New England Particle Physics Student Retreat (NEPPSR)

Front End Electronics for Particle Detection

August 14, 2006 John Oliver

Objectives of front end electronics design

- Understand nature of detector signals
- Identify and understand noise sources in detector and electronic components
- Design signal processing electronics to maximize signal & minimize noise
- Generally one is interested in
 - Total integrated pulse \rightarrow Calorimeters
 - Pulse "time of arrival" \rightarrow Spectrometers, tracking detectors
 - Sometimes both.

• Readout of huge number of channels *cheaply* → Take advantage of current ASIC (Application Specific Integrated Circuit) technology

Signal formation in ionization detectors

Simple example : Uniform electric field in drift gas (eg Ar/CO₂)

- Electric field \rightarrow E = 1e 5 Volts/meter
- Particle track ionizes N electron/ion(Ar) pairs with total charge $N^*e = Q$
- Electrons/ions drift toward Anode/Cathode with velocity given by their mobilities

Electrons:
$$v_e \approx \mu_e \cdot E$$

Positive ions: $v_{ion} \approx \mu_{ion} \cdot E$
 $\mu_e \approx 0.4 \frac{met}{V-s}$
 $\mu_{ion} \approx 6 \cdot 10^{-5} \frac{met^2}{V-s}$
 $v_e / v_{ion} \approx 10^4$

• Question : What signal current i(t) is seen by ideal ammeter in series with battery ?/

(2)

- Electrons drift to Anode, ions to Cathode
- First the electrons...

In time Δt , electrons move distance $\Delta x = v_e \cdot \Delta t$

through potential $\Delta V = E \cdot v_{drift} \cdot \Delta t$

Work done by field is $\Delta W_{field} = Q \cdot \Delta V$

Work is really done by the battery $\Delta W_{battery} = V_{hv} \cdot i(t) \cdot \Delta t = \Delta W_{field}$

In this example
$$\rightarrow i(t) = Q \cdot \frac{v_{drift}}{D} = const$$
 (1)

Total integrated charge collected in arbitrary time t,

$$q(t) = Q \cdot \frac{\Delta V(t)}{V_{hv}} = Q \cdot \frac{x(t)}{D}$$
(2)

Example :

Q = 0.1 fc, x = 2 mm

- \blacktriangleright electron signal current i(t) = 0.4 nA
- \blacktriangleright velocity = μ E =4*10^4 met/sec
- \succ time to hit anode = 50 ns
- \succ total electron signal charge collected in 50 ns

$$q = 0.4 \text{ nA} * 50 \text{ ns} = 0.02 \text{ fc} (\sim 125 \text{ electrons})$$

- ➤ What happened to the rest of the ionization charge?
- \succ Need to look at positive ions

$$q(t) = Q \cdot \frac{D - x}{D} = (8/10) \cdot Q$$

→Eventually, we get 100% of the charge, but it takes a *long time* (~ 500 us) →Summary

Signal is formed by *pushing charge through the drift medium*, not by "collecting" it on the anode or cathode.

>Once it hits the electrodes, it no longer contributes.

(Note: 1 fc = 6,250 e)

Variation on the theme

- Liquid Argon Detector (Calorimeter) -

- Liquid argon filled gap, horizontal track
- Large ionization, low velocity
- $\mu_e = 0.01 \text{ met}^2/(\text{V-s})$ (neglect ion drift)
- Ionization density = 7000 electron-ion pairs per mm of track (MIP) \rightarrow Much higher than in gas detectors
- Vhv = 5kV
- Total ionized charge 70,000 electrons = ~ 11 fc
 - \rightarrow What does signal current i(t) look like?

 \rightarrow What's the total charge collected in total electron drift time?

