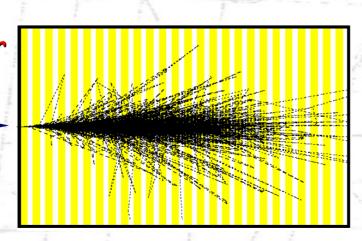


Calorimetry in Nuclear and Particle Physics Experiments

Bernd Surrow



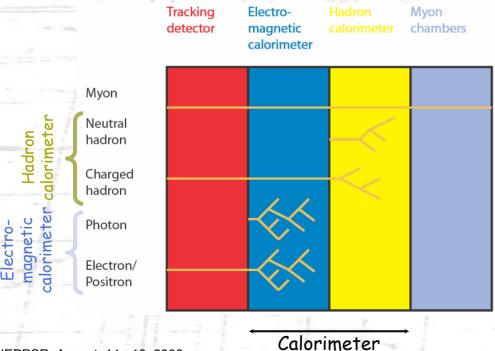
Massachusetts Institute of Technology

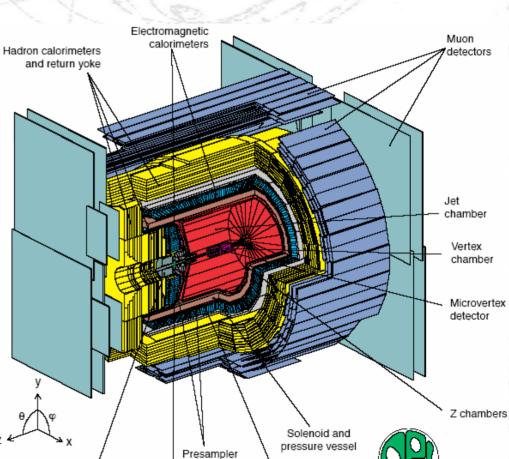
QuickTime™ and a IFF (Uncompressed) decompressor are needed to see this picture.

- Electromagnetic showers
- Hadronic showers

Introduction

- Electromagnetic calorimeters
- Hadronic calorimeters


Summary

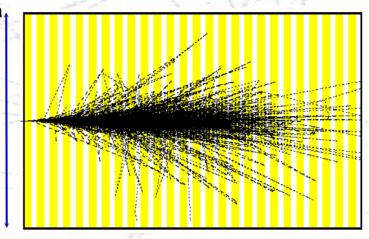

Bernd Surrow

- Definition and importance of calorimetry
 - $\hfill \square$ Measure p_μ of final-state particles in high-energy particle collisions
 - Calorimeter: Prime device to measure energy (E) of high-energy particles through total absorption

Time of flight

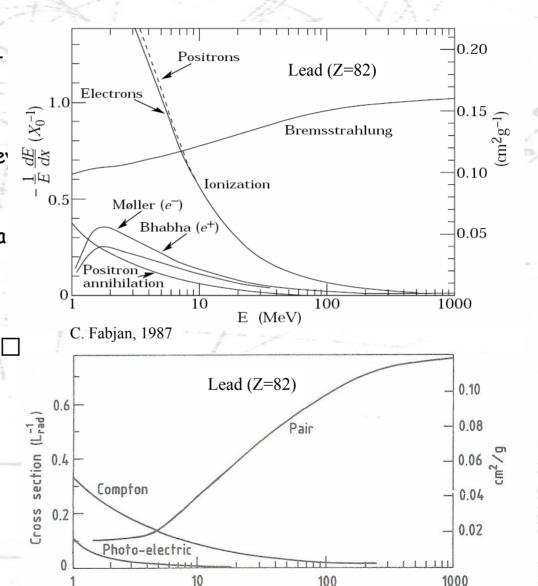
Forward

detector


Silicon tungsten luminometer

Basic properties of calorimeters

- Conceptual idea of calorimeter principle: Shower formation of decreasingly lower-energy particles
- Small fraction of deposited energy is converted into a measurable signal depending on the type of instrumented materials being used:
 - Scintillation light
 - Cherenkov light
 - Ionization charge
- □ Important: Calorimeter has to be large enough (long./trans. dimension) to contain the full shower
- □ Unique properties of calorimeters:


- Segmentation allows to measure impact position of incident particle □ □ □ □
- Fast time response, depending on type of instrumented materials, allows to accept high event rate: Trigger input□□□□
- Response depends on particle type (trans./long. shower formation): Means of electron/hadron separation□□□□

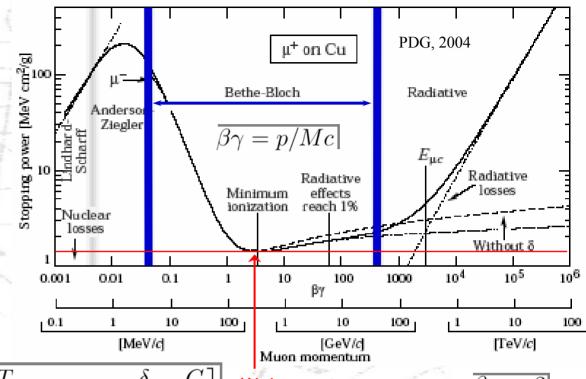
Bernd Surrow

Interaction of particles with matter

- lacksquare Overview of interaction processes \Box
 - Particles created in the collision of highenergy particle beams experience electromagnetic and/or nuclear interactions in the detector material they pass through
 - Understanding these processes: Essentia
 for the design of any detector system!
 - $lue{}$ Main processes for charged particles: $lue{}$ $lue{}$
 - Ionization
 - Cherenkov radiation
 - Bremsstrahlung
 - \square Main processes for photons: \square
 - Photoelectric effect
 - Compton scattering
 - Pair production

E (MeV)

C. Fabjan, 1987


Ionization

□ Bethe-Bloch equation: Mean energy loss (or stopping power)

-dE/dx in units of:

 $(MeV/cm)/(g/cm^3)=(MeV cm^2/g)$

-dE/x for charged particles: M » m_e

$$-\frac{dE}{dx} = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{max}}{I^2} - \beta^2 - \frac{\delta}{2} - \frac{C}{Z} \right]$$
 Minimum at approx.: $\overline{\beta} \gamma \approx 3$ (-dE/dx of relativistic particles: Closed to the content of the cont

with:

$$T_{max} = \frac{2m_e c^2 \beta^2 \gamma^2}{1 + 2\gamma_e m_e / M + (m_e / M)^2}$$

