The other window on New Physics: CP violation at the B factories

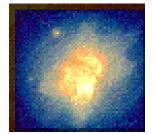
"How would you like to live in Looking-glass House?" L. Carroll Gabriella Sciolla M.I.T.

Outline:

- The physics of CP violation
 - What is CP and why is it interesting?
- CPV in the B system
 - CPV in the Standard Model and the Unitarity Triangle
- Constraining the Unitarity Triangle at the B factories
 - Measurements of angles and sides
- Conclusion
 - Summary & Prospects

The matter dominated Universe

The **Big Bang** model predicts:

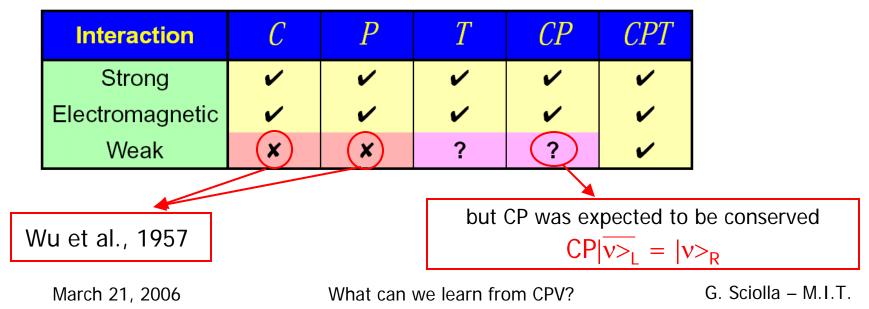

- matter and anti-matter produced in equal amounts
- matter and anti-matter annihilated into pure energy

But this goes against experimental evidence:

- The Universe exists
- It is made of (almost) only <u>matter</u>

How is this possible?

- A. Sakharov's 3 conditions (1967):
 - Baryon number non conservation
 - Thermal non equilibrium
 - C and CP violation



The CP symmetry

$$CP = C \times P$$

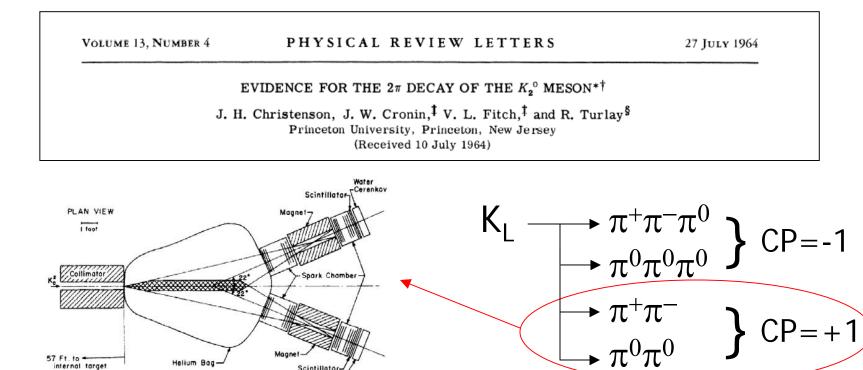
C: Charge Conjugation Particle \rightarrow Anti-particle P: Parity Inverts space coordinates

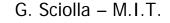
Is Nature CP symmetric?

CP violation in K decays

57 Ft. to -

internal target


Helium Bag


March 21, 2006

Scintillator

4 Water

In 1964 Fitch and Cronin discovered CP violation in the decays of K₁ mesons: K₁ $\rightarrow \pi^+\pi^-$

CP violation in the Standard Model

In 1973 the Kobayashi-Maskawa mechanism explained CPV and predicted the existence of third quark family.

CP violation originates from a <u>complex phase</u> in the quark mixing matrix (CKM matrix).

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\overline{\rho} - i\overline{\eta}) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \overline{\rho} - i\overline{\eta}) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^6)$$

March 21, 2006

Pros and Cons of CKM

Pros:

- Elegant and simple explanation of CPV in SM
- It is very predictive: only one CPV phase
- It accommodates all experimental results
 - Indirect CP violation in $K \rightarrow \pi \pi$ and $K_{L} \rightarrow \pi I \nu$
 - Direct CP violation in $K \rightarrow \pi \pi$
 - CP violation in the B system

Cons:

- \odot n_B/n_y predicted by CKM « observed value
 -by orders of magnitude!
 - \rightarrow New sources of CPV must exist besides CKM!

CPV as a probe for New Physics:

Any extension of SM provides new sources of CP violation

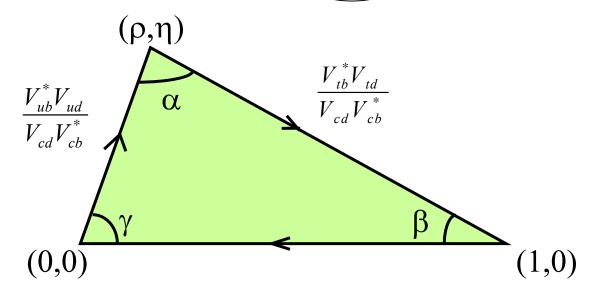
March 21, 2006

What can we learn from CPV?

G. Sciolla – M.I.T.

Standard Model or New Physics?

Measure CP violation in channels theoretically very well understood and look for deviations w.r.t. Standard Model prediction


What can we learn from kaons?

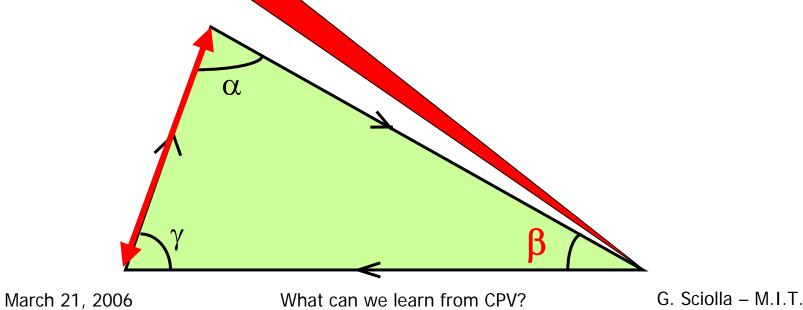
- Experimental results very hard to interpret theoretically:
 - Loose constraints from ε_{K} measurement
 - No constraints from ϵ'/ϵ yet...
- ...or clear theory but very hard to reach experimentally:
 - BF(K_L $\rightarrow \pi^0 \nu \overline{\nu}$)~10⁻¹¹!

Can B mesons do better?

The Unitarity Triangle

Unitarity of CKM implies: $V^{\dagger}V = 1 \rightarrow 6$ unitarity conditions Of particular interest: $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

All sides are $\sim O(1) \rightarrow$ possible to measure both sides and angles!


- CP asymmetries in B meson decays measure α , β and γ
- Sides from B mixing, rare B decays, Semileptonic B decays

March 21, 2006

Redundancy, redundancy, redundancy!

3 ways to look for New Physics:

- a) Sides vs angles
- b) Measurement of same angle using channels with different sensitivity to NP
- c) Measurement of same sides using channels with different sensitivity to NP

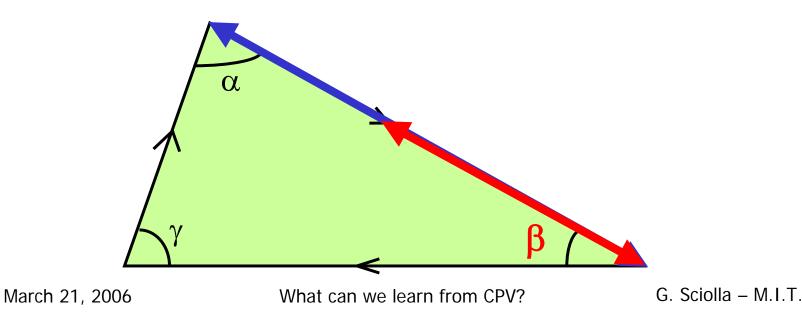
Redundancy, redundancy, redundancy!

3 ways to look for New Physics:

α

- a) Sides vs angles
- b) Measurement of same angle using channels with different sensitivity to NP
- c) Measurement of same sides using channels with different sensitivity to NP

March 21, 2006


What can we learn from CPV?

В

Redundancy, redundancy, redundancy!

3 ways to look for New Physics:

- a) Sides vs angles
- b) Measurement of same angle using channels with different sensitivity to NP
- c) Measurement of same sides using channels with different sensitivity to NP

How to measure the angles?

Time dependent CP asymmetry in B⁰ decays.

$$A_{CP}(t) = \frac{N(\overline{B}^0(t) \to f_{CP}) - N(B^0(t) \to f_{CP})}{N(\overline{B}^0(t) \to f_{CP}) + N(B^0(t) \to f_{CP})}$$

Questions:

How is A_{CP}(t) related to the UT angles?

How can we measure A_{CP}(t)?