Answer

• Divide the track into small segments, Δx , with charge

$$\Delta Q = \frac{\Delta x}{D} \cdot Q$$

• Each segment contributes identical current until it disappears into electrode

$$\Delta i = \frac{\Delta Q \cdot v_e}{D}$$

• Add up all the segments

• Total integrated charge? \rightarrow Q/2 Signals in circular drift tube or wire chamber

• Electric field \rightarrow

$$E(r) = \frac{1}{r} \cdot \frac{V_{hv}}{\ln(R/r_0)}$$

----- (3)

- Primary electrons drift to Anode wire.
- High field at wire surface causes avalanche "centered" very close to wire
- Each primary electron liberates many secondary electrons \rightarrow Gas gain $(10^3 10^5)$
- Timing measurement gives radial position of track.
- Must analyze both <u>electron</u> and <u>ion</u> signal response to single primary electron

Electron signal

- Charge centroid *very* close to wire \rightarrow very short collection time , <
- 1 ns
- Electrons quickly disappear into the anode \rightarrow Electron signal generally can be neglected.

Positive ion signal

• Ion velocity follows electric field resulting in;

$$i(t) = Q \cdot const \cdot \frac{t_0}{t + t_0}$$

where the two constants are functions of detector parameters such as mobilities, gas gain, wire and tube diameters, etc. (Details in NEPPSR-II)

- Typical wire chamber $t_0 \sim 1 \text{ns} 20 \text{ns}$
- For ATLAS Muon Spectrometer, t₀=11ns
- This signal has very long "positive ion tail"

• For use as a position sensitive detector, one is generally interested only in the first few tens of ns of the signal.

- Integrated charge increases only logarithmically.
- Integrated charge in time t_0 is only about 5% of total
- ATLAS-MDT : Ggain=2e4 \rightarrow "Effective" charge gain ~ 1,000

(8)

Basic passive components and noise sources

• Inductor

- ➤ Stores energy in magnetic field
- $\geq E = \frac{1}{2} L i^2$
- \succ Impedance Z(ω)= jωL
- Lossless, noiseless

Capacitor

- ≻Stores energy in electric field
- $E = \frac{1}{2} C v^2$
- > Impedance $Z(\omega) = 1/(j\omega C)$
- Lossless, noiseless
- Ideal transmission line (cable)
 - > Considered as infinite sequence of series inductors & parallel capacitors

➤ Results in wave equation with phase velocity

$$v = \frac{1}{\sqrt{\varepsilon \cdot \mu}}$$

➤ and a constraint between voltage and current :

$$\frac{V}{I} = \sqrt{\frac{\mu}{\varepsilon}} = Z_0 \text{ characteristic impedance}$$

➤ noiseless

 \triangleright Note that an infinitely long transmission line is indistinguishable from a resistor of value Z₀

> As corollary, a finite line with a resistor of value Z_0 at its end, is also indistinguishable from a resistor of value Z_0 .

> In other words, if you launch a pulse into a terminated line, it never comes back (no reflection).

Resistor

Electric field pushes conduction electrons through a lattice

 \succ Dissipates power = I*V

> Conduction electrons (generally) in thermal equilibrium with environment

> Noisy \rightarrow Noise characterized by "noise power density" p(f) [watts/hz]

 $p(f) \cdot df \equiv power(watts)$ in frequency range f to f + df

> p(f) is frequently expressed as a voltage density (in series) or current density (in parallel)

$$p(f) = \frac{e_n^{2}(f)}{R}$$
 $p(f) = i_n^{2}(f) \cdot R$

 \geq e_n(f) & i_n(f) given in volts/sqrt(hz) & amps/sqrt(hz)

To get values of $e_n(f)$ & $i_n(f)$; [Nyquist, Phys Rev, Vol 32, 1928, p. 110]

> Result follows directly from equipartition theorem \rightarrow "Thermal noise"

$p(f) = 4 \cdot k \cdot T$
or equivalently
$i_n = \sqrt{\frac{4 \cdot k \cdot T}{R}}$
&
$e_n = \sqrt{4 \cdot k \cdot T \cdot R}$

Notes:

- For a resistor $i_n \& e_n$ are independent of frequency \rightarrow "White" noise source.
- All frequency components are considered uncorrelated.

