied by Stephane, Kevin and John, and can compare to analytic result
- I'll use a common real-world case fitting for the lifetime of a data sample of decay times

Lifetime Likelihood

We can write the probability density function for an exponential decay in two ways:

$$P(t \mid \tau) = \frac{1}{\tau} e^{-t/\tau}$$
 or $P(t \mid \Gamma) = \Gamma e^{-\Gamma t}$

 These are properly normalized (more on this later)

$$\int P(t \mid \tau) dt = 1$$

• Construct the likelihood

$$L(\tau) = \prod_{i=1}^{N} P(t_i \mid \tau)$$

from the N time measurements $\{t_i\}, i = 1, N$

NEPPSR, 2006

Lifetime Likelihood

- Rather than Maximizing the likelihood, we usually take the log
- Numerically, the likelihood can get extremely small, resulting in precision issues. log is better.
- log is monotonic, so maximizing logL is equivalent to L
- Our main fitting package, MINUIT, finds Minima, so we multiply by -1 and Minimize:

$$-\log L(\tau) = -\sum_{i=1}^{N} \log P(t_i \mid \tau)$$
$$= -\sum_{i=1}^{N} \log(\frac{1}{\tau}e^{-t_i/\tau})$$
$$= \sum_{i=1}^{N} (\log \tau + \frac{t_i}{\tau})$$
$$= N\log \tau + \frac{1}{\tau} \sum_{i=1}^{N} t_i$$

Colin Gay, Yale University

NEPPSR, 2006

Maximizing the Likelihood

• To find the minimum, we set the first derivative to 0

$$\frac{\partial (-\log L)}{\partial \tau} = \mathbf{0} = \frac{N}{\tau} - \frac{1}{\tau^2} \sum_{i=1}^{N} t_i$$

$$\implies N\tau = \sum_{i=1}^{N} t_i$$

$$\implies \tau^* = \frac{1}{N} \sum_{i=1}^{N} t_i \quad (= E(t) = \overline{t} = \text{mean})$$

 au^{*} is the ML estimator for the true lifetime au

NEPPSR, 2006

Likelihood for a Lifetime

NEPPSR, 2006

Numerical method

 While we can solve this system analytically, in general we must build up the likelihood numerically by looping over the events and adding up the –log P:

```
sum = 0;
for (i=0; i<N; i++) {
   sum += log(tau) + t[i]/tau;
}
```

Find minimum sum by scanning in tau

 This allows for very complicated probability functions to be handled in a straightforward way

What about the width?

 What if we considered the width to be our unknown, rather than the lifetime?

$$-\log L(\Gamma) = -\sum_{i=1}^{N} \log(\Gamma e^{-\Gamma t_i}) = \sum_{i=1}^{N} (-\log \Gamma + \Gamma t_i)$$
$$= -N \log \Gamma + \Gamma \sum_{i=1}^{N} t_i$$

NEPPSR, 2006

• Let's calculate the expectation (mean) value of our

estimator
$$\tau^* = \frac{1}{N} \sum_{i=1}^N t_i$$
 given the true lifetime is τ

$$E(\tau^*) = E(\frac{1}{N} \sum_{i=1}^N t_i) = \frac{1}{N} \sum_{i=1}^N E(t_i)$$

$$= \frac{1}{N} \sum_{i=1}^N \int t_i \frac{1}{\tau} e^{-t_i/\tau} dt_i$$

$$= \int_0^\infty t \frac{1}{\tau} e^{-t/\tau} dt = t e^{-t/\tau} \Big|_0^\infty - \int_0^\infty e^{-t/\tau} dt$$

$$= \tau$$

• The mean value of our fit result for τ^* , if we repeat the experiment many times, is the true value τ =>Unbiased

NEPPSR, 2006

Bias (continued)

• What about Γ ?

$$E(\Gamma^*) = E(\frac{N}{\sum_{i=1}^{N} t_i}) = N \int ... \int \frac{1}{\sum_{i=1}^{N} t_i} P(t_1 \mid \Gamma) ... P(t_N \mid \Gamma) dt_1 ... dt_N \neq \Gamma$$

- Hence Γ^* is a biased estimator. This sounds bad ...
- However, fitting for lifetime or width gives the same answer: Remember

$$\Gamma^* = \mathbf{1} / \tau^*$$

• You can get a fine fit with either. It should be no surprise that $E(\frac{1}{x}) \neq \frac{1}{E(x)}$

so that if estimator x is unbiased, 1/x must be biased NEPPSR, 2006 Colin Gay, Yale University

MLE transformation invariance

- In fact, the result of the likelihood fit is invariant under parameter transformation:
 - If f(x) is any function of the estimator x, then the MLE for f(x) satisfies

 $(f(x))^* = f(x^*)$

- That is, fitting for x, and then applying the transformation f gives the same result as fitting for f(x)
- Thus there's more than one way to skin any cat ...