The B⁰ system

The B⁰ system:

	B mesons	
Flavor eigenstates	B^0 and $\overline{B}{}^0$	
Mass eigenstates	${\sf B}_{\sf H}$ and ${\sf B}_{\sf L}$	

$$|B_{L}\rangle = p |B^{0}\rangle + q |\overline{B}^{0}\rangle$$
$$|B_{H}\rangle = p |B^{0}\rangle - q |\overline{B}^{0}\rangle$$

$$(p^2 + q^2 = 1)$$

The K⁰ system:

	K mesons	
Flavor eigenstates	K^0 and \overline{K}^0	
Mass eigenstates	${\rm K_S}$ and ${\rm K_L}$	

$$|K_{S}\rangle = p' |K^{0}\rangle + q' |\overline{K}^{0}\rangle$$
$$|K_{L}\rangle = p' |K^{0}\rangle - q' |\overline{K}^{0}\rangle$$

March 21, 2006

What can we learn from CPV?

G. Sciolla – M.I.T.

Time evolution of B⁰

• Starting from pure $B^{0}(\overline{B^{0}})$ state, and after time *t*

$$\left| B^{0}(t) \right\rangle = e^{-im_{B}t} e^{-\Gamma t} \left\{ \cos \frac{\Delta m t}{2} \left| B^{0} \right\rangle - i \frac{q}{p} \sin \frac{\Delta m t}{2} \left| \overline{B}^{0} \right\rangle \right\}$$
$$\left| \overline{B}^{0}(t) \right\rangle = e^{-im_{B}t} e^{-\Gamma t} \left\{ -i \frac{p}{q} \sin \frac{\Delta m t}{2} \left| B^{0} \right\rangle + \cos \frac{\Delta m t}{2} \left| \overline{B}^{0} \right\rangle \right\}$$

- Interested in $Prob(B^{0}(t) \rightarrow f)$ and $Prob(\overline{B^{0}}(t) \rightarrow f)$:
 - Calculate amplitudes $\begin{array}{c} \left\langle f \left| \mathcal{H} \right| B^{0}(t) \right\rangle & \text{and} & \left\langle f \left| \mathcal{H} \right| \overline{B}^{0}(t) \right\rangle \end{array} \right. \\ \left. \text{Use} \\ \left. A_{f} = \left\langle f \left| \mathcal{H} \right| B^{0} \right\rangle & \overline{A}_{f} = \left\langle f \left| \mathcal{H} \right| \overline{B}^{0} \right\rangle \end{array} \sim e^{-2i\beta} \\ \left. \text{Take square to get decay rates...} \right. \\ \left. \text{Take square to get decay rates...} \right.$

March 21, 2006

What can we learn from CPV?

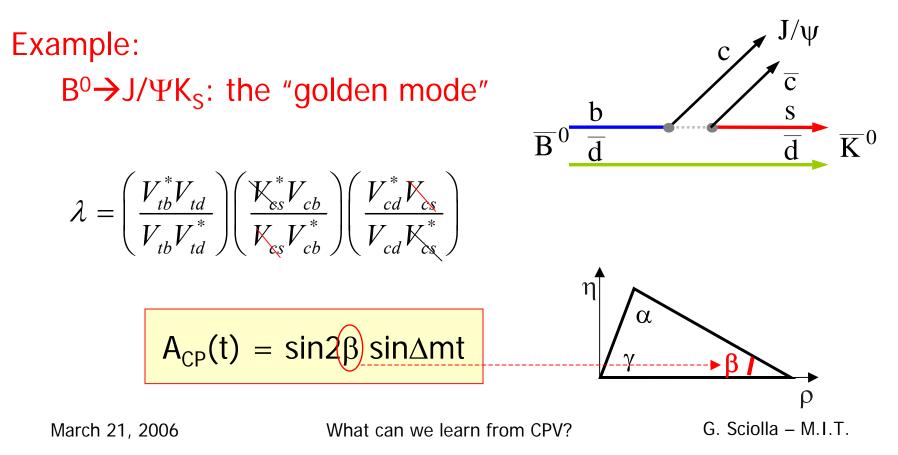
G. Sciolla – M.I.T.

CP violation in interference between mixing and decays in B⁰

Time dependent CP asymmetry for $B^0 \rightarrow f_{CP}$:

$$A_{CP}(t) = \frac{N(\overline{B}^{0}(t) \to f_{CP}) - N(B^{0}(t) \to f_{CP})}{N(\overline{B}^{0}(t) \to f_{CP}) + N(B^{0}(t) \to f_{CP})} = S_{f} \sin(\Delta mt) - C_{f} \cos(\Delta mt)$$

where


$$S_{f} = \frac{2 \operatorname{Im} \lambda_{f}}{1 + |\lambda_{f}|^{2}} \qquad C_{f} = \frac{1 - |\lambda_{f}|^{2}}{1 + |\lambda_{f}|^{2}} \qquad \lambda_{f} = \frac{q}{p} \cdot \frac{\overline{A}_{f}}{A_{f}}$$

For B⁰ $\left|\frac{q}{p}\right| \sim 1$, so when only 1 diagram contributes to the final state: $|\lambda| = 1$
 $A_{CP}(t) = -\eta_{f} \operatorname{Im} \lambda \operatorname{sin}(\Delta mt)$

(CP violation in interference between mixing and decays in B^0)

March 21, 2006

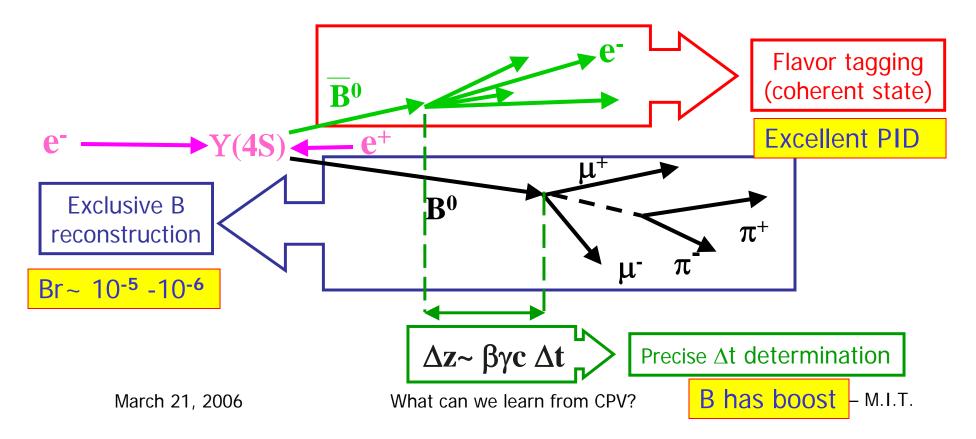
CP violation in B⁰ decays: $sin 2\beta$

For some lucky modes, $Im\lambda$ is directly and simply related to the angles of the Unitarity Triangle.

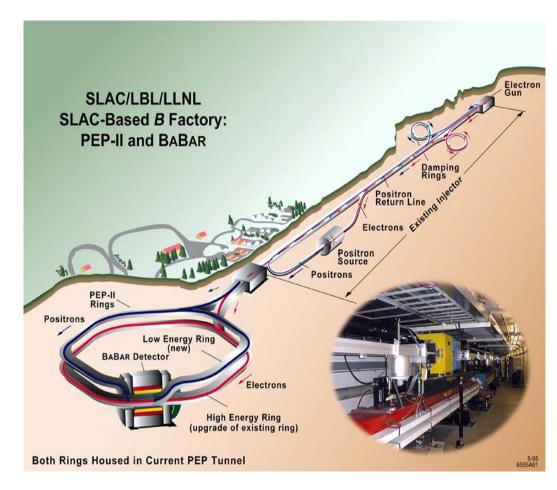
How to measure the angles?

Time dependent CP asymmetry in B⁰ decays.