AC Circuit analysis

- Same as DC except use complex impedances for Ls and Cs
- Typically calculate output/input (Transfer function) in freq domain.
- Inverse Fourier (or Laplace) transforms get you to the time domain

<u>"kT/C" noise</u>

What is the rms terminal voltage of the following simple circuit?

Solution

- 1) Add noise current density,
- 2) Solve for circuit "transfer function" (v/i) \rightarrow This gives you output voltage *density*

$$v_n(\omega) = \frac{R}{1 + j \cdot \omega \cdot R \cdot C} \cdot i_n$$

- set $\omega = 2\pi f$
- 3) Integrate over frequencies (quadrature)

$$v_{rms}^{2} = \int_{0}^{\infty} |v_{n}^{2}(f)| \cdot df = \frac{4 \cdot k \cdot T}{R} \cdot \frac{1}{2 \cdot \pi} \cdot \int_{0}^{\infty} \frac{R^{2}}{(1 + R^{2} \cdot C^{2} \cdot \omega^{2})} \cdot d\omega$$
$$v_{rms}^{2} = \frac{4 \cdot k \cdot T}{C} \cdot \frac{1}{2 \cdot \pi} \cdot \int_{0}^{\infty} \frac{1}{(1 + x^{2})} dx \qquad \text{where} \quad x = \omega \cdot RC$$

• In general, such integrals can be looked up (or done by contour integration for those who like to suffer).

$$\int_0^\infty \frac{1}{(1+x^2)} \, dx = \frac{\pi}{2}$$

(11)

• In this case,

$$v_{rms} = \sqrt{\frac{kT}{C}}$$

• Note that it is independent of resistance, R

• At room temperature kT ~ 4e-21 \rightarrow

$$V_{rms} = 63 \mu V$$

- Question : Why do we care about this? Where does it show up?
- Consider a "Sample & Hold" circuit. We charge up a capacitor through a "switch" to a given voltage, then open the switch.

• The capacitor "remembers" the voltage forever.

• Close the second switch to "read" the S/H cell.

- A realistic switch is frequently a semi-conductor device with finite resistance
- Repeated charging and reading results in rms error of kT/C
- Example: If total signal range is ~ 2V (common these days) \rightarrow SNR ~ 32,000 or 15 bits dynamic range \rightarrow For high dynamic range, you want a big capacitor (Sometimes hard to come by in integrated circuits)

Shot noise

- Important when (small) currents must overcome a *barrier*
- Results from discrete nature of current \rightarrow carried by electrons of charge q_e
- Movement of small electric currents is governed by Poisson statistics
 - \succ Current : I = R_e x q_e ([R_e] electrons/sec)
 - > In time ΔT , N_e=R_e x ΔT cross the barrier
 - \succ Fluctuation in that number = sqrt(N_e)
- This is equivalent to a noise current density given by

$$i_n = \sqrt{2 \cdot I \cdot q_e} \quad amps / rt(Hz)$$

- Independent of temperature
- Generally caused by detector or electronic leakage currents (which generally are temperature dependent)
- May often be a dominant detector noise source

Semiconductor devices

- Rely on two distinct types of charge carriers \rightarrow Electrons & holes
- Intrinsic semiconductor Lattice of atoms (eg silicon) with complete valence locations (4) filled \rightarrow 4 covalent bonds per site
- N-type semiconductor (eg n-doped silicon, dopant has 5 valence electrons) has excess electrons for conduction
- P-type (eg p-doped silicon, dopant has 3 valence electrons) has dearth of electrons
- Missing electrons in lattice behave as positively charged carriers \rightarrow holes
- Question : Are holes "real" or just a nice way of thinking about missing electrons?
 Ans: They're real. → They carry heat as well as current so we can observe heat

flow (and current flow) with an ammeter. (Also verified by Hall effect)