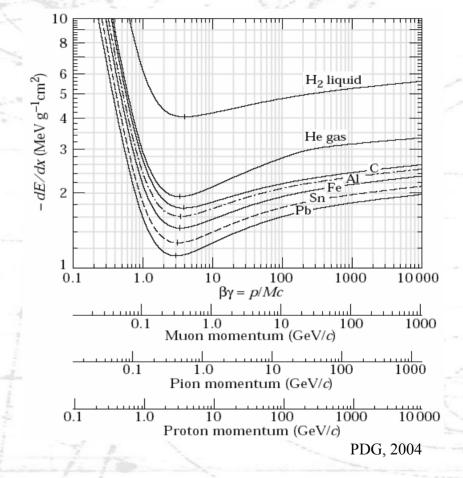
$$\overline{K = 4\pi N_A r_e^2 m_e c^2}$$

Note:

Density (δ) and shell (C) corrections at high and low energies, respectively

(-dE/dx of relativistic particles: Close

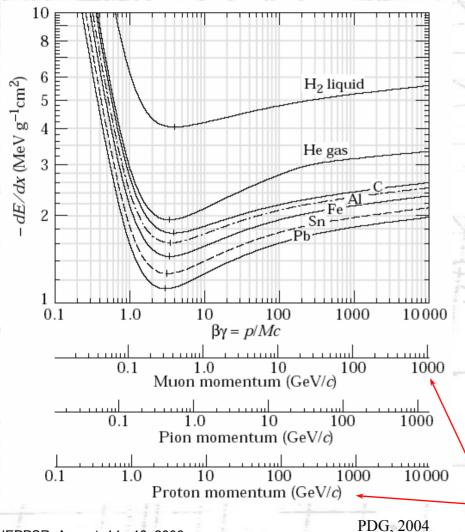
to minimum-ionizing particle (MIP)


-dE/dx for electrons modified due to the kinematics. spin and identity of the incident electron with the medium electrons

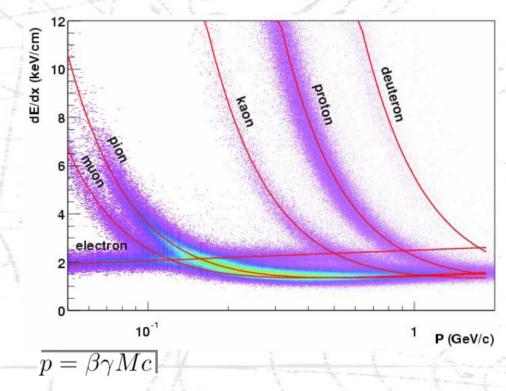
Ionization

Material	Z	Α	Z/A	dE/dx min (MeVcm²/g)	Density (g/cm³)
H ₂ (liquid)	1	1.008	0.992	4.034	0.0708
He	2	4.002	0.500	1.937	0.125
С	6	12.01	0.500	1.745	2.27
Al	13	26.98	0.482	1.615	2.70
Cu	29	63.55	0.456	1.403	8.96
РЬ	82	207.2	0.396	1.123	11.4
W	74	183.8	0.403	1.145	19.3
U	92	238.0	0.387	1.082	19.0
Scint.			0.538	1.936	1.03
BGO			0.421	1.251	7.10
CsI			0.416	1.243	4.53
NaI			0.427	1.305	3.67

□ Medium dependence


• Weak dependence on the medium, since $Z/A \approx 0.5$:

- Scintillator: dE/dx|_{min} ≈ 2MeV/cm
- Tungsten: dE/dx|_{min} ≈ 22MeV/cm


Ionization

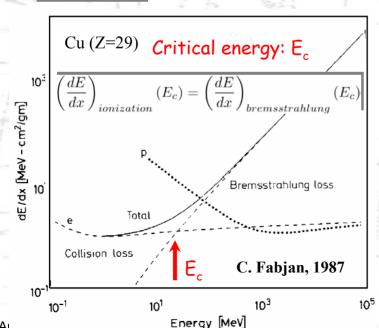
Particle mass dependence

• STAR Time-Projection Chamber (TPC):

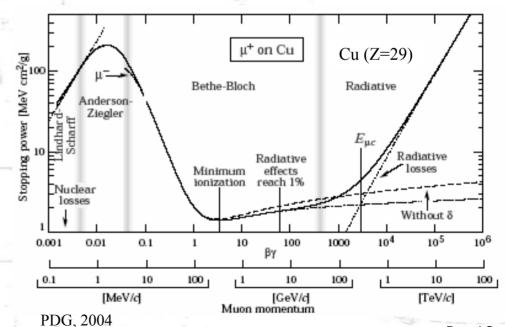
10% Methan / 90% Argon (2mbar above athm. pressure)

- Minimum in $\beta\gamma\approx 3$ occurs for fixed momentum p at different locations depending on particle mass: Means of particle identification at low momentum p!
- Example: M_p/M_μ ≈ 10

Bremsstrahlung


 Radiation of real photons in the Coulomb field of the nuclei of the absorber: Mean energy loss due to Bremsstrahlung

$$\frac{dE}{dx} = -4\alpha \frac{\rho N_A}{A} Z(Z+1) r_e^2 \ln(183Z^{-1/3}) E \propto \frac{E}{m_e^2}$$
 Note: Effect plays only a role for e+/- and ultra-relativistic muons (> 1 TeV)