Uncertainty on ML Estimator

• Taylor expand likelihood about minimum:

$$\log L(\theta) = \log L|_{\theta^*} + \frac{1}{2} \frac{\partial^2 \log L}{\partial \theta^2} \bigg|_{\theta = \theta^*} (\theta - \theta^*)^2$$

$$L(\theta) = L|_{\theta^*} e^{\frac{1}{2} \frac{\partial^2 \log L}{\partial \theta^2}\Big|_{\theta = \theta^*} (\theta - \theta^*)^2}$$

• **If we consider this a probability density for the true value of the parameter θ , we see it is a Gaussian, with mean θ^* and variance

$$\sigma^{2} = V(\theta) = -\frac{1}{\frac{\partial^{2} \log L}{\partial \theta^{2}}}\Big|_{\theta = \theta^{*}}$$

NEPPSR, 2006

Meaning of Likelihood

- Depends on if you are Bayesian or Frequentist
 - While most particle physicists are professed frequentists, they also seem to me to be closet Bayesians at times
- Let's be a bit more careful in notation. The likelihood is

$$L(\{t_i\} \mid \tau) = \prod_{i=1}^N P(t_i \mid \tau)$$

- Bayes: We'd like to invert the probability, and consider this as the probability density for the true value τ given the observations t_i
- In general $P(A|B) \neq P(B|A)$. In fact, Bayes' thm is:

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

(follows from P(A | B)P(B) = P(B | A)P(A))

NEPPSR, 2006

Meaning of Likelihood

• Thus
$$P(\tau \mid data) = \frac{P(data \mid \tau)P(\tau)}{P(data)}$$

- **P**(*data*) is some constant normalization
- If we take the so-called *prior probability* function *P*(τ) to be flat, then the likelihood *is* the probability distribution for the true value of τ

 $P(\tau \mid data) = P(data \mid \tau) = L(\tau)$

- Writing in a more suggestive way: $\log L(\theta) = \log L|_{\theta^*} - \frac{1}{2} \frac{(\theta - \theta^*)^2}{\sigma^2}$
- Hence the values of the likelihood for the true value of θ being 1, 2, n σ from the central value are

$$-\log L(\theta^* \pm 1\sigma) = -\log L|_{\theta^*} + \frac{1}{2}$$
$$-\log L(\theta^* \pm 2\sigma) = -\log L|_{\theta^*} + 2$$
$$-\log L(\theta^* \pm n\sigma) = -\log L|_{\theta^*} + \frac{1}{2}n^2$$

- For fits, $\chi^2 = \sum \frac{(f_i x_i)^2}{\sigma_i^2}$, $\Delta \chi^2 = 1, 4, 9$ correspond to 1, 2, 3 σ excursions
- Same for ML fits, except factor of 1/2

NEPPSR, 2006

Likelihood Uncertainty

NEPPSR, 2006

Estimated Variance of Lifetime fit

In our case of the lifetime fit:

$$-\log L = N\log \tau + \frac{1}{\tau}\sum_{i=1}^{N} t_{i}$$

Colin Gay, Yale University

Lifetime fit Uncertainties

- Note that samples with fitted lifetimes that fluctuate low ALSO have the smallest uncertainty!
- This can easily (and did/does) cause world-averages of many measurements to be biased low, as low values get the largest weight
- More correct to combine the likelihood curves to average many experiments
- This is now done behind the scenes for many measurements
 - Experts supply sampling of the likelihood curve for their fit
 - L curves are ADDED
 - Minimum of summed L found, and Δ L=1/2 gives combined uncertainty

Goodness of Fit

- Consider the two data sets below, made into histograms for visualization. Both result in the same ML estimator for the lifetime.
- Surely, data set 1 is "more" likely than data set 2, right?
- Surely, since it is more exponential, the value of the likelihood function for the 1st should be larger than for the 2nd, right? Each events "probability" should be higher, resulting in a net larger likelihood.