Features

- be junction forward biased \rightarrow Like diode in on-condition \rightarrow causes lots of current flow
- cb junction is reverse biased (like diode in off condition)
- But base is thin so *emitted* current goes through and is collected by *collector*
- Base only needs to supply current lost to recombination. \rightarrow Device has current gain ~ 100

• All active semiconductor devices characterized by transconductance (gm)

- \rightarrow Ratio of change in collector current per unit change in be voltage.
- BJT has large gm per unit collector current $\rightarrow q_e/kT = ~40$ amps/volt at room temp

(15)

BJT Features (con't)

- BJT has very large g_m per unit collector current $\rightarrow q_e/kT = 40$ amps/volt at room temp (This is good! \rightarrow High gain at low power.)
- Used extensively for discrete designs (< 1980s)
- Can be integrated into Application Specific Integrated Circuits (ASICs)
- Processing is expensive & time consuming. Several \$100k / run in 1990s
- Until 1990's BJT were primary building blocks for high speed circuits

Field Effect Transistors

- Patented in 1928 by J. Lilienfeld ("Transfer Resistor")
- Alas, soon forgotten, revived in the 1950's
- CMOS logic ICs appears in 60's & 70's
- Geometries shrink rapidly (Moore's law)
- Speed improves with shrinking geometry
- Early '90s \rightarrow Viable for analog integrated circuits at "gate length" ~ 1um
- Currently at 0.065 um and falling.
- Presently has replaced BJTs for most logic & microprocessors, and many analog applications.
- fet vs bjt ratio in known universe >>> 1 zillion

CMOS components : Field effect transistors (nfets)

- In undoped (intrinsic) silicon, electron and hole densities are the same (thermal only)
- n-doped (arsenic, phosphorous, antimony,..) : electron density increases, hole density decreases
- p-doped (boron, aluminum, gallium, ..) : vice-versa
 - Strength of doping denoted by + sign \rightarrow n, n+, p, p+
 - + sign indicates higher doping, lower resistivity

- With Vgate = 0, structure is non-conductive (back to back diodes)
- Increasing Vgate in positive direction, attracts electrons from substrate
- When Vgate > Vthreshold, "channel" becomes conductive. Conductance increases as Vgate increases.
- As Vdrain is made more positive than Vsource, current starts to flow
- Voltage gradient appears from drain to source.
- Electric field is strongest near source, weakest near drain...

CMOS components : Field effect transistors (nfets)

- In undoped (intrinsic) silicon, electron and hole densities are the same
- n-doped (arsenic, phosphorous, antimony,..) : electron density increases, hole density decreases
- p-doped (boron, aluminum, gallium, ..) : vice-versa
 - Strength of doping denoted by + sign \rightarrow n, n+, p, p+
 - + sign indicates higher doping, lower resistivity

- With Vgate = 0, structure is non-conductive (back to back diodes)
- Increasing Vgate in positive direction, attracts electrons from substrate
- When Vgate > Vthreshold, "channel" becomes conductive. Conductance increases as Vgate increases.
- As Vdrain is made more positive than Vsource, current starts to flow
- Voltage gradient appears from drain to source.
- Electric field is strongest near source, weakest near drain.
- Channel charge density "tilts" toward source.
- Drain current increases with Vdrain
- When Vdrain comes within a "threshold voltage" of Vgate, (Vdrain = Vgate Vthreshold) current "saturates"
- Saturation region also called "pinch-off

- Generally, pfet drain current constant, Kp, is about 1/3 that of nfets due to lower hole mobility
- For same size transistor at same current, pfet transconductance is smaller by ~sqrt(3)

FET properties (simplified model)