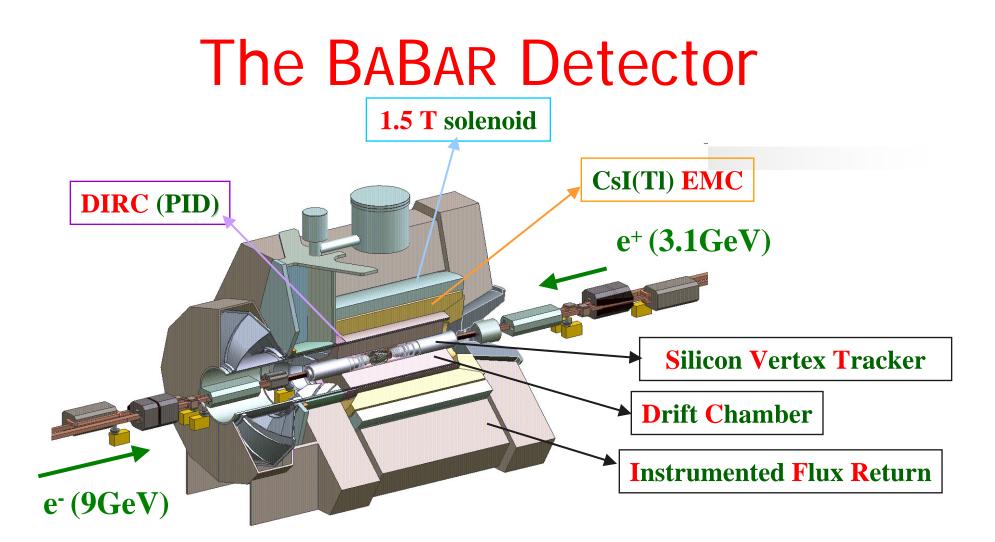
$$A_{CP}(t) = \frac{N(\overline{B}^0(t) \to f_{CP}) - N(B^0(t) \to f_{CP})}{N(\overline{B}^0(t) \to f_{CP}) + N(B^0(t) \to f_{CP})}$$


Questions:

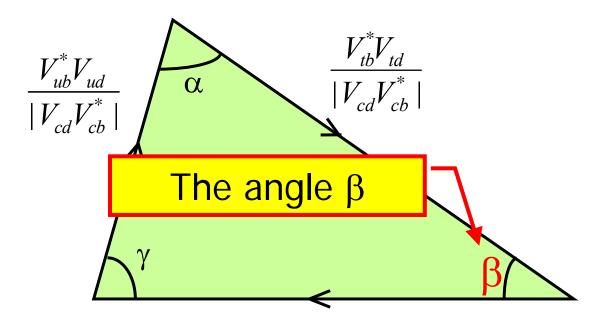
How is A_{CP}(t) related to the UT angles?


■ How can we measure A_{CP}(t)? ←

How to measure the CP asymmetry


$$A_{CP}(t) = \frac{N(\overline{B}^{0}(t) \to f_{CP}) - N(B^{0}(t) \to f_{CP})}{N(\overline{B}^{0}(t) \to f_{CP}) + N(B^{0}(t) \to f_{CP})}$$

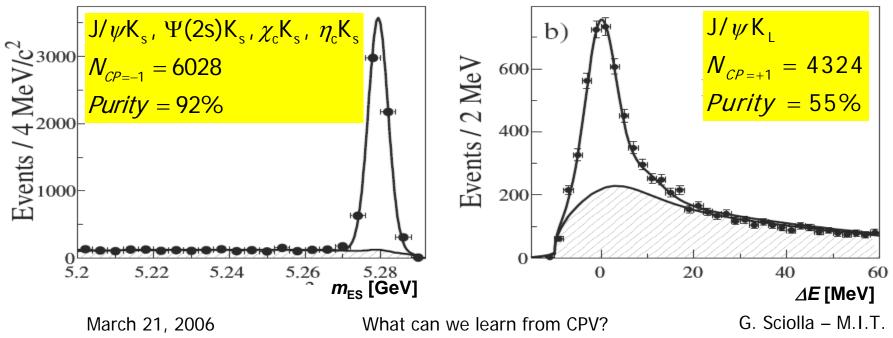
The B factories: PEP-II and KEK-B


- Asymmetric beams
 - 9.0 GeV e⁻ beam
 - 3.1 GeV e⁺ beam
- Currents: 1-2 A
- Peak Luminosity:
 - Design: 3 x 10³³ cm⁻²s⁻¹
 - Achieved: 12 x 10³³ cm⁻²s⁻¹
- Integrated Luminosity >400 fb⁻¹
 - Belle: ~600 fb⁻¹
 - >1 ab⁻¹ in total !

- SVT: 97% efficiency, 15μm z resolution
- Tracking: $\sigma(p_T)/p_T = 0.13\% p_T \oplus 0.45\%$
- DIRC: $K-\pi$ separation: > 4.2 σ @ p=3 GeV/c
 - EMC: $\sigma_{\rm E}/{\rm E} = 2.3\% {\rm E}^{-1/4} \oplus 1.9\%$

March 21, 2006

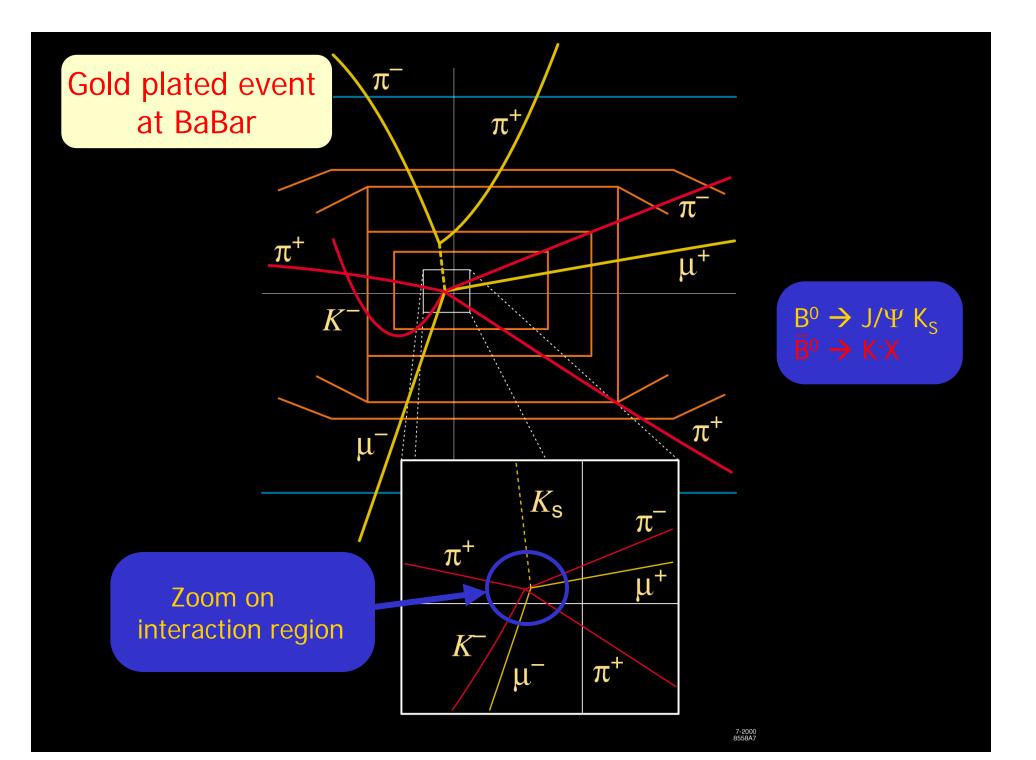
The measurements


S

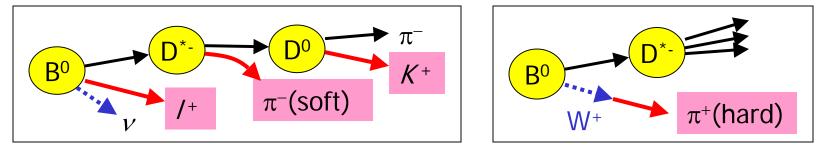
 \overline{d}

The golden mode for sin2 β : B⁰ → charmonium K⁰

- Theoretically clean
- Experimentally clean
- Relatively large BF (~10⁻⁴)


CP sample:

b


 \overline{d}

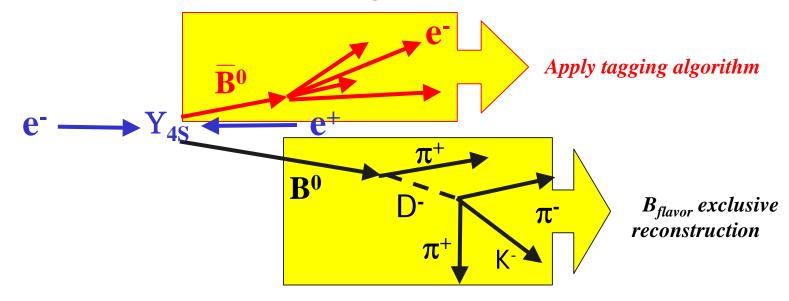
W

B flavor tagging

The principle:

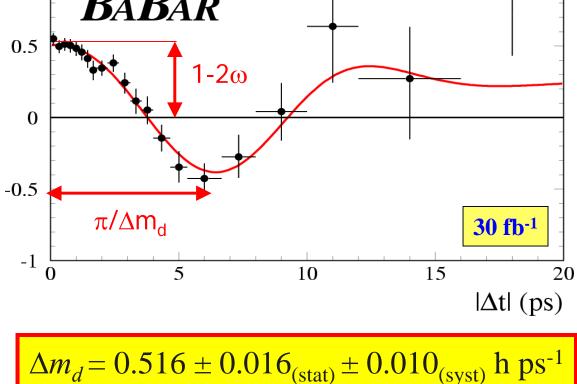
Information combined in a NN-based algorithm