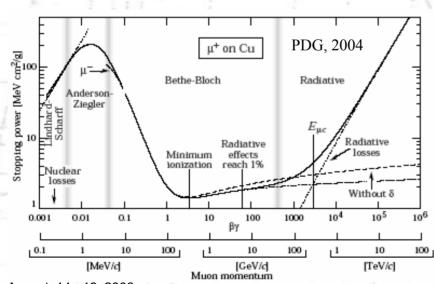

ultra-relativistic muons (> 1 TeV) $((m_1/m_p)^2 \approx 4.10^4)$

 \Box Definition of radiation length $X_0:\Box\Box$

$$-\frac{dE}{E} = \frac{dx}{X_0}$$

$$\frac{1}{X_0} = 4\alpha \frac{\rho N_A}{A} Z(Z+1) r_e^2 \ln(183Z^{-1/3})$$

NEPPSR, A Craigville Conference Center, Cape Cod Bernd Surrow

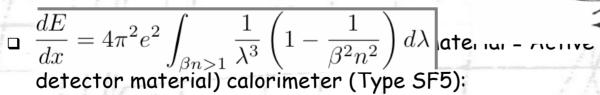

Bremsstrahlung

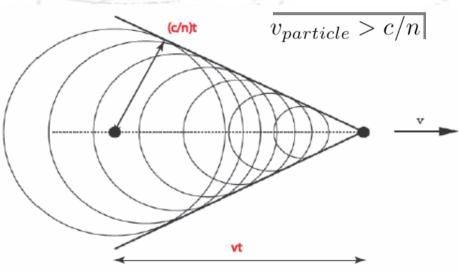
- \square Material dependence in radiation length X_0
- \square Critical energy: \square

$$E_c \approx \frac{800 MeV}{Z + 1.2}$$

$$E_c(e^- \text{ for Cu } Z = 29) \approx 20 MeV$$

$$E_c(\mu^- \text{ for Cu } Z = 29) \approx 800 GeV$$




	ALC: NO.		and the same			
11 11	Material	Z	Α	Z/A	X ₀ (cm)	Density (g/cm³)
111	H ₂ (liquid)	1	1.008	0.992	866	0.0708
	He	2	4.002	0.500	756	0.125
	С	6	12.01	0.500	18.8	2.27
	Al	13	26.98	0.482	8.9	2.70
	Cu	29	63.55	0.456	1.43	8.96
	Pb	82	207.2	0.396	0.56	11.4
	W	74	183.8	0.403	0.35	19.3
	U	92	238.0	0.387	0.32	19.0
4. 1. Que 11. 1.	Scint.			0.538	42.4	1.03
rest . /J.	BGO			0.421	1.12	7.10
	CsI			0.416	1.85	4.53
	NaI			0.427	2.59	3.67

- Cherenkov radiation
 - □ Definition: Cherenkov radiation arises when a charged particle in a material moves faster than the speed of light in that same medium:
 - Condition for Cherenkov radiation to occur:

$$\overline{\beta c = v = c/n} \qquad \cos \theta_c = \frac{1}{\beta n}$$

 Energy emitted per unit pain length:

- Density: $\rho = 4.08g/cm^3$
- Radiation length: $X_0 = 2.54$ cm
- Index of refraction: n = 1.67

- Interactions of photons with matter
 - Photoelectric effect

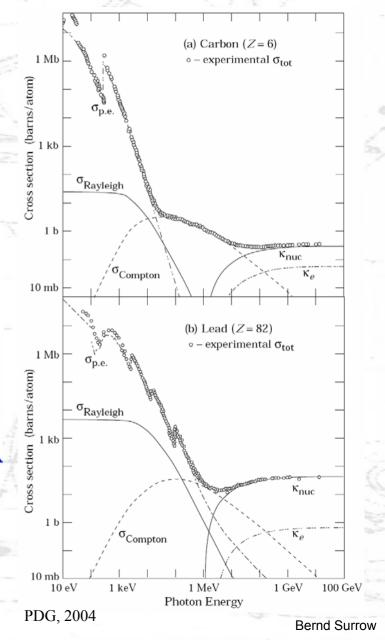
$$\gamma + X \to e^- + X^+$$

For E γ « $m_e c^2$ and the fact that for E γ above the K shell, almost only K electrons are involved one finds:

$$\sigma_{photo} = \sqrt{\left(\frac{32}{\epsilon^7}\right)} \alpha^4 Z^5 \sigma_{th}$$
 $\sigma_{th} = \frac{8}{3} \pi r_e^2$ $\epsilon = \frac{E_{\gamma}}{m_e c^2}$

□ Compton scattering □ □

 $\gamma + e^- \rightarrow \gamma + e^-$

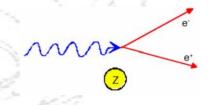

Assume electrons as quasi-free and $\rm E\gamma \gg m_e c^2$.

$$\sigma_c = \frac{3}{8}\sigma_{th}\frac{1}{\epsilon}\left\{\ln(\epsilon) + \frac{1}{2}\right\}$$

(Klein-Nishina)

Atomic Compton cross-section:

$$\sigma_c^{atomic} = Z\sigma_c$$



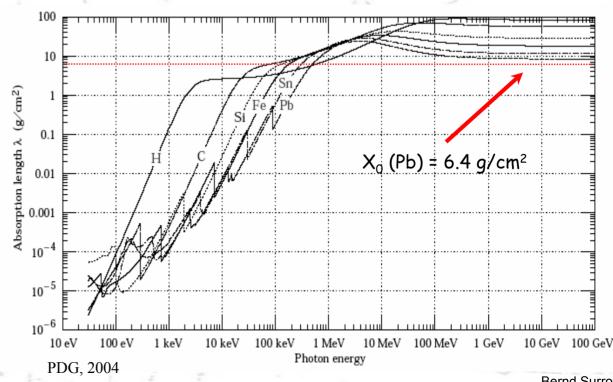
Interactions of photons with matter

Pair production

$$\sigma_{pair} = 4\alpha Z(Z+1)r_e^2 \left[\frac{7}{9} \ln(183Z^{-1/3}) - \frac{1}{54} \right]$$

$$\frac{1}{\lambda_{pair}} = \frac{N_A \rho}{A} \sigma_{pair} \approx \frac{7}{9} 4\alpha \frac{\rho N_A}{A} Z(Z+1) r_e^2 \ln(183 Z^{-1/3}) = \frac{7}{9} \frac{1}{X_0} \qquad \frac{1}{\lambda_{pair}} \approx \frac{7}{9} \frac{1}{X_0} \frac{1}{X_0} = \frac{1}{1} \frac{1}{X_0} = \frac{1$$

$$\frac{1}{\lambda_{pair}} \approx \frac{7}{9} \frac{1}{X_0}$$


□ Absorption coefficient

Total probability for γ interaction in matter:

