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Analysis Project

» Goals of the Project

- Learn basic use of ROOT data analysis tool
- Standard tool in particle physics

- Apply statistical analysis to extract physical information
(particle lifetime, mass, etc...)

- Discriminate between signal and background events with
a multivariate analysis technique

Two Analysis Projects
1. B lifetime measurement with likelihood method

2. Discrimination between signal and background with
a neural network

Project I: application of maximum likelihood to measure B lifetime, see

http://people.umass.edu/willocg/neppsr/blifetime/AnalysisProject blifetime.html
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Project I: B Lifetime Analysis

e Sample

- Simulation of the exponential proper time distribution of B mesons
—> Effect of limited resolution in the measured proper time
simulated by smearing the true proper time with a constant
Gaussian resolution
- ROOT tuple contains: True time and measured time (in units of ps)
for 2000 events

| true time (ps) | htTime
Entries 2000

Mean 1.514
RMS 1.486

Lifetime used in the
generation of the events
was 1.532 ps
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Project |I: B Lifetime Analysis I

* Project

- Determine the B meson lifetime and its statistical uncertainty using each
of the following methods:

1) Least-squares fit to the true proper time histogram
- Need to provide function to fit the distribution with
f(t) = N exp(-t / tau)
- Use ROOT built-in interface to do the chi-squared minimization

Zzznbzms[(fai):Ni)Z]

i=1 O;

2) ‘Unbinned’ Maximum Likelihood with true proper time
—> Compute and display -log(likelihood) as a function of lifetime

3) ‘Unbinned’ Maximum Likelihood with reconstructed proper time
- Need to determine time resolution
- Compute and display -log(likelihood) as a function of lifetime

(use ROOT’s TMath::Erfc(x))
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Cape Cod Bay : !

Nantucket Sound

Analysis Project Introduction
Part Deux

John Butler
Boston University




Outline

“ Overview of old school and advanced analysis methods

¢ Intro to neural networks

» Shamelessly steal from an excellent talk by Reinhard
Schweinhorst, his full talk is linked from the NEPPSR site

* Analysis Project
» Searching for new physics at the Tevatron in the Wbb final state
» Neural net analysis in root using the TMultiLayerPerceptron class
» Root macros
» Your job

Warning, warning, warning!
| am not a NN expert
| do not even play one on TV
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Cape Cod Bav I \

August 15, 2006

Event counting

Apply cuts to variables
describing the event

— Object 1dentification

— Kinematic cuts on objects
— Event kinematics
Goal: cut until the signal
1s visible

— No background left

— Or large SNB

Sensitive to any signal with
this final state

Requires understanding of
background

Number of events / & GeV

example: Z discovery at UA1
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Peak 1n a characteristic distribution

* Find a variable that has a smooth
distribution for background :

— Typically invariant mass

* Measure this distribution over a 8"
large range of possible values

* Look for possible resonance peaks 3 #7
. s
— Example: b-quark discovery at i
Fermilab =

* Sensitive to any resonance with
this final state

“Bump Hunting” [

Reinhard Schwienhorst, Michigan State University
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When Event Counting
and Bump Hunting Fails

Cape Cod Bay : !

Nantucket S ound

s-channel t-channel : f
Signal yield 95 15.0 Signal/Background

Bkgnd yield 452 ’EOO small |
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Square Cuts
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Event Analysis Technigues

Cut-Based Likelihoods
Decision Trees Neural Networks

s >

Many others: Kernel methods, support vector machines. Matrix element. ...
Reinhard Schwienhorst, Michigan State University
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What is a Neural Network?

Cape Cod Bay : !

Nantucket Sound

“The question ‘What is a neural network?’ is ill-posed.”
- Pinkus (1999)

In HEP, neural nets are generally
used for classification, e.g. Svs B
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]

Input Nodes:
M, {jel1,jet2)
M {alljets)
P liet1,jet2)

p; (nothest2)

p; (nothest1)

cos(l,lx z) beibop

M W, best)
M (W, lag1)
AR (jet,jet2)

\s

P, itagl)

Neural Networks

One for each variable x,

Feed Forward =»

Goal: approximate signal probability
f(x) ~ P(Sx)

In root, the networks are “multilayer perceptrons”




Sigmoid Hidden Nodes: Each is a sigmoid

dependent on the inputran’ablea
n{x,w,|) =
k( ’ k) 14+ e S Wik Xi
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A linear combination of sigmoids
can approximate any continuous function

August 15, 2006 NEPPSR V - John M. Butler



Neural Networks

Input Nodes: One for each varnable x,
M. {jell,jet2)

M {alljets)
Py (el jet2)
P, (nothesi2)

p; (nothesti)

cos(LOx7) .o E = el L,

M [W best) i
M (W tag) Output Node: linear
combination of hidden nodes
AR (jetd,je1a) . . .
\n f(x) = Z W, n,(X,w,)
P, (tag1)
B S
Hidden Nodes: Each is a sigmoid
dependent on the input variables
N, (X,w,) =
V™ Tk —
1+ e 2 Wik Xi 0 |
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Neural Network Training

Eﬂ.?ﬁ :!10"

Traiming Error
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DO single top search

Reinhard Schwienhorst, Michigan State Umiversity 40
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cmcm:\
i :

Nantucket £

Neural Network Training

— Initialize NN weights
— Read in signal and background
model events

* Training sample

Testing Error

— Compute NN error

« X (.fr::lbserved _f:axpected)
— Adjust all NN weights as result

Traiming Error

Minimum Testing Epoch

— Compute NN error again ]
— Apply NN to independent set
of signal and background
* Testing sample 0 50 100 150 200 250
Epoch

