NEPPSR Analysis Project

```
Kevin Black (Harvard U.)
John Butler (Boston U.)
Stéphane Willocq (UMass Amherst)
```

New England Particle Physics Student Retreat Craigville, 13-18 August 2006

Analysis Project

- Goals of the Project
 - Learn basic use of ROOT data analysis tool
 - → Standard tool in particle physics
 - Apply statistical analysis to extract physical information (particle lifetime, mass, etc...)
 - Discriminate between signal and background events with a multivariate analysis technique

Two Analysis Projects

- 1. B lifetime measurement with likelihood method
- 2. Discrimination between signal and background with a neural network

Project I: application of maximum likelihood to measure B lifetime, see

http://people.umass.edu/willocq/neppsr/blifetime/AnalysisProject_blifetime.html

Project I: B Lifetime Analysis

Sample

- Simulation of the exponential proper time distribution of B mesons
 - → Effect of limited resolution in the measured proper time simulated by smearing the true proper time with a constant Gaussian resolution
 - → ROOT tuple contains: True time and measured time (in units of ps) for 2000 events

Lifetime used in the generation of the events was 1.532 ps

Project I: B Lifetime Analysis

- Project
 - Determine the B meson lifetime and its statistical uncertainty using each of the following methods:
 - 1) Least-squares fit to the true proper time histogram
 - → Need to provide function to fit the distribution with $f(t) = N \exp(-t / tau)$

→ Use ROOT built-in interface to do the chi-squared minimization

$$\chi^{2} = \sum_{i=1}^{nbins} \left(\frac{\left(f(t_{i}) - N_{i} \right)^{2}}{\sigma_{i}^{2}} \right)$$

- 2) 'Unbinned' Maximum Likelihood with true proper time
 - → Compute and display -log(likelihood) as a function of lifetime
- 3) 'Unbinned' Maximum Likelihood with reconstructed proper time
 - → Need to determine time resolution
 - → Compute and display -log(likelihood) as a function of lifetime (use ROOT's TMath::Erfc(x))

Colin Gay's lecture

Analysis Project Introduction Part Deux

John Butler

Boston University

Outline

- Overview of old school and advanced analysis methods
- Intro to neural networks
 - Shamelessly steal from an excellent talk by Reinhard Schweinhorst, his full talk is linked from the NEPPSR site

Analysis Project

- > Searching for new physics at the Tevatron in the Wbb final state
- > Neural net analysis in root using the TMultiLayerPerceptron class
- > Root macros
- > Your job

Warning, warning!
I am not a NN expert
I do not even play one on TV

Event counting

- Apply cuts to variables describing the event
 - Object identification
 - Kinematic cuts on objects
 - Event kinematics
- Goal: cut until the signal is visible
 - No background left
 - − Or large S/\sqrt{B}
- Sensitive to any signal with this final state
- Requires understanding of background

Uncorrected invariant mass cluster pair (GeV/c²)

Peak in a characteristic distribution

- Find a variable that has a smooth distribution for background
 - Typically invariant mass
- Measure this distribution over a large range of possible values
- Look for possible resonance peaks
 - Example: b-quark discovery at Fermilab
- Sensitive to any resonance with this final state

"Bump Hunting"

BOSTON UNIVERSITY

When Event Counting and Bump Hunting Fails

Example: Single Top in 370 pb⁻¹

Signal/Background too small for event counting

Invariant mass too broad for bump hunting

When Square Cuts Don't Cut It

Square Cuts

BOSTON UNIVERSITY

Event Analysis Techniques

Cut-Based

Likelihoods

Decision Trees

Neural Networks

Many others: Kernel methods, support vector machines, Matrix element, ...

Reinhard Schwienhorst, Michigan State University

What is a Neural Network?

"The question 'What is a neural network?' is ill-posed." - Pinkus (1999)

In HEP, neural nets are generally used for classification, e.g. S vs B

Neural Networks

Input Nodes: One for each variable x_i

Goal: approximate signal probability

$$f(\vec{x}) \approx P(S|\vec{x})$$

In root, the networks are "multilayer perceptrons"

Neural Networks

A linear combination of sigmoids can approximate any continuous function

Neural Networks

Neural Network Training

- Initialize NN weights
- Read in signal and background model events
 - Training sample
- Compute NN error
 - $\sum (f_{\text{observed}} f_{\text{expected}})$
- Adjust all NN weights as result
- Compute NN error again
- Repeat until ...