$$\sigma = \sigma_{photo} + Z\sigma_c + \sigma_{pair}$$

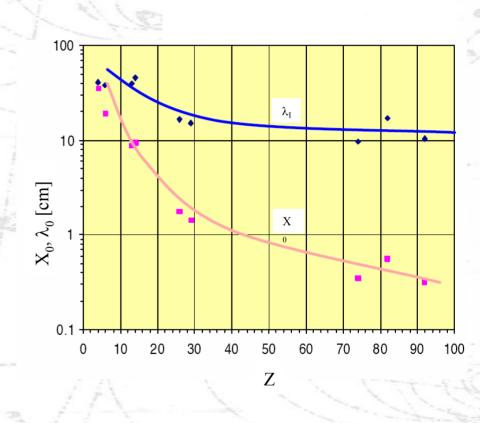
Probability per unit length or total absorption coefficient (Inverse of absorption length λ of γ):

$$\mu = \sigma \left(\frac{N_A \rho}{A} \right) \overline{I = I_0 e^{-\mu x}}$$

- Nuclear interactions
 - □ The interaction of energetic hadrons (charged or neutral) is determined by various nuclear processes:

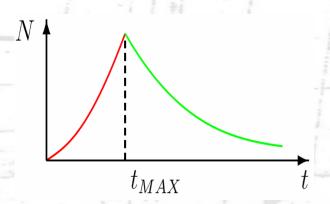
 hadron

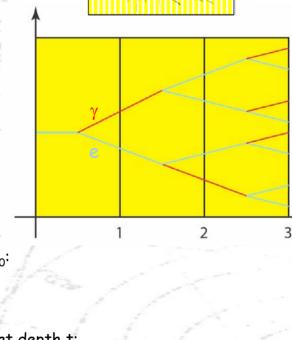
Multiplicity $\propto ln(E)$ P₊ < 1 GeV/c


- \Box Excitation and finally breakup of nucleus: nuclear fragments and production p of secondary particles
- \Box For high energies (> 1GeV) the cross-sections depend only little on the energy and on the type of the incident particle (p, π , K, ...)
- \Box Define in analogy to X_0 a hadronic interaction length λ_I :

$$\lambda_I = \frac{A}{N_A \sigma_{total}} \propto A^{\frac{1}{3}}$$

Comparison of nuclear interaction length (in cm) and radiation length (in cm)


Material	Ζ	Α	Z/A	X ₀ (cm)	λ_{I} (cm)	Density (g/cm³)
H ₂ (liquid)	1	1.008	0.992	866	718	0.0708
He	2	4.002	0.500	756	520	0.125
С	6	12.01	0.500	18.8	38.1	2.27
Al	13	26.98	0.482	8.9	39.4	2.70
Cu	29	63.55	0.456	1.43	15.1	8.96
Pb	82	207.2	0.396	0.56	17.1	11.4
W	74	183.8	0.403	0.35	9.58	19.3
U	92	238.0	0.387	0.32	10.5	19.0
Scint.			0.538	42.4	81.5	1.03
BGO			0.421	1.12	22.1	7.10
CsI			0.416	1.85	36.9	4.53
NaI			0.427	2.59	41.1	3.67



Electromagnetic shower development

- □ Simple qualitative model for shower development (Heitler)
 - Consider only: Bremsstrahlung and pair production
 - Each electron with E > E_c travels $1X_0$ and then gives up half of its energy to a bremsstrahlung photon
 - Each photon with $E > E_c$ travel $1X_0$ and then undergoes pair production with each created particle receiving half of the energy of the photon
 - Electrons with $E \cdot E_c$ cease to radiate and lose remaining energy through ionization
 - Neglect ionization losses for E > Ec

Total number of particles after $t X_0$:

$$\overline{N(t) = 2^t = e^{t \ln 2}}$$

Average energy of shower particle at depth t:

$$E(t) = E_0/2^t = E_0/e^{t \ln 2}$$

$$\overline{E(t)} = E_c$$
 $\overline{t_{max}} = \ln(E_0/E_c)/\ln 2 \propto \ln(E_0)$

$$N_{max} = e^{t_{max} \ln 2} = E_0 / E_c$$

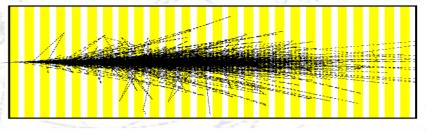
After t=t_{max}: ionization, compton effect and photoelectric effect!

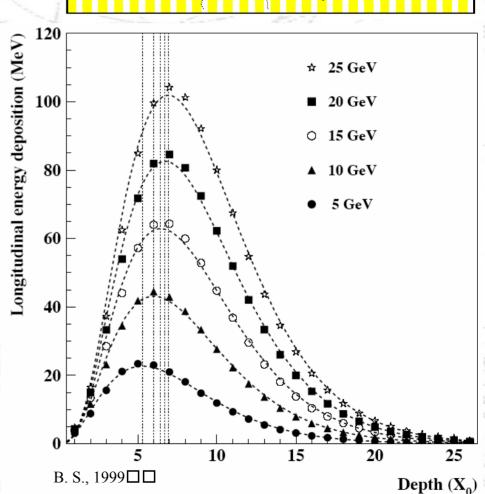
Longitudinal shower profile

- \square Size of shower grows only logarithmically with E
- Rossi's approximation B (Analytical description of shower development):

	quantity	incident electron	incident photon
	t_{max}	$\ln y - 1$	$\ln y - 0.5$
	t_{med}	$t_{max} + 1.4$	$t_{max} + 1.7$
-	N_{max}	$\frac{0.3y}{\sqrt{\ln y - 0.37}}$	$\frac{0.3y}{\sqrt{\ln y - 0.31}}$
	LANGITUALA	OL DESCELLO:	

□ Longituainai protiie:

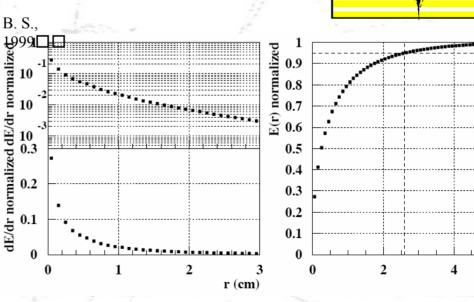

95% shower containm
$$\frac{dE}{dt}=E_0\frac{b^{\alpha+1}}{\Gamma(\alpha+1)}t^{\alpha}e^{-bt}$$