— Stop training when error from _
testing sample starts increasing DO single top search

Reinhard Schwienhorst, Michigan State Umiversity
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cmcm:\

»

Nanfuchky

Neural Network Result
* Train on signal and background models (MC)

— Stop when signal-background separation stops improving
* Independent MC training sample

* For each data event, compute NN output
* Result 1s almost a

S . . . L]
probability distribution £ t D2
_ > - - qh
— But not necessarily = 201 H T tt — l+jets
constramed to [0,1] - A
o R | \
o- [\
] \
L N \
u; .-”"""--.._.,“_l
0 s 1

electron tgb-tt filter output

DO single top search
Reinhard Schwienhorst, Miclugan State University
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Neural Net Analysis Project

“* From the D@ search for new particles called technihadrons
“* p pbar 2 p; > W rn = (e v) (b bbar)

» Just like the search for the Higgs but 20x larger cross section

» Model parameters: M(p;) = 200 GeV, M(n;) = 105 GeV

“ Signature is a high p electron, missing E, and 2 b jets

¢ Several backgrounds processes are important, we will
consider only the standard model production of W + 2 jets

[ W+2jets >1b-tag | ® DATA 117

[ ] ALPGEN W+HF 32.8

I oco 163

B . PGEN Wb 23.6
1 22.0

[ ] W+light quark 10.3

BNz (- e+ bB)1.1

I single top 7.8

s wz 1.2
p, — W, (200,105) 20.7

Tot Background 115.1

i

Number of Events
w w
(=] (4]

N
(34

IIIIIIII]I]I]I]I]IIIIIII[IIIIIIIII[II

BOSTON
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* Training data files
» Signal: tc_pi0.root
» Background: wjj.root
* Kinematic variables in the
ntuples
> elpt: Electron p;
> jetlpt: p; of highest p; jet
> jet2pt: p; of 2"d highest p; jet
» met: Missing E;
> jjpt: p; of the (jetl,jet2) system
> hte: H.® = X p;(jet) + p(e)
> jjdphi: Ad(jetl,jet2)
» meteldphi: A¢(Missing E-,e)
* Plot these for yourself!

Neural Net Analysis Project

“ Play with the network structure
to optimize separation of signal
and background

» Variables selected for good
signal-background
discrimination but not
necessarily against Wjj
background!

» You choose which variables to
use as input to your network

» Can have as many hidden
layers and nodes as you want

* Challenge data files
» mystery n.root where n=1-4

s Unknown fraction of signal and
background, up to you to
determine

August 15, 2006
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root Macros for Project

“* mip_train.C
» Train the network and determine the node weights
» Optimize structure for maximum S and B separation

“* mlp_data.C
» Run the signal, background, and challenge data through the
network and produce NN output histograms
* mlp_fit.C
» Here you insert your code that will fit the histograms to determine
the signal fraction and plot the result

» Two methods

« Get bin contents, calculate 2 as a function of signal fraction, find
minimum y2 — the way any real physicist would do it!

» Use the root class designed for this kind of task — a black box, ugh!
¢ To run the macros, type
root —1 mlp x.C
where x = train, data, fit
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mlp_train.C Output

. —— Training sample
o —
50.35 :_ —— Test sample
0.34—
0.33—
0.32—
0.31—
0.3 :—
0.29
: | | | | | | | | | | | | | | | | | | | |
0 20 40 60 80 100
Epoch

You can set the # of training epochs, 100 is a reasonable choice
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- mlp_train.C Output

v |differences (impact of variables on ANN) |

— @elpt
10° — @jetZpt
@met jidphi
— @ijidphi
met
10
B jet2pt
3 | H|H \'H\M I ™
S 7 S 7 S T S— Y 0.4 52

|Neura| net output (neuron 0) i

120

100

Watch it! The network
changes every time you
run the training
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net_spec.txt

jidphi

met

jet2pt

elpt

@elpt, @jet2pt, @met, @jjdphi:6:type
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A How to optimize the network?

Nantucket Sound

Advice from the root manual:

Many guestions on the good usage of neural network, including rules of dumb to determine the best network
topology are addressed at ftp://ftp.sas.com/pub/neural/FAQ.html

Play with the topology and see
what you come up with!

August 15, 2006 NEPPSR V - John M. Butler 24



mlp_fit.C Output

| Background NN output | |5igna| NN output I
C 350
160 - : -
- 3 300 —
140 — g C
c e 250 —
120 R ; s
= HH A C
= Bttt 200 r
C 4.4 «EE -
80 — - -4 -
s RRRRRRAE O
60 X3 % e -
- +.1 4 ;;; 100 —
40 l RN §§| 4 -
= AR 50
2f Beses: :
[ N EE!E‘%% MO v Lo Laa a1 philoaal oy ) 5 T[0T B = N T TR
0.4 0.2 -0 0.2 . 1 1.2 1.4 -0.4 -D.2 -0 0.2 04 0.6 0.8 1 1.2 1.4

| Mystery Data NN output |

3 } Your job is to fit the

wf 7 data histogram to the

E ! sum of the background
e ey H and signal histos thereby
nE Aa determining the signal
SRS SO S S fraction
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«»» All macros and root files are available at
http://budoe.bu.edu/~jmbutler/NEPPSR/

¢ Project Finale on Thursday
» Send me your results by Wednesday evening for inclusion
» Don't be shy, there will be fabulous prizes for the best results!

*» Stephane and | will be around to answer guestions,
provide hints, etc.

¢ Good luck in your search for new physics and do have fun!

Time to get started!

| W+2jets >1b-tag |

I[lI]]]Il[ll[[II[[II[I']]II][II

0.8
NNout ( 200,105)
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