Category	ε (%)	w (%)	Q(%)	
Lepton	8.67 ± 0.08	3.0 ± 0.3	7.67 ± 0.13	
Kaon I	10.96 ± 0.09	5.3 ± 0.4	8.74 ± 0.16	
KaonII	17.21 ± 0.11	15.5 ± 0.4	8.21 ± 0.19	
Kaon-Pion	13.77 ± 0.10	23.5 ± 0.5	3.87 ± 0.14	
Pion	14.38 ± 0.10	33.0 ± 0.5	1.67 ± 0.10	$Q = \varepsilon_{tag} (1-2w)^2$
Other	9.61 ± 0.08	41.9 ± 0.6	0.25 ± 0.04	
All	74.60 ± 0.12		30.4 ± 0.3	

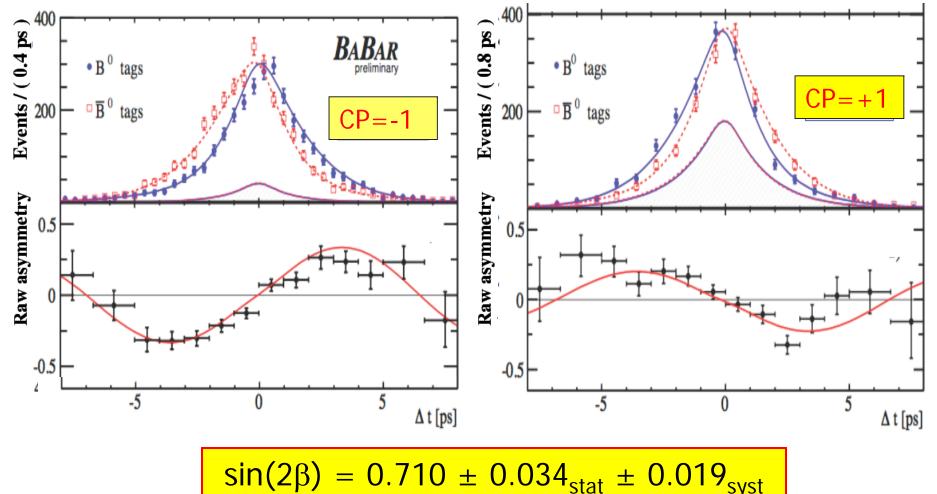

March 21, 2006

The importance of tagging

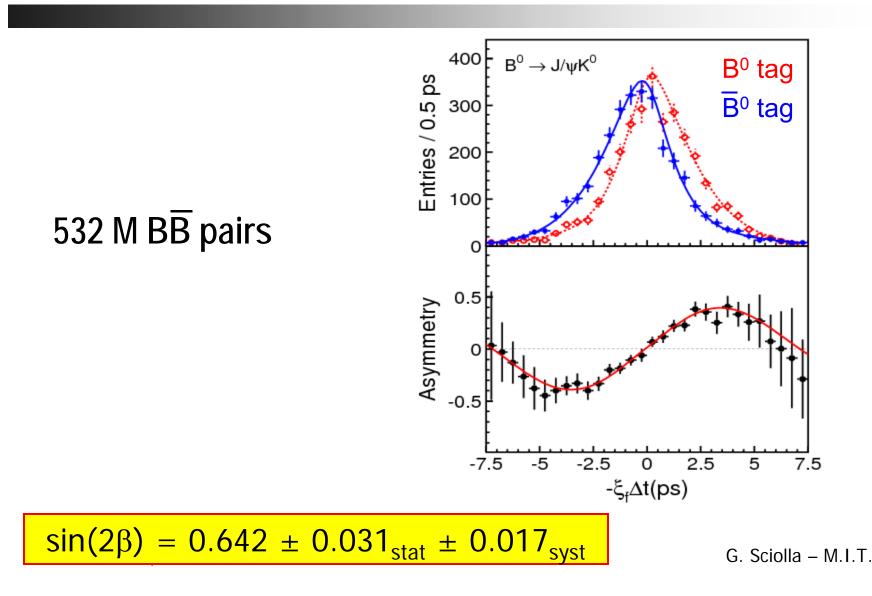
Flavor tagging is a crucial ingredient in CP measurements since $\sigma(\sin 2\theta) \propto 1/\sqrt{0}$


 $\sigma(\sin 2\beta) \propto 1/\sqrt{Q}$ $A_{CP}^{obs}(t) = (1 - 2\omega)A_{CP}(t)$

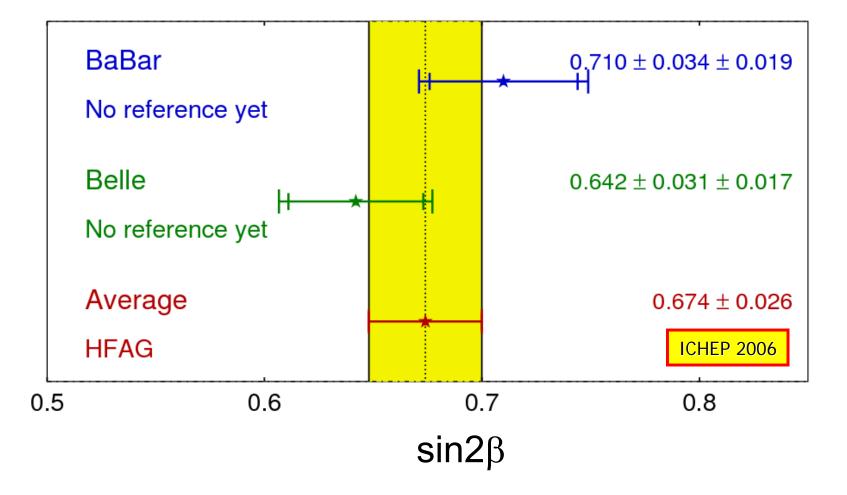
→Extract tagging purity and efficiency directly from data in time dependent B⁰ mixing measurement


Time dependent mixing fit

$$A^{mixing}(t) = \frac{N^{mixed}(t) - N^{unmixed}(t)}{N^{mixed}(t) + N^{unmixed}(t)} \propto (1 - 2\omega) \cos(\Delta m t)$$

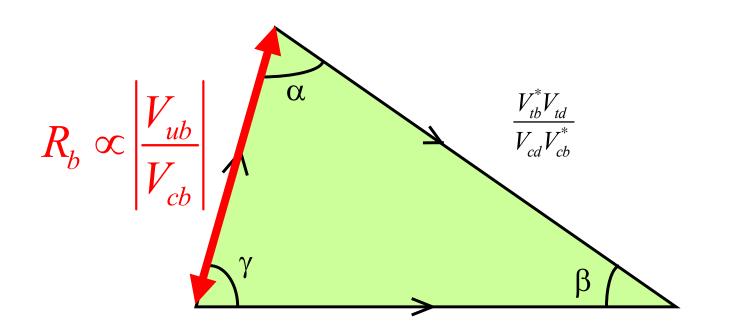


The golden mode for sin2β: CP fit in B→ charmonium K⁰


Unbinned maximum likelihood fit to Δt distribution

The golden mode for sin2 β : Belle's B \rightarrow charmonium K⁰

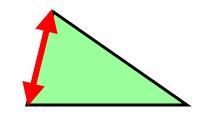
How well do we know $sin(2\beta)$?

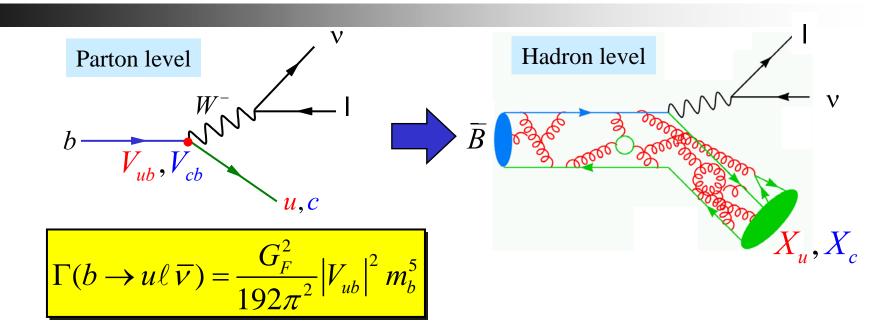

March 21, 2006

How to look for New Physics

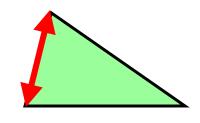
Beautiful measurement:

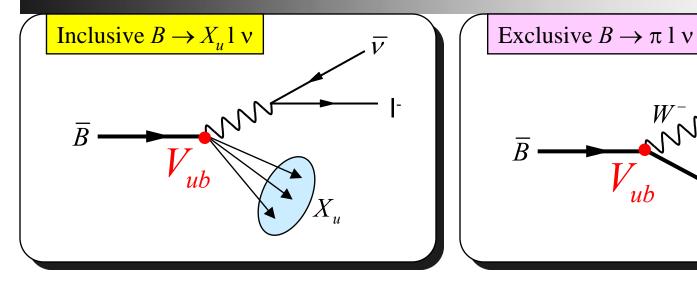
- Error on $sin 2\beta$ is 0.026!
- Error on $\beta < 1$ degree!
- But by itself is useless! To test the SM we need to compare it with other measurements:
 - Opposite side in the UT
 - Independent measurement of sin2β using channels mediated by other Feynman diagrams


The left side: R_b


NB: β is the best measured quantity in the Unitarity Triangle

 $\beta = 21.2 \pm 1.0$ degrees


→ precise measurement of R_b is needed for accurate tests of SM
 March 21, 2006
 What can we learn from CPV?
 G. Sciolla – M.I.T.