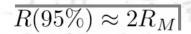

$$\overline{t_{max} = \alpha/b}$$

$$\overline{t_{max}(25GeV \text{ for W}) \approx 7}$$

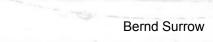
$$L(95\%) \approx t_{max} + 0.08Z + 9.6$$

$$L(95\% \text{ for W}) \approx 22$$



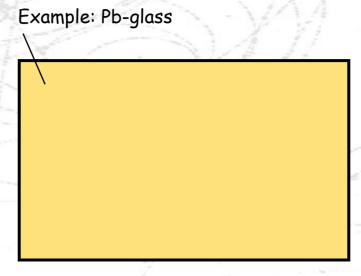


Transverse shower profile

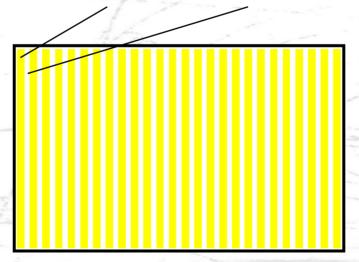

- □ Contributions to widening of shower:
 - Opening angle between e⁻/e⁺ for pair production
 - Emission of bremsstrahlung photons
 - Multiple scattering, dominant for the low-energy part of shower
- □ Transverse shower structure:
 - High-energy core
 - Low-energy halo
- □ Gradual widening of shower scales with Molière radius R_M: E_s≈21MeV
- $\square R_M pprox 7 rac{A}{Z} r \operatorname{cont}_{R_M} pprox E_S rac{X_0}{E_0}$

 $\left(\frac{dE}{dr}\right) = \frac{1}{N} \left\{ e^{-\sqrt{r/\lambda_1}} + C_{12}e^{-r/\lambda_2} \right\}$

For W: $R(95\%) \approx 2R_M = 2 \text{ cm}$

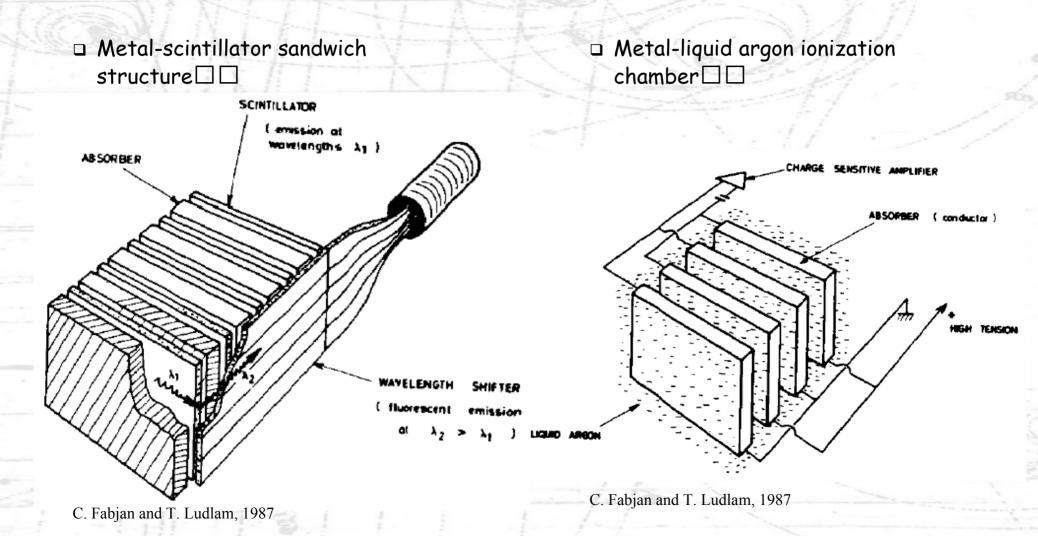


r (cm)

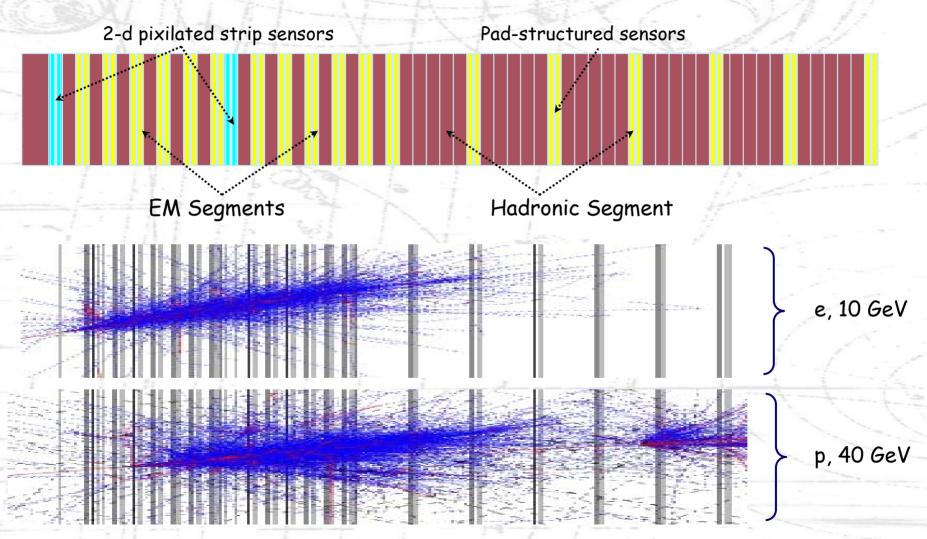


Calorimeter types

- Homogeneous calorimeter
 - Detector=Absorber
 - Good energy resolution
 - Limited position resolution
 - Only used for electromagnetic calorimetry
- □ Sampling calorimeter
 - Detectors (active material) and absorber (passive material) separated: Only part of the energy is sampled
 - Limited energy resolution
 - Good position resolution
 - Used both for electromagnetic and hadron calorimeter



Example: Tungsten (W) - scintillator



Basic readout types for sampling calorimeters

- Basic readout types for sampling calorimeters
 - \square Silicon-Tungsten Calorimeter (Here: PHENIX Silicon-Tungsten Upgrade) \square \square