Drain current properties in saturation region

• Id increases quadradically with Vgs

$$I_d \propto (V_{gs} - V_{th})^2$$

- Increases linearly with transistor channel width, W
- Decreases linearly with transistor gate length, L

$$I_d \equiv \frac{1}{2} \cdot K_n \cdot \frac{W}{L} \cdot (V_{gs} - V_{th})^2 \tag{13}$$

• Definition: "Transconductance" = ratio of change in drain current per unit change in gate voltage.

$$g_m = \frac{\partial I_d}{\partial V_{gs}} = \sqrt{2 \cdot I_d \cdot K_n \cdot \frac{W}{L}}$$
(14)

"Typical" value :
$$K_n \approx 100 \,\mu A / V^2$$

(20)

FET properties (con't)

Terminal "impedances"

• Gate: No dc current flow, just gate capacitance Cgate (of order ~tens of femtofarads to pf)

• Drain:

≻ "Wiggle" the drain voltage a little, what's the change in drain current?

→ Ans: none (or very little) change so \rightarrow

$$Z_{drain} \equiv \frac{\partial V_{ds}}{\partial I_d} \approx \infty$$

• Source

➤ "Wiggle" the source voltage a little bit.

> This changes Vgs and thus drain current (and source current) by (Vgs) x (g_m).

$$Z_s \equiv \frac{\partial V_s}{\partial I_d} \approx \frac{1}{g_m}$$

> Typical numbers depending on application;

 $.001 > g_m > .01$ or $1k\Omega < Z_{source} < 100\Omega$

 \succ Example;

≻ Idrain = 1 ma, L=0.5u, W=100u

$$g_m = \sqrt{2 \cdot I_d \cdot K_n \cdot \frac{W}{L}} = \sqrt{2 \cdot (10^{-3}) \cdot (100 \cdot 10^{-6}) \cdot 200} = 6.3 \cdot 10^{-3}$$

or $Z_s \approx 160\Omega$

Some simple FET circuits

Shaping

- Use of RC and active circuits to
 - produce useful pulse shapes
 - maximize response to detector signal
 - \succ minimize response to noise
 - ➤ avoid "pile-up" or baseline drift due to rapid arrival of signals (as in "hot" areas of detectors)
- Useful to analyze in both frequency and time domains
- Examples:

"RC-CR" shaper

(24)

Some common FET gain & shaping circuits - con't

E) Fancier differential amplifier

- "Boxes" Z1 & Z2 can be whatever you need • example:
 - Z_1 is parallel RC

• Z_2 is series RC

• Transfer function is

$$H(s) \approx \frac{Z_1(s)}{Z_2(s)} = \frac{sRC}{(1+sRC)^2}$$
 where $s \equiv j \cdot \omega$

 \rightarrow Implements a "Bipolar" shaping function with gain

F) Common gate or "cascode"

Used as current buffer. Lo-Z in, Hi-Z out.

Noise in Fets

• Fet channel is resistive and will thus have a thermal noise current component, in

$$i_n \propto \sqrt{\frac{4 \cdot k \cdot T}{R_{effective}}} \propto \sqrt{4 \cdot k \cdot T \cdot g_m}$$

- Channel is not a single resistor, but rather a series of increasing resistances (from source to drain)
- A fudge factor will be needed! (ff = 2/3)

• Noise current in drain is equivalent to noise voltage in gate with $e_n = \frac{i_n}{g_m}$

$$e_n = \sqrt{\frac{8}{3} \cdot \frac{k \cdot T}{g_m}} \tag{15}$$

•For low noise \rightarrow High gm , very wide transistor, fairly large current

Access to CMOS technologies

• Commercial foundries are interested in manufacturing runs of order $>> 10^6$ chips per run (eg microprocessors, logic chips)

• HEP requirements ~ $10^4 - 10^5$ chips/experiment \rightarrow very small users

• We need a "broker" \rightarrow MOSIS

 \rightarrow Metal Oxide Semiconductor Integration Service

 \rightarrow Provides detailed transistor models for simulations (SPICE)