Semileptonic B Decays

- Sensitive to hadronic effects
 - Theory error not negligible
- $Prob(b \rightarrow c)/Prob(b \rightarrow u) \sim 50$
 - V_{cb} precisely measured (±2%)
 - V_{ub} is <u>the</u> challenge

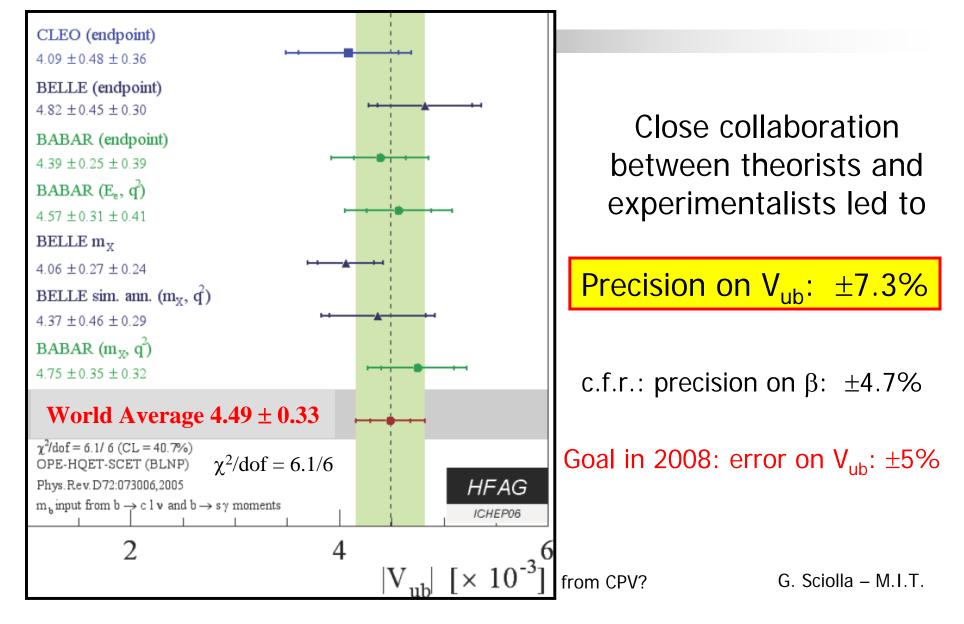
Two approaches to V_{ub}

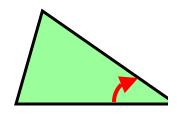
Inclusive $B \to X_u l v$

- Hadronic final state is not specified
- b→c l v background is suppressed using kinematical variables
- Partial rate is measured
 - \rightarrow theoretical uncertainties ~5%

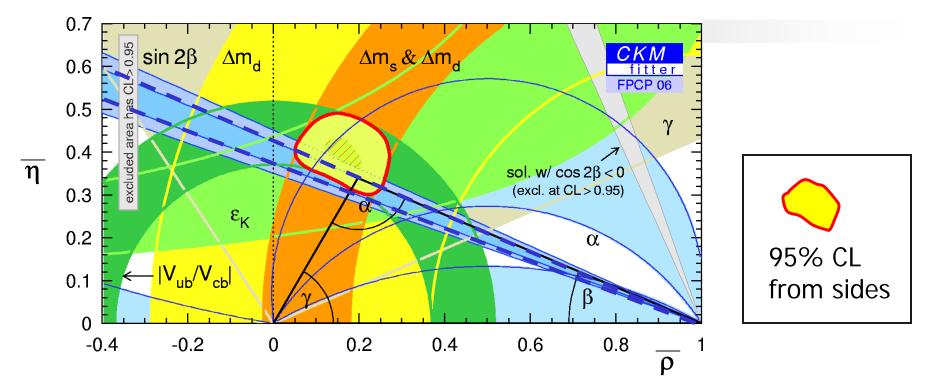
March 21, 2006

Exclusive $B \rightarrow \pi l \nu$


- Better S/B but lower branching fraction (10⁻⁴)
- Needs form factor calculation from Lattice QCD


 \rightarrow uncertainty of ~ 12%

What can we learn from CPV?


G. Sciolla – M.I.T.

$|V_{ub}|$ from Inclusive $B \rightarrow X_u | v$

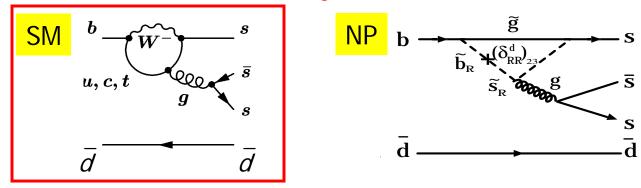
Unitarity Triangle constraints

sin2β vs indirect UT constraints: very good agreement!

CKM mechanism is the dominant source of CPV at low energies

- New Physics does not show up in the golden mode \rightarrow SM reference
 - Compare with sin2β in independent modes with different sensitivity to NP

How to look for New Physics (2)

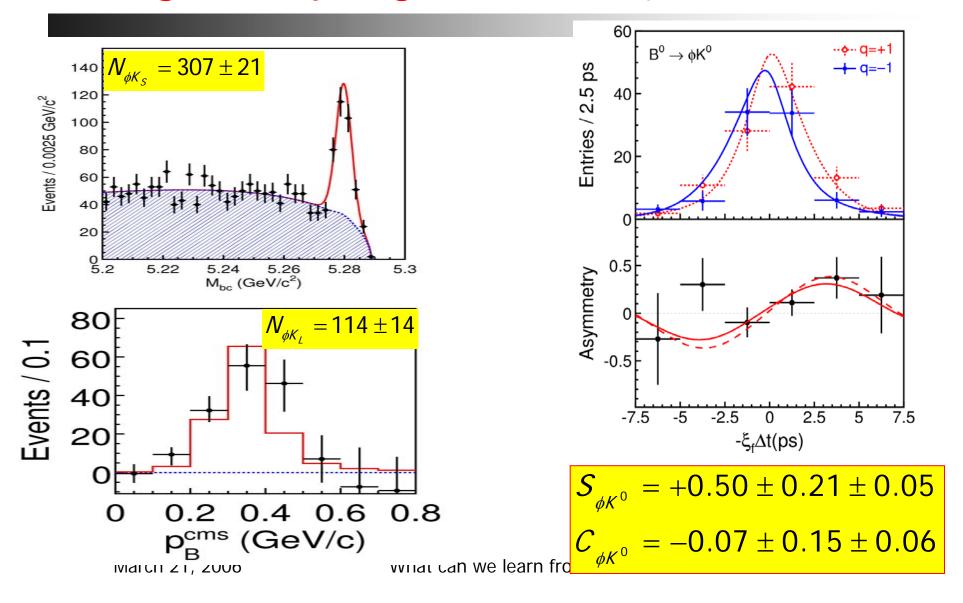

Beautiful measurement:

- Error on $sin2\beta$ is 0.026!
- Error on $\beta < 1$ degree!
- But by itself is useless! To test the SM we need to compare it with other measurements:
 - Opposite side in the UT
 - Independent measurement of sin2β using channels mediated by other Feynman diagrams

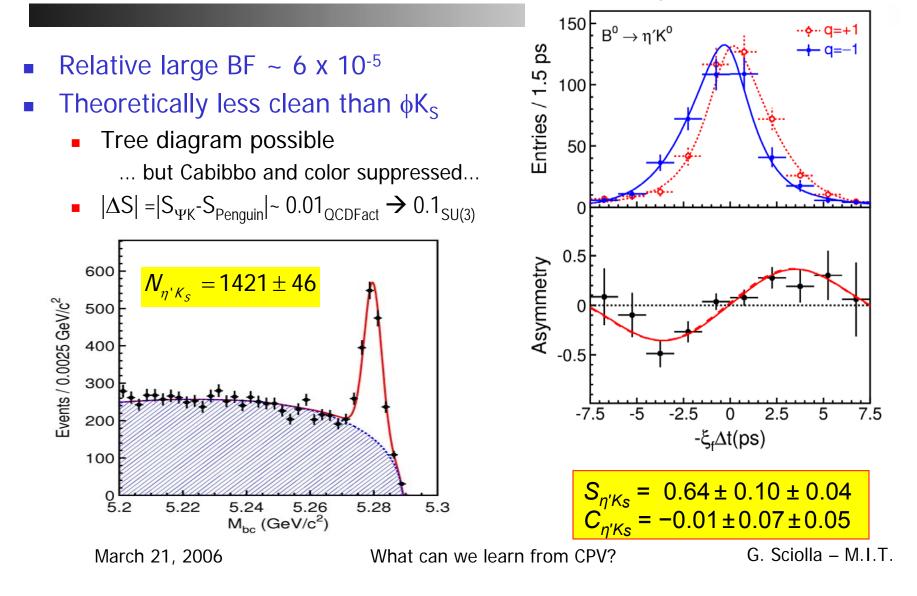
Another way to look for New Physics: $sin2\beta \ in \ Penguin \ Modes$