Scintillators

□ General comments

- Concept: Small fraction energy lost by a charged particle can excite atoms in the scintillation medium. A small
 percentage of the energy released in the subsequent deexcitation can produce visible light
- Inorganic (e.g. crystals: BGO, CsI, PbWO₄) and organic scintillator are known
- Organic scintillators: Organic crystals and liquid scintillators and plastic scintillators

□ Plastic scintillators

- Wide-spread use as trigger counters and in the calorimeter sampling structures as active detector material
- Example: Rough design numbers for a plastic scintillator coupled to a photomultiplier tube (PMT):
 - Energy loss in plastic (MIP): 2MeV/cm
 - Scintillation efficiency: 1photon/100eV
 - Collection efficiency: 0.1
 - Quantum efficiency: 0.25

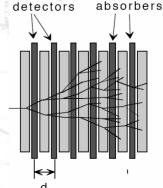
Number of photoelectrons: ~500

With a PMT gain of 10° one would collect 80pC!

Energy resolution: General considerations

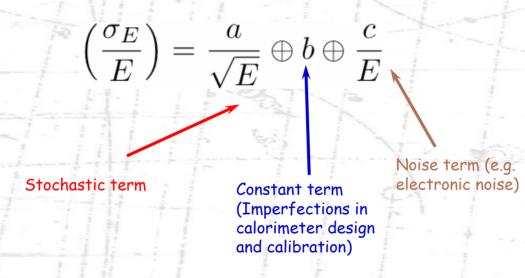
- □ Intrinsic fluctuations
 - Track length T: Total length of all charged particle tracks within a calorimeter
 - Total detectable track length:

$$T = F(z) \frac{E_0}{E_a}$$

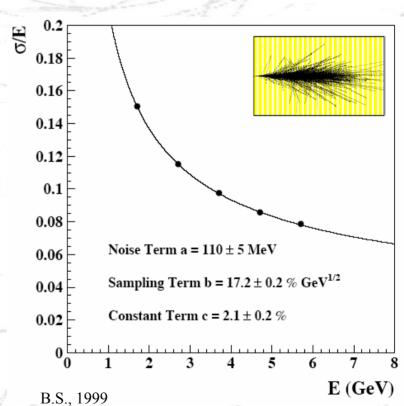

$$z = 4.58 \frac{Z}{A} \frac{E_{min}}{E_c}$$

$$F(z) = e^{z} \left[1 + z \ln(z/1.526) \right]$$

- Number of energy depositions above minimum detectable $\overline{N_{max} = E_0/E_{min}}$ energy ${\sf E}_{\sf min}$:
- Intrinsic resolution:
- Illustrative example: Pb-glass
- $\overline{(\sigma_E/E)_{intrinsic}} \sim \sigma_{N_{max}}/N_{max} = 1/\sqrt{N_{max}} \propto 1/\sqrt{E_0}$
- $\overline{E_{min}} \simeq 0.7 MeV \text{ for } E_0 = 1 GeV$
- □ Intrinsic sampling fluctuations
 - In a sampling calorimeter, one determine $\overline{N_{max}} = 1000/0.7 = 1500$ \Rightarrow Resolution: few percent! track length T but only a fraction of it depending on the thickness of passive and active absorber plates
 - Number of crossings:
 - Sampling resolution:

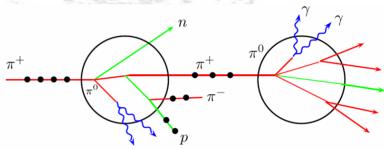

$$\overline{N_x = \frac{T_d}{d} = F(z) \frac{E_0}{E_c d}}$$

$$\overline{(\sigma_E/E)_{sampling} \sim \sigma_{N_x}/N_x = 1/\sqrt{N_x}}$$



- Energy resolution: General considerations
 - □ Instrumental effects
 - Effects other then the intrinsic resolution components are accounted for as follows:

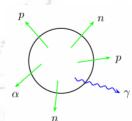
- \square Additional contributions to the energy resolution \square \square
 - Longitudinal shower leakage
 - Transverse shower leakage
 - Dead material effects

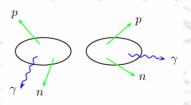


Hadronic showers

Hadronic shower development

- General comment: Complexity of of hadronic and nuclear processes produce multitude of effects that determine the functioning and performance of hadron calorimeters
 - Many channels compete in the development of hadronic showers
 - Larger variations in the deposited and visible energy
 - More complicated to optimize
- Sizeable electromagnetic (e) besides hadronic (h) shower contribution mainly from π^0 decay (1/3 of pions)
- □ Invisible energy due to delayed emitted photons in nuclear reactions, soft neutrons and binding energy
- □ Visible energy smaller for hadronic (h) than for electromagnetic
 (e) showers: Ratio of response e/h > 1
- Larger intrinsic fluctuations for hadronic than electromagnetic showers
- ☐ Improvements: Increase visible energy to get e/h=1: Compensation (Compensation for the loss of invisible energy)!
- figspace Discussed instr. effects for e showers also hold for h showers


Step 1: Production of energetic hadrons with a mean free path given by the nuclear interaction length:

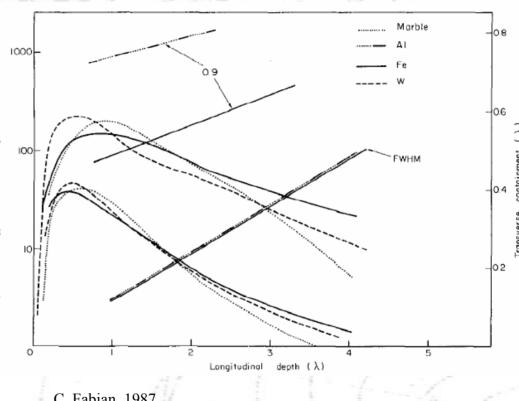

dE/dx nuclear cascade dE/dx nuclear cascade

Step 2: Hadronic collisions with material nuclei (significant part of primary energy is consumed in nuclear processes):