Goodness of Fit

• Unfortunately, this is wrong. Recall:

$$-\log L = N\log \tau + \frac{1}{\tau}\sum_{i=1}^{N} t_i \quad \text{and} \quad \tau^* = \frac{1}{N}\sum_{i=1}^{N} t_i$$

$$-\log L_{\min} = N\log \tau^* + \frac{1}{\tau^*} \sum_{i=1}^N t_i = N\log(\frac{1}{N} \sum t_i) + \frac{N}{\sum t_i} \sum t_i$$
$$= N(-\log N + 1 + \log \sum t_i) = N(\log \tau^* + 1)$$

• ANY sample with the same $\sum t_i$ produces the SAME estimate $\tau^* = \sum t_i / N$ with the SAME value for the -logL of $N(\log \tau^* + 1)$

- The two previous fits are "equally likely"!
- This is a weakness of the ML method it doesn't naturally supply a "goodness of fit" metric

NEPPSR, 2006

Moral

- The ML method will not save you from yourself!
- Sanity check of results essential!
- How likely is likely needs care: e.g. from a self-help mathematics website:

<u>Definition of Unlikely Event</u>

- The event that may not happen is an unlikely event.
- In other words, unlikely event is an event that is not likely to happen.

Likelihood Normalization

- You must be vigilant that your likelihood is properly normalized (or at least its normalization doesn't change)
- Easiest way is to normalize each building-block probability distribution
- Ignoring this can cause real problems:
 - Consider a ML fit with 10,000 data events
 - Suppose the normalization of the underlying pdfs changes from 1 to 0.9999

$$-\log L = \sum_{i=1}^{N} \log P(t_i | \tau)$$

$$\Rightarrow \sum_{i=1}^{10,000} \log 0.9999P(t_i | \tau)$$

$$= \sum_{i=1}^{10,000} (\log 0.9999 + \log P(t_i | \tau))$$

$$= \sum_{i=1}^{10,000} (-.0001 + \log P(t_i | \tau))$$

$$= \sum_{i=1}^{10,000} \log P(t_i | \tau) - 1$$

$$More than 1 sigma Change! Colin Gay, Yale University$$

NEPPSR, 2006

ML Fit with Constraint

- It is easy to add external constraints on fit parameters
- Let's assume Gaussian uncertainty on constraint
 - e.g. add in the world-average knowledge as given by PDG

$$L = P(\tau \mid \tau_{PDG}, \sigma_{PDG}) \prod_{i=1}^{N} P(t_i \mid \tau)$$

$$-\log L = -\log P(\tau \mid \tau_{PDG}, \sigma_{PDG}) + \sum_{i=1}^{N} \log P(t_i \mid \tau)$$

$$= -\log(\frac{1}{\sqrt{2\pi}\sigma_{PDG}} e^{-\frac{(\tau - \tau_{PDG})^2}{2\sigma_{PDG}^2}}) + \sum_{i=1}^{N} \log P(t_i \mid \tau)$$

$$= \sum_{i=1}^{N} \log P(t_i \mid \tau) + \frac{(\tau - \tau_{PDG})^2}{2\sigma_{PDG}^2} + \log \sqrt{2\pi}\sigma_{PDG}$$

$$Original \quad \frac{1}{2}\chi^2 \text{ penalty} \quad \text{Constant}$$

$$Wandering by$$

$$1 \text{ sigma from constraint costs 1/2 unit of likelihood (=1 \text{ sigma})}$$

NEPPSR, 2006

Lifetime with imperfect Detector

- All detectors have non-zero time resolution
 - -> Let's add this effect in to our fit
- Assume detector has a gaussian resolution function, with mean = 0 (i.e. unbiased) and width

$$P(t \mid \tau) = Exp(t', \tau) \otimes G(0, \sigma)$$
$$= \frac{1}{\sqrt{2\pi\sigma\tau}} \int_0^\infty e^{-t'/\tau} e^{-\frac{(t-t')^2}{2\sigma^2}} dt'$$

• Consider the exponentials. The exponent is:

$$-\frac{t}{\tau} - \frac{(t-t')^2}{2\sigma^2} = -\frac{1}{2\sigma^2} (t'^2 - 2t't + t^2 + 2\frac{\sigma^2}{\tau}t')$$
$$= -\frac{1}{2\sigma^2} (t'^2 - 2t'(t - \frac{\sigma^2}{\tau}) + t^2)$$
$$= -\frac{1}{2\sigma^2} \left[(t' - (t - \frac{\sigma^2}{\tau}))^2 + 2\frac{\sigma^2 t}{\tau} + \frac{\sigma^4}{\tau^2} \right]$$
$$= -\frac{1}{2\sigma^2} (t' - (t - \frac{\sigma^2}{\tau}))^2 - \frac{t}{\tau} - \frac{\sigma^2}{2\tau^2}$$