Decays dominated by gluonic penguin diagrams

• The typical example: $B^0 \rightarrow \phi K_s$

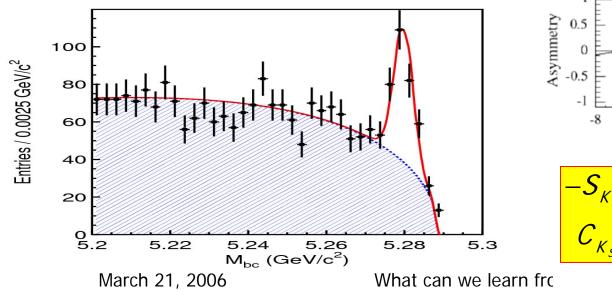


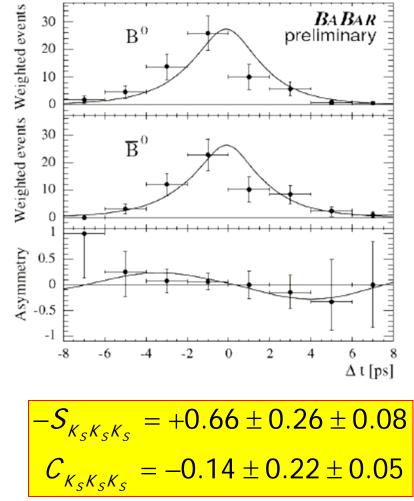
- No tree level contributions
- Impact of New Physics could be significant
 - New particles could participate in the loop \rightarrow new CPV phases
- NP affects each channel differently; low branching fractions
 - Measure A_{CP} in as many $b \rightarrow sqq$ penguins as possible!


$$\bullet \varphi K^{0} K^{+} K^{-} K_{s} \eta' K_{s} K_{s} \pi^{0} K_{s} K_{s} K_{s}, \omega K_{s}, f_{0}(980) K_{s}$$

March 21, 2006

The golden penguin: $B^0 \rightarrow \phi K^0$

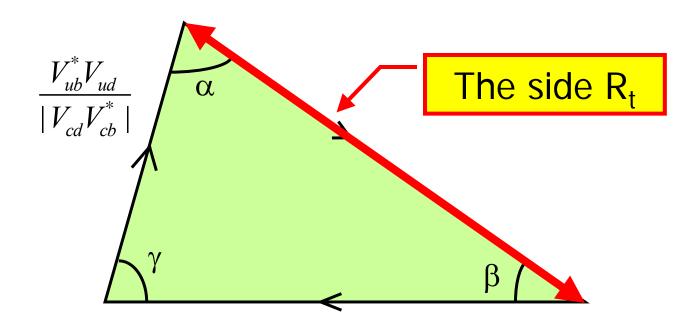


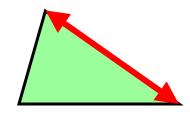

The silver penguin: $B^0 \rightarrow \eta' K_s$

A new golden penguin: $B^0 \rightarrow K_S K_S K_S$

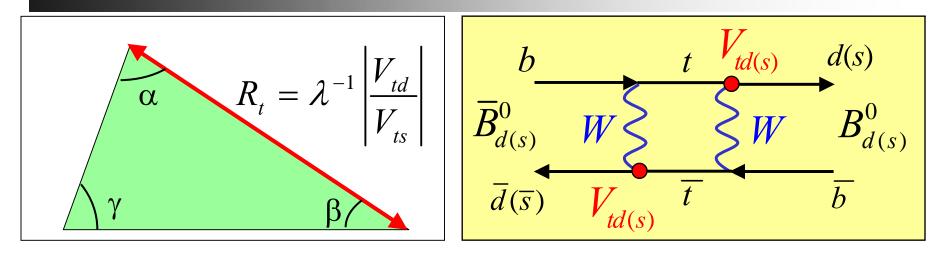
- Theoretically clean
 - Penguin dominated CP=+1 eigenstate
- Experimentally challenging
 - B decay vertex uses K_s pseudo-particles and beam spot constraint

G. Sciolla – M.I.T.

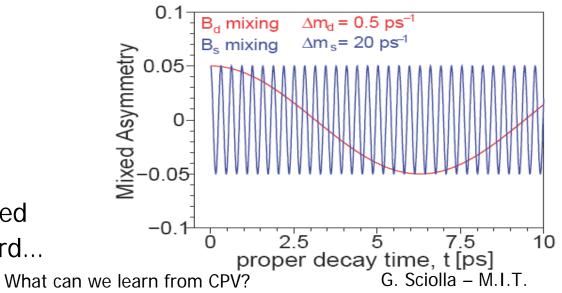

"sin2 β " in penguins

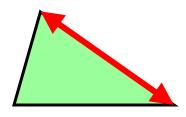

- No significant shift observed in each mode
 - although a trend is visible...
- Naïve average: 0.52±0.05
 - ~2.6 σ from J/ Ψ K_s
- Statistical errors still large...

					PRELIMINARY
b→ccs	World Avera	age			0.68 ± 0.03
	BaBar		* <mark>5</mark>		$0.12 \pm 0.31 \pm 0.10$
¢ K	Belle				$0.50 \pm 0.21 \pm 0.06$
Ð	Average				0.39 ± 0.18
'n´K⁰	BaBar		-		$0.55 \pm 0.11 \pm 0.02$
	Belle			-	$0.64 \pm 0.10 \pm 0.04$
	Average				0.59 ± 0.08
х "	BaBar		C	-	$0.66 \pm 0.26 \pm 0.08$
\mathbf{x}_{s}	Belle				$0.30 \pm 0.32 \pm 0.08$
~s	Average				0.51 ± 0.21
ςγ Γ	BaBar		1 <mark>5 kg</mark> r		$0.33 \pm 0.26 \pm 0.04$
π ⁰ K _S	Belle				$0.33 \pm 0.35 \pm 0.08$
	Average		⊥ ,≝		0.33 ± 0.21
× °	BaBar				$0.17 \pm 0.52 \pm 0.26$
<u></u>	Average		- * Ü s		0.17 ± 0.58
	BaBar		5 7	-	$0.62 {}^{+0.25}_{-0.30} \pm 0.02$
ωK _s	Belle		★ <mark></mark> 1		$0.11 \pm 0.46 \pm 0.07$
	Average				0.48 ± 0.24
0	BaBar		তর	-	0.62 ± 0.23
to K	Belle		" ★ 🔁 🗅		$0.18 \pm 0.23 \pm 0.11$
	Average				0.42 ± 0.17
ہ ج	Ba <mark>Bar </mark>				$-0.84 \pm 0.71 \pm 0.08$
я Со Ч	Ave <mark>rage -</mark>	*			-0.84 ± 0.71
μ Υ	BaBar Q2B				$0.41 \pm 0.18 \pm 0.07 \pm 0.11$
¥	Belle				$0.68 \pm 0.15 \pm 0.03 \begin{array}{c} +0.21 \\ -0.13 \end{array}$
<u>+</u>	Average		-*		$0.58 \pm 0.13 ^{+0.12}_{-0.09}$
-2	-1		0	1	2