Reinhard Schwienhorst, Michigan State University

BOSTON UNIVERSITY

Neural Network Training

- Initialize NN weights
- Read in signal and background model events
 - Training sample
- Compute NN error
 - $\sum (f_{\text{observed}} f_{\text{expected}})$
- Adjust all NN weights as result
- Compute NN error again
- Apply NN to independent set of signal and background
 - Testing sample
- Stop training when error from testing sample starts increasing

DØ single top search

BOSTON UNIVERSITY

Neural Network Result

- Train on signal and background models (MC)
 - Stop when signal-background separation stops improving
 - Independent MC training sample
- For each data event, compute NN output
- Result is almost a probability distribution
 - But not necessarily constrained to [0,1]

DØ single top search

Reinhard Schwienhorst, Michigan State University

BOSTON UNIVERSITY

August 15, 2006 NEPPSR V - John M. Butler 16

Neural Net Analysis Project

- From the DØ search for new particles called technihadrons
- \bullet p pbar $\rightarrow \rho_T \rightarrow W \pi_T \rightarrow (e v)$ (b bbar)
 - > Just like the search for the Higgs but 20x larger cross section
 - \triangleright Model parameters: M(ρ_T) = 200 GeV, M(π_T) = 105 GeV
- ❖ Signature is a high p_⊤ electron, missing E_⊤, and 2 b jets
- Several backgrounds processes are important, we will consider only the standard model production of W + 2 jets

Neural Net Analysis Project

- Training data files
 - Signal: tc_pi0.root
 - Background: wjj.root
- Kinematic variables in the ntuples
 - ➢ elpt: Electron p_⊤
 - \triangleright jet1pt: p_T of highest p_T jet
 - → jet2pt: p_T of 2nd highest p_T jet
 - met: Missing E_T
 - → jjpt: p_T of the (jet1,jet2) system
 - ightharpoonup hte: $H_T^e = \sum p_T(jet) + p_T(e)$
 - jjdphi: Δφ(jet1,jet2)
 - ightharpoonup meteldphi: $\Delta \phi$ (Missing E_T,e)
- Plot these for yourself!

- Play with the network structure to optimize separation of signal and background
 - Variables selected for good signal-background discrimination but not necessarily against Wjj background!
 - You choose which variables to use as input to your network
 - Can have as many hidden layers and nodes as you want
- Challenge data files
 - mystery_n.root where n=1-4
- Unknown fraction of signal and background, up to you to determine

Sample of ntuple Variables

root Macros for Project

mlp_train.C

- > Train the network and determine the node weights
- ➤ Optimize structure for maximum S and B separation

mlp_data.C

Run the signal, background, and challenge data through the network and produce NN output histograms

mlp_fit.C

- Here you insert your code that will fit the histograms to determine the signal fraction and plot the result
- > Two methods
 - Get bin contents, calculate χ^2 as a function of signal fraction, find minimum χ^2 the way any <u>real</u> physicist would do it!
 - Use the root class designed for this kind of task a black box, ugh!
- ❖ To run the macros, type
 root -l mlp_x.C
 where x = train, data, fit

mlp_train.C Output

You can set the # of training epochs, 100 is a reasonable choice

BOSTON UNIVERSITY

mlp_train.C Output

Watch it! The network changes every time you run the training

net_spec.txt

@elpt,@jet2pt,@met,@jjdphi:6:type

How to optimize the network?

Advice from the root manual:

Many questions on the good usage of neural network, including rules of dumb to determine the best network topology are addressed at ftp://ftp.sas.com/pub/neural/FAQ.html

Play with the topology and see what you come up with!

mlp_fit.C Output

Your job is to fit the data histogram to the sum of the background and signal histos thereby determining the signal fraction

Time to get started!

- All macros and root files are available at http://budoe.bu.edu/~jmbutler/NEPPSR/
- Project Finale on Thursday
 - Send me your results by Wednesday evening for inclusion
 - Don't be shy, there will be fabulous prizes for the best results!
- Stephane and I will be around to answer questions, provide hints, etc.
- Good luck in your search for new physics and do have fun!