NEPPSR, 2006

Lifetime with Imperfections

PDF becomes $P(t \mid \tau) = \frac{1}{\sqrt{2\pi}\sigma\tau} \int_0^\infty e^{-t/\tau} e^{-\frac{\sigma^2}{2\tau^2}} e^{-\frac{(t'-(t-\frac{\sigma^2}{\tau}))^2}{2\sigma^2}} dt'$ $=\frac{1}{\tau}e^{-t/\tau}e^{-\frac{\sigma^{2}}{2\tau^{2}}}\frac{1}{\sqrt{2\pi}\sigma}\int_{0}^{\infty}e^{-\frac{(t'-(t-\frac{\sigma^{2}}{\tau}))^{2}}{2\sigma^{2}}}dt'$ $=\frac{1}{\tau}e^{-t/\tau}e^{-\frac{\sigma^{2}}{2\tau^{2}}}\frac{1}{\sqrt{2\pi\sigma}}\int_{-(t-\frac{\sigma^{2}}{2})}^{\infty}e^{-\frac{t'^{2}}{2\sigma^{2}}}dt'$ $=\frac{1}{\tau}e^{-t/\tau}e^{-\frac{\sigma^{2}}{2\tau^{2}}}\frac{1}{\sqrt{\pi}}\int_{-\frac{1}{\sqrt{2}}(\frac{t}{\sigma}-\frac{\sigma}{\tau})}^{\infty}e^{-x^{2}}dx$ $=\frac{1}{\tau}e^{-t/\tau}e^{-\frac{\sigma^2}{2\tau^2}}\frac{1}{2}erfc(-\frac{1}{\sqrt{2}}(\frac{t}{\sigma}-\frac{\sigma}{\tau}))$

Effect of Worsening Resolution

$$P(t \mid \tau) = \frac{1}{\tau} e^{-t/\tau} e^{-\frac{\sigma^2}{2\tau^2}} \frac{1}{2} \operatorname{erfc}(-\frac{1}{\sqrt{2}}(\frac{t}{\sigma} - \frac{\sigma}{\tau}))$$

• As σ grows, pdf looks less like exponential, more like the gaussian resolution function

NEPPSR, 2006

Lifetime with Cutoff

- Suppose we are measuring the ½ life of some radioactive material, but we only have T days to run our experiment
- Our probability density for observing a decay must cut off at T days, affecting the normalization

$$P(t \mid \tau) = \frac{1}{1 - e^{-T/\tau}} \frac{1}{\tau} e^{-t/\tau}$$

$$-\log L(\tau) = -\sum_{i=1}^{N} \log(\frac{1}{1 - e^{-T/\tau}} \frac{1}{\tau} e^{-t_i/\tau})$$
$$= -N(\log(1 - e^{-T/\tau}) + \log \tau) - \frac{1}{\tau} \sum_{i=1}^{N} t_i$$

- Now solve numerically ... Note that the normalization changes with $\boldsymbol{\tau}$

NEPPSR, 2006

Lifetime with Background

- Suppose we have a prompt (0 lifetime) background in our sample (measured with resolution $\,\sigma$)
- We can easily handle this by making our per-event probability:

$$P(t \mid \tau, f) = f \frac{1}{\tau} e^{-t/\tau} \otimes G(0, \sigma) + (1 - f)G(t \mid 0, \sigma)$$

f = fraction of signal G = gaussian

• Form –log L as usual, minimize wrt both au, f

Multiple variables

- Maximum Likelihood fit easily handles multiple fit variables

 simply multiply in the probability densities for each new variable
- Least-squares fit has problems with such fits
 - As we add more and more dimensions to our fit, binned methods encounter trouble
 - Data gets spread thin over large number of histogram bins, resulting in few entries (or zero) per bin => problematic for the fit
- e.g. Adding the reconstructed mass to the decay time as variables to fit and distinguish signal from background

Summary

- Maximum Likelihood fit is a powerful, convenient technique for estimating parameters from finite samples
- Unbinned, so small statistics, sparse data ok
- Best choice for many-parameter fits
- For large N, gives unbiased value, converges to true value, and has minimum uncertainty possible
- Constant normalization critical
- Auxiliary goodness of fit required
- Visualization can be difficult
- Most serious fits you do in your career will be Maximum Likelihood fits
- Stephane will talk about the hands-on part of the project

NEPPSR, 2006