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Outline

• We have arranged a “hands-on” mini-course on fitting 
techniques using the ROOT framework

• To fit data, we often use the MINUIT package from CERN, 
which is a fitting engine for numerically minimizing 

• It is built-in to ROOT, or can be called stand-alone
• Instead of using it as a black box, we thought we’d show 

how conceptually simple its operation really is

• Quick review of some basics of probabilities
• Maximum Likelihood basics
• Properties of the ML method, using specific examples

and YES, there will be a test ☺
(Especially for repeat NEPPSR offenders)



NEPPSR, 2006 Colin Gay, Yale University

Probability Basics

• Suppose X is a random variable.  The probability of 
throwing X between x, x+dx is P(x)dx
• P(x) is called the probability density function (pdf) for X

( ) 1P x dx =∫
• The Expectation value of a function f(x) over P(x) is: 

( ) ( ) ( )E f f x P x dx= ∫
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• The most common expectations we use are the first few
moments of the pdf:

• See Craig Blocker’s talk for a more detailed introduction
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Probability Basics

• The Conditional Probability P(x|a) is the pdf for X, given 
that a is true

• For example, P(x|d) = probability that our detector 
measures a particle passing a wire at distance x, given 
that the particle is truly at distance d

• Or: P(m|m0) = probability of measuring mass m given the 
true mass is m0

• We use pdfs all the time in our Monte Carlos:  we know 
true value of masses, trajectories, etc, and turn into finite 
samples of quantities reconstructed by our detector via 
these pdfs

• Our job with real data is the inverse:  Given a finite sample 
of measurements of a quantity, to infer our pdf and true 
value for the quantity 
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Samples

• Let X have pdf P(x).  A Sample of size N is a set of {xi} of N 
throws of X.

• When we plot, e.g., the mass of all of our reconstructed top 
quarks, we are visualizing our sample pulled from the pdf
P(m|m0), where m0 is the true top mass

• Our job is, based on our finite sample, to estimate the true 
value m0, and to quantify how certain our estimation is

• For this, we need an estimator for m0

• Some estimators are better than others
• e.g. My estimator is “150 GeV”, no matter what
• This is an estimator, but not a very good one!
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Estimators

• What properties would we like in our estimators?

• Consistent: As our sample size N increases, we’d like our 
estimator to converge to the true value.  Such an estimator 
is called consistent.

• Efficient: There is a theoretical minimum for the variance of 
an estimator about the true value, given a sample of size N 
(called the Minimum Variance Bound)
• An estimator with variance equal to the MVB is efficient

• Unbiased: An estimator whose expectation value (mean) is 
equal to the true value is called unbiased
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Maximum Likelihood Estimators

• Suppose we have a sample of N measurements of a variable 
m, and we know the pdf for m is P(m|m0).
• However, we don’t know m0 – in fact, it is the physics quantity we 

are interested in measuring

0 0
1

( ) ( | )
N

i
i

L m P m m
=

=∏• Form the likelihood

• The Maximum Likelihood Estimator (MLE) m* for m0 is the 
value of m0 that maximizes the joint likelihood 

• MLEs are not always unbiased, but are consistent and 
efficient.  They are also asymptotically normal.

• Extracting the MLE for a quantity is called “fitting” the data
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Least-squares fit (review?)

• First fit most of us learn is a least-squares or χ2 fit

• Put data into histogram bins: centers xi, value yi with 
uncertainty σi

• Choose function             which predicts the bin contents yi

as a function of the “fit parameters”  

• Form
2

2
2

( ( | ) )i i

i

f x yθ
χ

σ
−

=∑

( | )if x θ
θ

• The Least-Squares Principle states that the best estimate for 
the parameters     are the ones which minimize χ2θ
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Binned vs Unbinned fits

• The LSQ fit is an example of a binned fit
• A LSQ fit has the nice property that in addition to 

supplying the fit parameters, it also tells us how “good” 
the fit function approximates the data

• Binned fits with few (or zero) events per bin are 
problematic

• Gaussian approx of uncertainty σi on bin contents is 0
• Contribution to χ2 undefined
• Root just ignores these bins => fit biased high

• Likelihood fits give us the ability to deal with data in an 
unbinned way
• Ideal for small statistics, or sparse data
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MLE Properties – NEPPSR project

• I’ll develop the concepts of the ML fit using an analytically 
solvable case

• You will write a fitting program, fit to data supplied by 
Stephane, Kevin and John, and can compare to analytic 
result

• I’ll use a common real-world case – fitting for the lifetime of 
a data sample of decay times
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Lifetime Likelihood

• We can write the probability density function for an 
exponential decay in two ways:

( | ) tP t e−ΓΓ = Γ/1( | ) tP t e ττ
τ

−= or

• These are properly normalized 
(more on this later) ( | ) 1P t dtτ =∫

• Construct the likelihood

1
( ) ( | )

N

i
i

L P tτ τ
=

=∏
{ }, 1,it i N=from the N time measurements
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Lifetime Likelihood

• Rather than Maximizing the likelihood, we usually take the 
log

• Numerically, the likelihood can get extremely small, 
resulting in precision issues.  log is better.