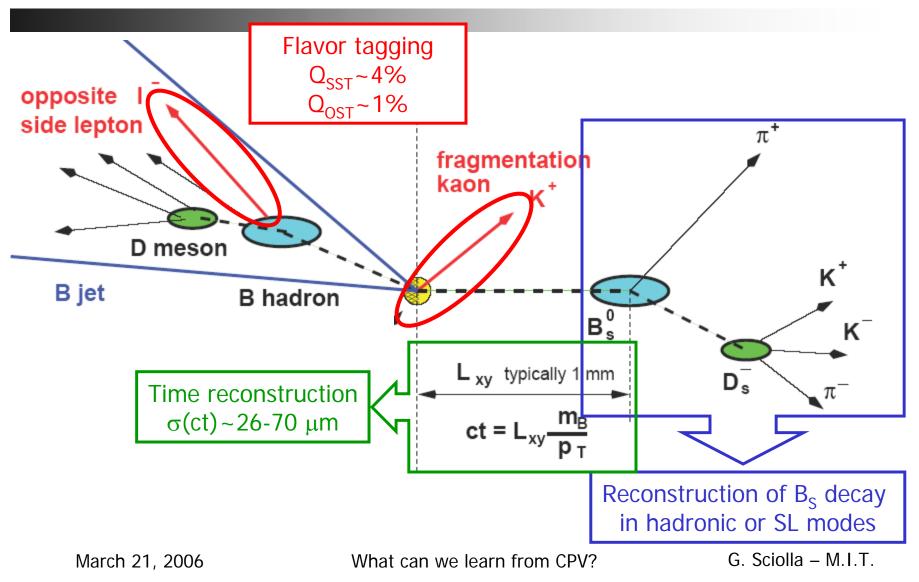

 $\sin(2\beta^{\text{eff}}) \equiv \sin(2\phi_1^{\text{eff}})$

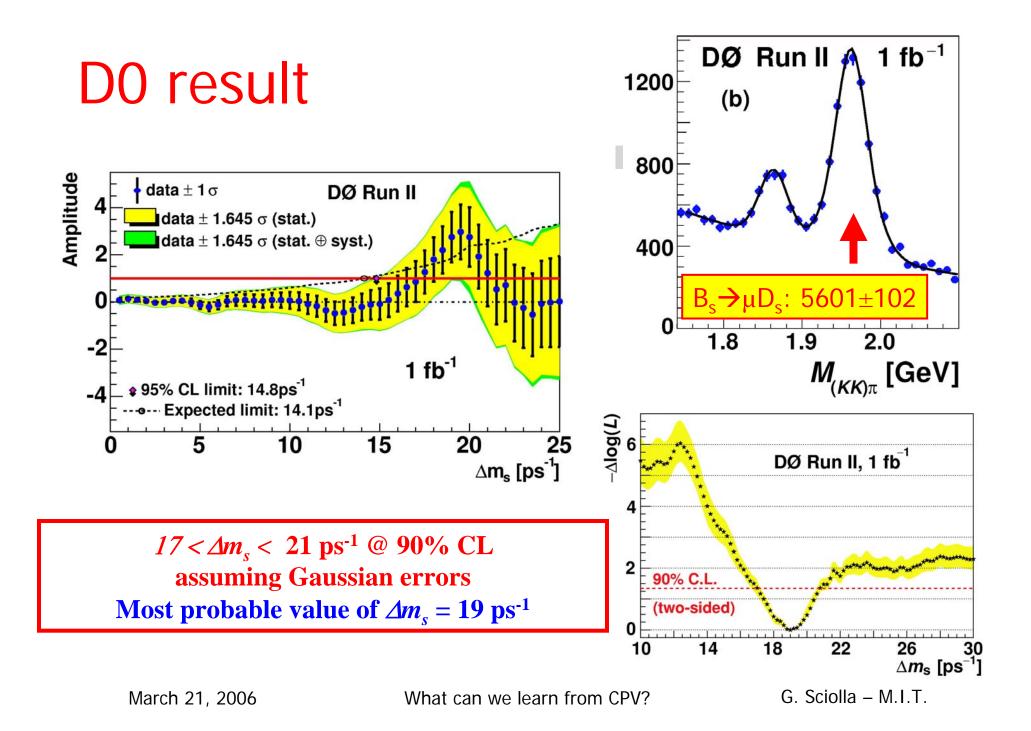
The measurements

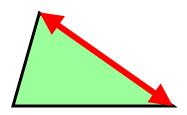

The measurement of R_t

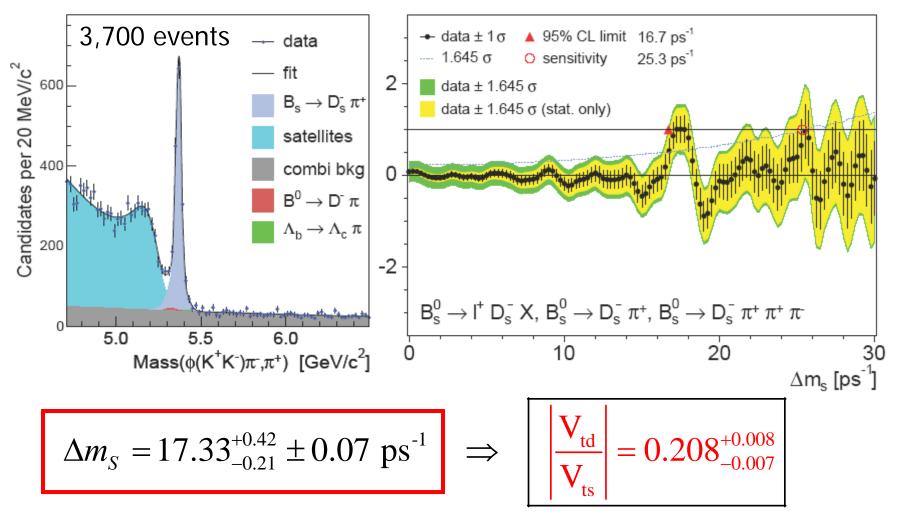


B_s/B_d oscillations

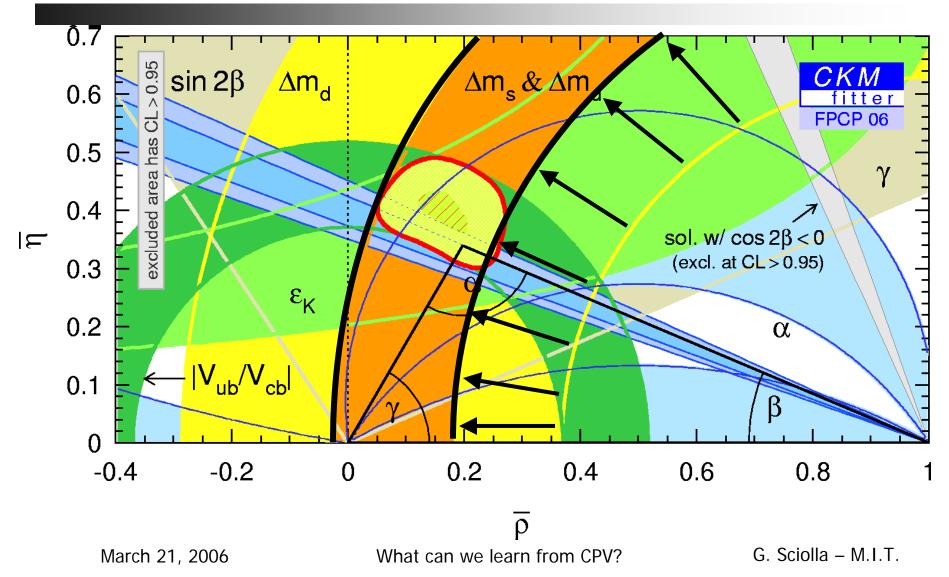

$$\frac{\Delta m_d}{\Delta m_s} \propto \left| \frac{V_{td}}{V_{ts}} \right|^2$$


- Theory error <5%</p>
- Δm_d is precisely measured
- But B_s mixing is very hard...
 March 21, 2006
 What




B_S mixing at the Tevatron

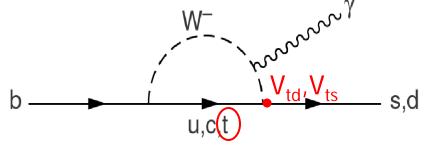
CDF result



Probability of random fluctuation: ~0.5%

March 21, 2006

G. Sciolla – M.I.T.


Impact of Δm_s on Unitarity Triangle

But to test the SB we need redundancy...

R_t from B→ργ/ωγ vs. B→K*γ

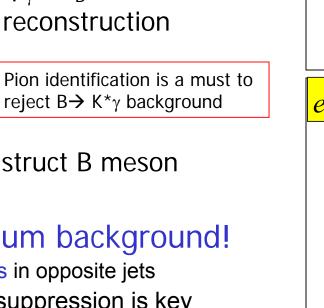
• Radiative penguin decays with $b \rightarrow d\gamma$ and $b \rightarrow s\gamma$

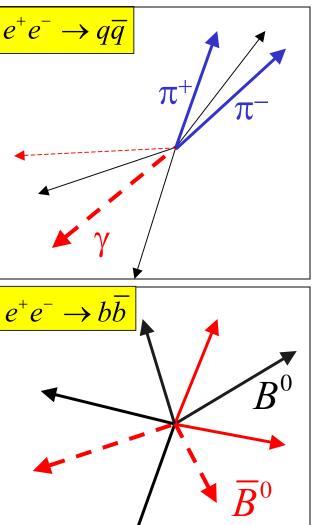
Ratio of BF measures |V_{td}/V_{ts}|

Ali and Parkomenko

$$\frac{\mathcal{B}_{\rm th}(B \to \rho \gamma)}{\mathcal{B}_{\rm th}(B \to K^* \gamma)} = S_{\rho} \left| \frac{V_{td}}{V_{ts}} \right|^2 \frac{(1 - m_{\rho}^2/M^2)^3}{(1 - m_{K^*}^2/M^2)^3} \zeta^2 \left[1 + \Delta R(\rho/K^*) \right]$$