Evaporation

Evaporation followed by fission

Hadronic shower profile

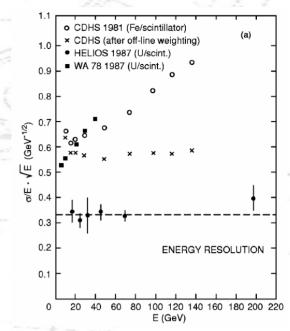

- □ Longitudinal and transverse shower shape characterized by λ_T
- □ Hadronic showers are much longer and broader then electromagnetic showers: Me of e/h separation
- □ Longitudinal containment:

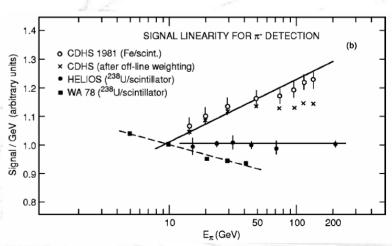
$$\overline{t_{95\%}} = a \ln E + b \, | \,$$

$$t_{max}(\lambda_I) = 0.2 \ln E + 0.7$$
 ent:

$$Fe: a = 9.4, b = 39, E = 100 GeV: t_{95\%} = 80 cm$$

- $Fe: a=9.4, b=39, E=100GeV: t_{95\%}=80cm$ 95% of shower contained with a cylinde of radius λ_T
 - Example: 16.7 cm for Fe




Hadronic showers

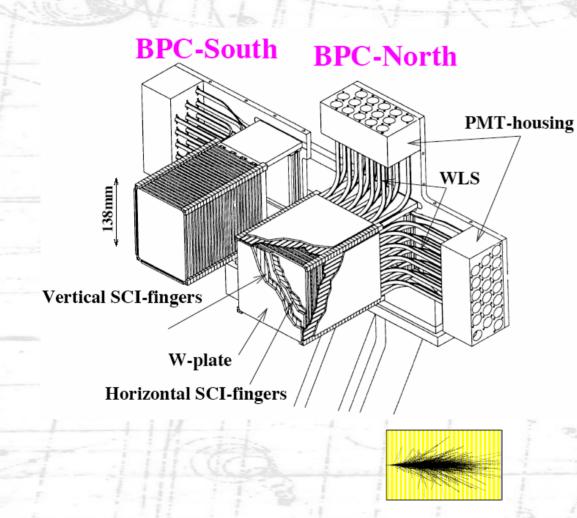
Energy resolution: Concept of compensation

- □ Compensation for loss of invisible energy: e/h=1
- $\hfill\square$ Noncompensating detectors show deviations from scaling in 1/JE and non-linearity in signal response
- □ How can compensation be achieved?
 - Reduce e and increase h component
 - High-Z material such as U will absorb larger fraction of energy of electromagnetic part of shower: Smaller signal in active part from e contribution!
 - For the hadronic part, low energy neutrons are not affected by U.
 Interaction of n with hydrogen (large n-p cross section): Recoil proton produced in active part contributes to calorimeter signal thus larger signal in active part from h contribution
 - The amount of electromagnetic reduction and neutron amplification is set by the ratio of absorber to active material: Tuning this ratio yields compensation!
 - Other techniques: Software compensation (H1 Liquid Ar calorimeter)

C. Fabjan and F. Gianotti, 2003

C. Fabjan and F. Gianotti, 2003

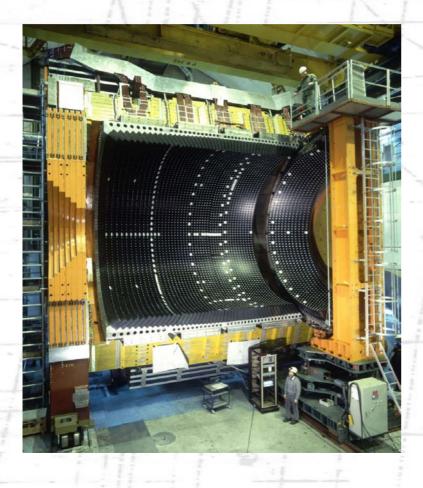
Electromagnetic and hadronic calorimeters

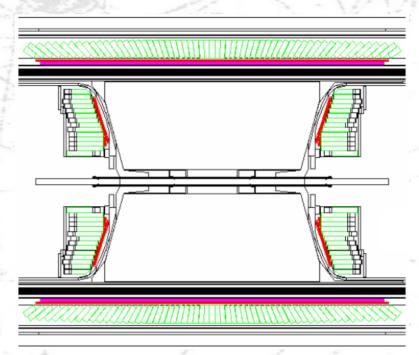

Overview

Technology (Experiment)	Depth	Energy resolution	Date
NaI(Tl) (Crystal Ball)	$20X_{0}$	$2.7\%/\mathrm{E}^{1/4}$	1983
$Bi_4Ge_3O_{12}$ (BGO) (L3)	$22X_0$	$2\%/\sqrt{E} \oplus 0.7\%$	1993
CsI (KTeV)	$27X_0$	$2\%/\sqrt{E} \oplus 0.45\%$	1996
CsI(Tl) (BaBar)	$16-18X_0$	$2.3\%/E^{1/4} \oplus 1.4\%$	1999
CsI(Tl) (BELLE)	$16X_0$	1.7% for $E_{\gamma} > 3.5$ GeV	1998
$PbWO_4$ (PWO) (CMS)	$25X_0$	$3\%/\sqrt{E} \oplus 0.5\% \oplus 0.2/E$	1997
Lead glass (OPAL)	$20.5X_0$	$5\%/\sqrt{E}$	1990
Liquid Kr (NA48)	$27X_0$	$3.2\%/\sqrt{E} \oplus 0.42\% \oplus 0.09/E$	1998
Scintillator/depleted U (ZEUS)	20-30X ₀	$18\%/\sqrt{E}$	1988
Scintillator/Pb (CDF)	$18X_0$	$13.5\%/\sqrt{E}$	1988
Scintillator fiber/Pb spaghetti (KLOE)	$15X_0$	$5.7\%/\sqrt{E} \oplus 0.6\%$	1995
Liquid Ar/Pb (NA31)	$27X_0$	$7.5\%/\sqrt{E} \oplus 0.5\% \oplus 0.1/E$	1988
Liquid Ar/Pb (SLD)	$21X_0$	$8\%/\sqrt{E}$	1993
Liquid Ar/Pb (H1)	$20-30X_0$	$12\%/\sqrt{E} \oplus 1\%$	1998
Liquid Ar/depl. U (DØ)	$20.5X_0$	$16\%/\sqrt{E} \oplus 0.3\% \oplus 0.3/E$	1993
Liquid Ar/Pb accordion (ATLAS)	$25X_0$	$10\%/\sqrt{E} \oplus 0.4\% \oplus 0.3/E$	1996