• log is monotonic, so maximizing logL is equivalent to L
• Our main fitting package, MINUIT, finds Minima, so we 

multiply by -1 and Minimize:

1

/
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Maximizing the Likelihood

• To find the minimum, we set the first derivative to 0

2
1

( log ) 10
N

i
i

L N t
τ τ τ =

∂ −
= = −

∂ ∑

1

N

i
i

N tτ
=

=∑

*

1

1 ( ( ) mean)
N

i
i
t E t t

N
τ

=

= = = =∑

*τ is the ML estimator for the true lifetime τ
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Likelihood for a Lifetime
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Numerical method

• While we can solve this system analytically, in general we 
must build up the likelihood numerically by looping over 
the events and adding up the –log P:

sum = 0;
for (i=0; i<N; i++) {
sum += log(tau) + t[i]/tau;

}

Find minimum sum by scanning in tau

• This allows for very complicated probability functions to 
be handled in a straightforward way
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What about the width?

• What if we considered the width to be our unknown, 
rather than the lifetime?

1 1

1
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Unbiasedness?

• Let’s calculate the expectation (mean) value of our 

estimator                       given the true lifetime is*
itτ = ∑ τ

1

1 N

iN =

*

1 1
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/ / /
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• The mean value of our fit result for , if we repeat the*

experiment many times, is the true value
=>Unbiased

τ
τ
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Bias (continued)

• What about    ? Γ

1

* 1
1 1

1

( ) ( ) ... ( | )... ( | ) ...N

i
i

N NN
t

i
i

NE E N P t P t dt dt
t =

=

Γ = = Γ Γ ≠ Γ
∑

∫ ∫
∑

• Hence     is a biased estimator.  This sounds bad …*Γ

• However, fitting for lifetime or width gives the same
answer:  Remember

* *1 /τΓ =

• You can get a fine fit with either. It should be no 
surprise that

so that if estimator x is unbiased, 1/x must be biased

1 1( )
( )

E
x E x

≠
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MLE transformation invariance

• In fact, the result of the likelihood fit is invariant under 
parameter transformation:
• If f(x) is any function of the estimator x, then the MLE for 

f(x) satisfies

• That is, fitting for x, and then applying the transformation 
f gives the same result as fitting for f(x) 

• Thus there’s more than one way to skin any cat …

* *( ( )) ( )f x f x=
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Uncertainty on ML Estimator

• Taylor expand likelihood about minimum:

*

*

2
* 2

2
1 loglog ( ) log | ( )
2

LL L
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θ θ

θ θ θ
θ
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∂
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• **If we consider this a probability density for the true 
value of the parameter    , we see it is a Gaussian, with 
mean     and variance*θ
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Meaning of Likelihood

• Depends on if you are Bayesian or Frequentist
• While most particle physicists are professed frequentists, 

they also seem to me to be closet Bayesians at times

• Let’s be a bit more careful in notation.  The likelihood is

1

({ } | ) ( | )
N

i i
i

L t P tτ τ
=

=∏

• Bayes: We’d like to invert the probability, and consider 
this as the probability density for the true value given 
the observations ti

• In general P(A|B) ≠ P(B|A).  In fact, Bayes’ thm is:

(follows from ( | ) ( ) ( | ) ( ))P A B P B P B A P A=

( | ) ( )( | )
( )

P B A P AP A B
P B

=

τ
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Meaning of Likelihood

( | ) ( )( | )
( )

P data PP data
P data

τ ττ =• Thus

• is some constant normalization( )P data

• If we take the so-called prior probability function 
to be flat, then the likelihood is the probability 
distribution for the true value of 

( )P τ

τ

( | ) ( | ) ( )P data P data Lτ τ τ= =



NEPPSR, 2006 Colin Gay, Yale University

ML Uncertainties

• Writing in a more suggestive way:

*

* 2

2
1 ( )log ( ) log |
2

L L
θ

θ θθ
σ
−

= −

*

*

*

*

*

* 2

1log ( 1 ) log |
2

log ( 2 ) log | 2
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2

L L
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L n L n

θ

θ

θ

θ σ

θ σ

θ σ

− ± = − +

− ± = − +

− ± = − +

• Hence the values of the likelihood for the true value of 
being 1, 2, n     from the central value are 

θ
σ

• For fits,
correspond to 1, 2, 3     excursions  

2 1,4,9χ∆ =
2

2
2

( ) ,i i

i

f x
χ

σ
−

=∑
σ

• Same for ML fits, except factor of 1/2
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Likelihood Uncertainty
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Estimated Variance of Lifetime fit

1

1log log
N

i
i

L N tτ
τ =

− = + ∑• In our case of the lifetime fit:
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Lifetime fit Uncertainties

• Note that samples with fitted lifetimes that fluctuate low 
ALSO have the smallest uncertainty!