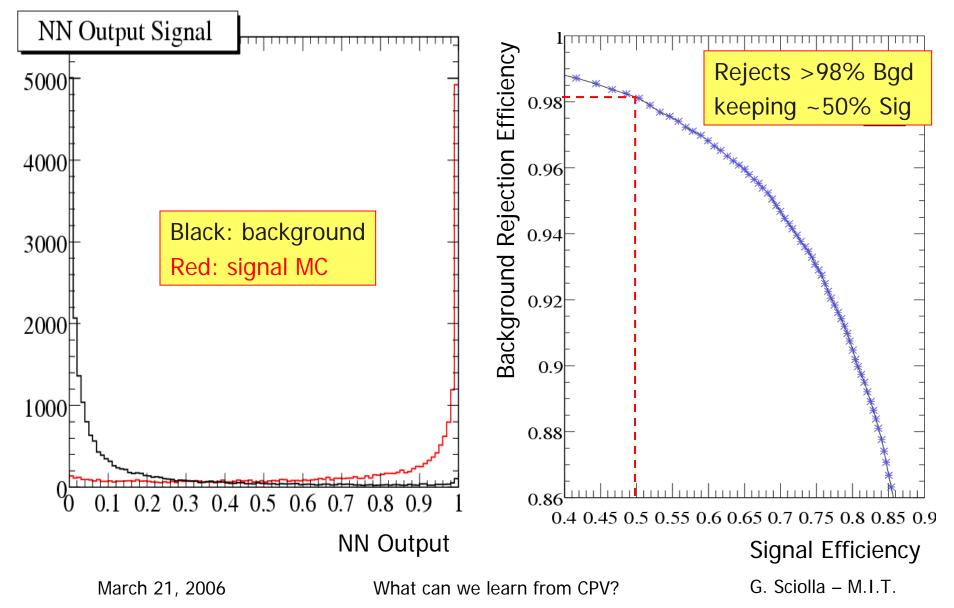
Theory error: 8% for ρ⁰γ 15% for average


- $B \rightarrow K^* \gamma$ well established; $B \rightarrow \rho(\omega) \gamma$ is the challenge!
 - Standard Model expectation:
 - $B \rightarrow \rho^0 \gamma / \omega \gamma$: ~ 0.5 x 10⁻⁶; $B \rightarrow \rho^+ \gamma$ ~ 1 x 10⁻⁶


B \rightarrow ργ/ωγ: analysis

- In principle a simple analysis
 - Two body decay: $p_{\gamma} \sim m_B/2$
 - Exclusive meson reconstruction
 - $\rho^0 \rightarrow \pi^+ \pi^-$
 - $\rho^+ \rightarrow \pi^+ \pi^0$
 - $\omega \rightarrow \pi^+ \pi^- \pi^0$
 - Exclusively reconstruct B meson
 - m_{ES} and ΔE

But huge continuum background!


- Eg: γ from π^0 vs pions in opposite jets
- NN for continuum suppression is key
 - Shape variables (e.g.: R2)
 - Properties of B decay (e.g.: Δz)
 - "Tagging"-like variables (e.g.: p_{CMS} of leptons)

March 21, 2006

NN Output and performance

SM expectation 1.0 x 10⁻⁶ 0.5 x 10⁻⁶ 0.5 x 10⁻⁶

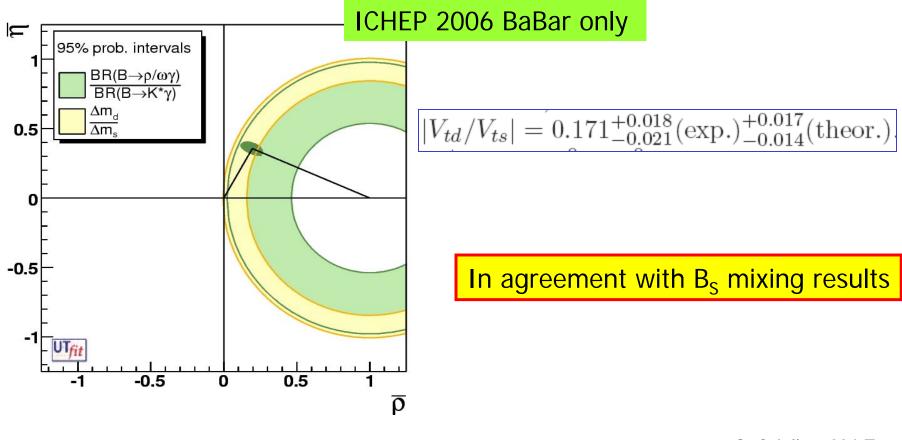
Recent Results

Belle - Summer 2005: 370 fb⁻¹

Mode	Yield	Signif.	Efficiency $(\%)$	$\mathcal{B}(10^{-6})$
$B^- \to \rho^- \gamma$	8.5	1.6(1.6)	3.86 ± 0.23	$0.55 \substack{+0.42 \\ -0.36 \\ -0.08} \substack{+0.09 \\ -0.08}$
$\overline{B}{}^0 \to \rho^0 \gamma$	20.7	5.2(5.2)	4.30 ± 0.28	$1.25 {}^{+0.37}_{-0.33} {}^{+0.07}_{-0.06}$
$\overline{B}{}^0 \to \omega \gamma$	5.7	2.3(2.6)	2.61 ± 0.21	$0.56 \substack{+0.34 \\ -0.27 \ -0.10}^{+0.05}$
Combined BF	7	5.1(5.4)		$1.32^{+0.34+0.10}_{-0.31\ -0.09}$

■ BaBar - Summer 2006: 316 fb ⁻¹

Mode	$n_{\rm sig}$	Significance	$\epsilon(\%)$	$\mathcal{B}(10^{-6})$
$B^+ \to \rho^+ \gamma$	$42.4^{+14.1}_{-12.6}$	4.1σ	11.6	$1.06^{+0.35}_{-0.31} \pm 0.09$
$B^0 \to \rho^0 \gamma$	$38.7^{+10.6}_{-9.8}$	5.2σ	14.5	$0.77^{+0.21}_{-0.19} \pm 0.07$
$B^0 \to \omega \gamma$	$11.0^{+6.7}_{-5.6}$	2.3σ	8.1	$0.39^{+0.24}_{-0.20} \pm 0.03$
Combined BF		6.3σ		$1.01 \pm 0.21 \pm 0.08$
March 21 2006	\\/h	G. Sciolla –		

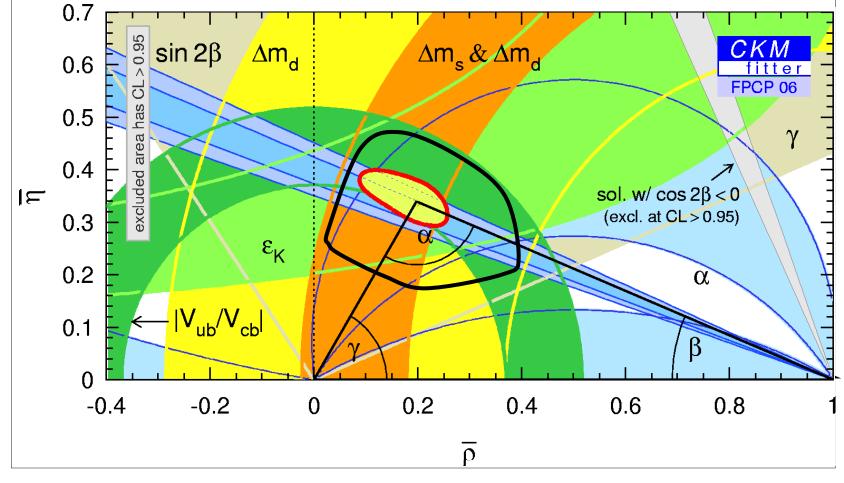

March 21, 2006

What can we learn from CPV?

G. Sciolla – M.I.T.

UT constraints

• From BF($\rho\gamma$)/BF(K* γ) one can extract V_{td}/V_{ts}:



March 21, 2006

Conclusion

- Precise and redundant measurements of sides and angles of UT allowed quantitative test of CKM mechanism
 - CKM works beautifully!
- No New Physics?
 - If $\Lambda_{NP} \sim 1 \text{ TeV} \rightarrow \text{effects in CP} \sim m_W / \Lambda_{NP} \sim 10\%$
 - Precision ~ 3% needed: more data coming...
- Not seeing New Physics <u>does mean something</u>
 - CPV is just part of the puzzle
 - <u>Many</u> other NP studies at B factories: $B \rightarrow \tau v$, $B \rightarrow s \gamma$, $B \rightarrow s II...$
 - Constraints on New Physics models coming from B physics will help interpret the discoveries at the LHC

What have we learned?

March 21, 2006

What can we learn from CPV?

G. Sciolla – M.I.T.