 \rightarrow Sells "real estate" on integrated circuit manufacturing to many customers

→ Submits a collection of designs to vendors (who don't care what the design function is) : Multi-Project Wafer (MPW) → HP, IBM, TSMC, AMS,

 \rightarrow Returns prototype parts to customer for reasonable cost (\$5k - \$50k)

(27)

Example : ATLAS Muon Spectrometer

- ~350,000 circular "Monitored Drift Tubes (MDTs)
- ~ 1,000 chambers
- Wire radius : $r_0=25$ microns
- Tube radius : R= 15 mm
- Gas : Ar/C02 (93%/7%)
- $V_{hv} = 3080$ Volts
- Gas gain: G = 2e4
- $\mu_{ion} = 6e-5 \text{ m}^2/\text{V-s}$
- $\mu_e = 0.4 \text{ m}^2/\text{V-s}$
- Tube length up to 6 meters
- $Z_0 \sim 390 \ \Omega$

Objectives

- MDTs are "position" detectors for particle momentum measurement (curvature in B field)
- Target resolution ~ 80 u per single tube
- Need to measure "time of arrival" of pulse to ~ 1 ns
- Strategy
 - Form pulse with short (~ 15ns) peaking time
 - Measure time that pulse exceeds fixed threshold
- To avoid pulse reflections, we need a "terminating" resistor
- Terminating resistor sets lower limit on noise (follows from "noise integrals" see pg 11)

MDT-ASD topology

MDT-ASD preamp layout

MDT-ASD topology

Shaper differential amplifiers

MDT-ASD topology

Shaper differential amplifiers

ATLAS MDT-ASD Summary

- Design resulted in octal "MDT-ASD" chip (Amp/Shaper/Discriminator"
- HP 0.5 u CMOS process (now considered very "20th century" process)
- 75k chips produced & tested
- $\bullet \sim 50k$ chips used in ATLAS
- Cost ~ \$1/channel
- 3 MDT-ASD chips per "MDT Mezzanine" card
- $\bullet \sim 16{,}000$ "Mezz" cards produced and now in ATLAS Muon Spectrometer

Summary & conclusions

Analysis/design methodology

- 1. Understand requirements
 - Noise, dynamic range,..
 - Impedances
 - Signal shapes
 - etc
- 2. Hand calculations will get you close and/or guide design
 - Noise contributions of worst offenders
 - Transfer functions, response shapes, etc
 - Transistor sizing for CMOS circuits
- 3. SPICE modeling
 - Vendor SPICE models can be <u>very</u> accurate but <u>very</u> complicated
 - Produce best analysis at expense of intuitive understanding

Moore's law

- Number of transistors on a single die will double every ~18 months (G. Moore)
- Corollary \rightarrow Complexity and channel count of HEP experiments scales about the same way It's not an accident.

Bibliography

- "Particle Detection with Drift Chambers" W.Blum, L. Rolandi Springer Verlag, pg 134, 155-158
- 2) "Tables of Laplace Transforms" Oberhettinger & Badii, Springer Verlag
- 3) "Complex Variables and Laplace Transform for Engineers" LePage, Dover
- 4) "Electronics for the Physicist" Delaney, Halsted Press
- 5) "Noise in Electronic Devices and Systems" Buckingham, Halsted Press
- 6) "Low-Noise Electronic Design" Motchenbacher & Fitchen, Wiley Interscience
- "Processing the signals from solid state detectors" Gatti & Manfredi, Nuovo Cimento
- 8) "Analog MOS Integrated Circuits for Signal Processing" Gregorian & Temes, Wiley Interscience
- 9) "Detector Physics of the ATLAS Precision Muon Chambers" Viehhauser, PhD thesis, Technical University Vienna.
- 10) "MDT Performance in a High Rate Background Environment" Aleksa, Deile, Hessey, Riegler – ATLAS internal note, 1998