• This can easily (and did/does) cause world-averages of 
many measurements to be biased low, as low values 
get the largest weight

• More correct to combine the likelihood curves to 
average many experiments

• This is now done behind the scenes for many 
measurements
• Experts supply sampling of the likelihood curve for their fit
• L curves are ADDED
• Minimum of summed L found, and ∆ L=1/2 gives combined 

uncertainty
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Goodness of Fit

• Consider the two data sets below, made into histograms 
for visualization.  Both result in the same ML estimator for 
the lifetime.

• Surely, data set 1 is “more” likely than data set 2, right?
• Surely, since it is more exponential, the value of the 

likelihood function for the 1st should be larger than for the 
2nd, right?  Each events “probability” should be higher, 
resulting in a net larger likelihood.
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Goodness of Fit

• Unfortunately, this is wrong. Recall:

*
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1 N

i
i
t

N
τ
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= ∑
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1log log
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i
i
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− = + ∑ and

min
*

*
1

*

1 1log log( )lo
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i i i
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i
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NN t N t t
N t

N

L

N N t

τ
τ

τ
=

= + = +

= +

−

− + + =

∑ ∑ ∑∑
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• ANY sample with the same         produces the SAME 
estimate                      with the SAME value for the
–logL of 

* /it Nτ =∑
it∑

*(log 1)N τ +

• The two previous fits are “equally likely”!
• This is a weakness of the ML method – it doesn’t 

naturally supply a “goodness of fit” metric
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Moral

• The ML method will not save you from yourself!
• Sanity check of results essential!
• How likely is likely needs care: e.g. from a self-help 

mathematics website:
• Definition of Unlikely Event 
• The event that may not happen is an unlikely event. 
• In other words, unlikely event is an event that is not likely 

to happen. 
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Likelihood Normalization

• You must be vigilant that your likelihood is properly 
normalized (or at least its normalization doesn’t change)

• Easiest way is to normalize each building-block probability 
distribution

• Ignoring this can cause real problems:
• Consider a ML fit with 10,000 data events
• Suppose the normalization of the underlying pdfs changes from 
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=
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=
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⇒
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∑
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More than
1 sigma
Change!
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ML Fit with Constraint

• It is easy to add external constraints on fit parameters
• Let’s assume Gaussian uncertainty on constraint

• e.g. add in the world-average knowledge as given by PDG

1
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i
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=

=

=
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=
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∑
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Lifetime with imperfect Detector

• All detectors have non-zero time resolution
->  Let’s add this effect in to our fit

• Assume detector has a gaussian resolution function, 
with mean = 0 (i.e. unbiased) and width

' 2

' 2
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1
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t t
t
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e e dtτ σ

τ τ σ

πστ

−
−∞ −

= ⊗

= ∫
• Consider the exponentials.  The exponent is:
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Lifetime with Imperfections

• PDF becomes 2
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Effect of Worsening Resolution
2

2/ 2 1 1( | ) ( ( ))
2 2

1 t e tP t ce erf
σ
ττ στ

στ τ
−

−= − −

• As    grows, pdf looks less like 
exponential, more like the 
gaussian resolution function

σ
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Lifetime with Cutoff

• Suppose we are measuring the ½ life of some 
radioactive material, but we only have T days to run our 
experiment

• Our probability density for observing a decay must cut 
off at T days, affecting the normalization

/
/
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• Now solve numerically … Note that the normalization 
changes with τ
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Lifetime with Background

• Suppose we have a prompt (0 lifetime) background in our 
sample (measured with resolution     )

• We can easily handle this by making our per-event 
probability:

/1( | , ) (0, ) (1 ) ( | 0, )tP t f f e G f G tττ σ σ
τ

−= ⊗ + −

σ

fraction of signalf =
gaussianG =

• Form –log L as usual, minimize wrt both , fτ
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Multiple variables

• Maximum Likelihood fit easily handles multiple fit variables 
– simply multiply in the probability densities for each new 
variable

• Least-squares fit has problems with such fits
• As we add more and more dimensions to our fit, binned 

methods encounter trouble
• Data gets spread thin over large number of histogram bins, 

resulting in few entries (or zero) per bin => problematic for 
the fit

• e.g. Adding the reconstructed mass to the decay
time as variables to fit and distinguish signal from 
background

/1( , | , , ) { (0, )) ( | , )}

(1 ){ ( | 0, )( )}

t
B B mP t m f m f e G G m m

f G t am b

ττ σ σ
τ

σ

−= ⊗

+ − +
Gaussian signal

Linear background
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Summary

• Maximum Likelihood fit is a powerful, convenient technique 
for estimating parameters from finite samples

• Unbinned, so small statistics, sparse data ok
• Best choice for many-parameter fits
• For large N, gives unbiased value, converges to true value, 

and has minimum uncertainty possible

• Constant normalization critical
• Auxiliary goodness of fit required
• Visualization can be difficult

• Most serious fits you do in your career will be Maximum 
Likelihood fits

• Stephane will talk about the hands-on part of the project
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