Electromagnetic calorimeter

Sampling calorimeter: ZEUS Beam Pipe Calorimeter (BBC) at ep collider HERA



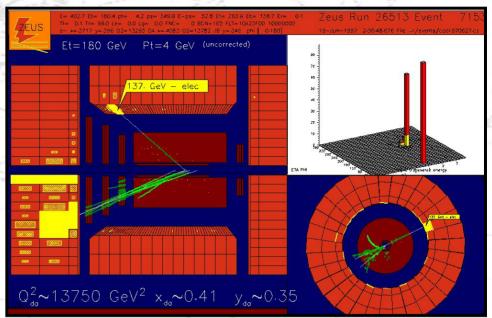

- ☐ Specifications:
 - Tungsten-scintillator electromagneticsampling calorimeter
 - > Depth: 24 X₀
 - Alternating horizontal and vertical
 oriented 8 mm wide scintillator fingers
 - > Energy resolution: 17%/√E
 - > Accuracy of energy calibration 0.5%
 - > Uniformity: 0.5
 - > Position resolution: < 1 mm
 - > Alignment: 0.5 mm
 - > Time resolution: < 1 ns

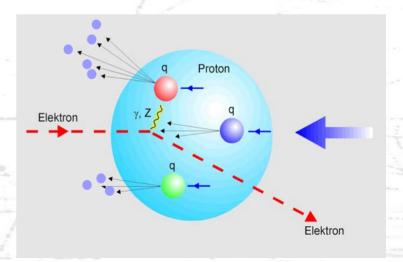
Electromagnetic calorimeter

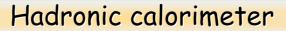
- Homogeneous calorimeter: OPAL Pb-glass calorimeter at ete-collider LEP
 - □ Layout

OPAL collaboration, C. Beard et al. NIM A 305 (1991) 275.

- 10572 Pb-glass blocks (24.6X₀)
- Energy resolution: $\frac{\sigma_E}{E} = \frac{6\%}{\sqrt{E}} \oplus 0.002$
- Spatial resolution: 11mm at 6GeV



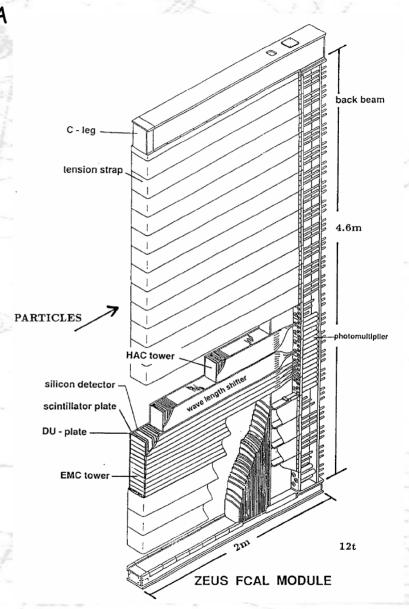

Hadronic calorimeter


ZEUS Uranium Calorimeter at ep collider HERA

- 3 Sections: Uranium Calorimeter
 - > Forward (FCAL) (7λ): 2.2° 39.9°
 - > Barrel (RCAL): 36.7° 129.1°
 - > Rear (RCAL) (4λ): 128.1° 176.5°

- F/RCAL modules 20cm width
- Original beam pipe hole: 20 x 20 cm²
- Compensating: $e/h = 1.00 \pm 0.02$ (3.3mm U/2.6mm SCI)

ZEUS Uranium Calorimeter at ep collider HERA


- Linear response to electrons and hadrons
- Energy resolution

> Electrons:
$$\frac{\sigma_E}{E} = \frac{18\%}{\sqrt{E}}$$

> Hadrons:
$$\frac{\sigma_E}{E} = \frac{35\%}{\sqrt{E}}$$

• Timing resolution:

$$\sigma_t = \frac{1.5}{\sqrt{E}}$$
 ns

Review

- □ Calorimeter: Prime device to measure energy (E) of high-energy particles through total absorption
- □ Conceptual idea of calorimeter principle: Shower formation of decreasingly lower-energy particles
- □ Electromagnetic calorimetry:
 - Underlying shower processes (QED) well understood: Completely governed by pair production and bremstrahlung above 1GeV
 - Transverse and longitudinal shower dimension: Characterized by radiation length
 - Homogeneous and sampling calorimeter types
- Hadronic calorimetry:
 - Complexity of of hadronic and nuclear processes produce multitude of effects that determine the functioning and performance of hadron calorimeters: Electromagnetic and hadronic component
 - Transverse and longitudinal shower dimension: Characterized by nuclear interaction length
 - Sampling calorimeter types
 - Crucial step: Compensation for invisible energy in nuclear reactions: Achieve e/h = 1 by tuning the ratio of the passive/active sampling layer thickness \Rightarrow Improvement in energy resolution: ZEUS U/SCI calorimeter: 35%/JE
 - New ideas are being developed to improve on the hadronic energy resolution as part of the ILC R&D

Summary

Literature

- □ Textbooks
 - R. Fernow, DExperimental particle physics, Cambridge University Press, Cambridge
 - W.R. Leo, Techniques for Nuclear and Particle Physics Experiments, Springer, New York
 - R. Wigmans, Techniques in calorimetry, Cambridge University Press, Cambridge
 - T. Ferbel, Experimental Techniques in High-Energy physics, Addison-Wesley, Menlo Park.

□ Papers

- C. Fabjan and T. Ludlam, Ann. Rev. Nucl. Part. 32 (1982) 32.
- C. Fabjan, in Experimental Techniques in High-Energy physics, edited by T. Ferbel (Addison-Wesley, Menlo Park).
- C. Fabjan and F. Gianotti, Rev. Mod. Phys. 75 (2003) 1243.
- R. Wigmans, Ann. Rev. Nucl. Part. Sci. 41 (1991) 133.
- B.S., □EPJdirect C2 (1999) 1.