

Collider Physics: The Farthest Energy Frontier Lecture 2

William Barletta

United States Particle Accelerator School

Dept. of Physics, MIT

VLHC/ELN: Offers decades of forefront particle physics

A large advance beyond LHC

- \rightarrow The last big tunnel
- \rightarrow Multi-step scenarios are the most realistic
- \rightarrow Eventually 50 to >100 TeV per beam

Discovery potential of VLHC far surpasses that of lepton colliders

- → Much higher energy plus high luminosity
- \rightarrow The only sure way to the next energy scale

Could this really be done? Let's work backward from the collision point

Luminosity formula exposes basic challenge of the energy frontier

Assume that $\sigma_z < \beta^*$ Neglect corrections for α Set $N_1 = N_2 = N$ $\epsilon_x = \epsilon_y$ and $\beta_x = \beta_y$ Collision frequency is $(\Delta t_{coll})^{-1} = c/S_{Bunch}$

$$L = \frac{N^2 c \gamma}{4\pi\varepsilon_n \beta^* S_B} = \frac{1}{er_i m_i c^2} \frac{Nr_i}{4\pi\varepsilon_n} \left(\frac{EI}{\beta^*}\right) = \frac{1}{er_i m_i c^2} \frac{Nr_i}{4\pi\varepsilon_n} \left(\frac{P_{beam}}{\beta^*}\right) \qquad i = e, p$$

Linear or Circular

2

Other parameters remaining equal

 $L_{nat} \propto Energy$ but $L_{required} \propto (Energy)^2$

"Pain" associated with going to higher energy grows non-linearly

Most "pain" is associated with increasing beam currents.

Potential strategies to increase luminosity

- I) Increase the charge per bunch, N
- 2) Increase the number of bunches, to raise I
- ③ 3) Increase the crossing angle to allow more rapid bunch separation,
- % 4) Tilt bunches with respect to the direction of motion at IP ("crab crossing") (will not present this)
- **8 5**) Shorten bunches to minimize $β^*$

These approaches are used in the B-factories

What sets parameter choices?

- ^{Solution} How do we choose N, S_B, $β^*$, and $ε_n$ as a function of energy?
 - \rightarrow Detector considerations
 - Near zero crossing angle
 - Electronics cycling ≥ 20 ns between crossings
 - ◆ Event resolution ≤ 1 event/crossing
 - Distinguish routine vs. peak luminosity running
 - \rightarrow Accelerator physics
 - Tune shifts
 - Luminosity lifetimes
 - Emittance control
 - \rightarrow Accelerator technologies
 - Synchrotron radiation handling
 - Impedance control
 - Radiation damage
 - Magnet technologies

Bunch spacing: Crucial detector issue

If you could reset electronics every 5 ns....

- Minimum bunch spacing is set by filling every rf-bucket
 - \rightarrow High radio frequencies are preferred, but
 - ◆ 1) must control impedances ==> superconducting rf
 - ✤ Go to high V_{rf} per cavity
 - requires powerful wideband feedback system
 - 2) avoid excessive long rang tune shift, Δv_{LR}

✤ ==> larger crossing angle

$$3 \qquad 2 \qquad 1 \qquad 1' \qquad 2' \qquad 3'$$

$$\Delta v_{LR} = \Delta v_{HO} 2n_{LR} \left(\frac{\sigma}{\beta^* \alpha}\right)^2 \qquad 3'$$

$$\Delta v_{HO} = \frac{N_B r_p}{4 \pi \epsilon_n}$$

$$\Delta v_{tot} = \left(N_{Hi,IP} + N_{Med,IP}\right) \Delta v_{HO} + N_{Hi,IP} \Delta v_{LR}$$

What is the allowable tune shift ?

From experience at SppS and the Tevatron

 $\Delta v_{\rm tot} \le 0.024$

- * Luminosity is maximized for a fixed tune spread when 3/4 of Δv_{tot} is allocated to Δv_{HO} and 1/4 to Δv_{LR}
- Suggests that ultimate luminosity can be reached for

 $N_{Hi,IP} = 1$ and $N_{Hi,Med} = 0$

 \rightarrow However, validity of extrapolation is unknown

may depend on radial distribution of particles in bunch.

- **Assume** maximum Δv_{HO} per IP is ~0.01
- * In $e^+ e^-$ colliders $\Delta v_{tot} = 0.07$ achieved at LEP

Supercollider components that affect energy & luminosity limits

- Injector chain
 - → Linac
 - → Lower energy booster synchrotrons
- Main ring
 - → Dipoles bend beam in "circle"
 - → Quadrupoles focus beam
 - → RF cavities accelerate beam, provide longitudinal focusing
 - → Feedback stabilizes beam against instabilities
 - → Vacuum chamber keeps atmosphere out
 - \rightarrow Cooling removes waste heat
 - \rightarrow Beam dumps & aborts protects machine and detectors
- Interaction Regions and detectors
 - \rightarrow Quadrupoles to focus beam
 - → Septa to decouple beams electromagnetically
 - → Detector to do particle physics

Dipole magnet type distinguishes strategies for VLHC design

Low field, superferric magnets

- \rightarrow Large tunnel & very large stored beam energy
- \rightarrow Minimal influence of synchrotron radiation
- **Medium'' field design
 - → Uses ductile superconductor at 4 8 T (RHIC-like)
 - → Some luminosity enhancement from radiation damping
- High field magnets with brittle superconductor (>10 T)
 - \rightarrow Maximizes effects of synchrotron radiation
 - \rightarrow Highest possible energy in given size tunnel

Does synchrotron radiation raise or lower the collider \$/TeV?

Dominant beam physics (a) 50 TeV/beam: synchrotron radiation

- Radiation alters beam distribution & allowed Δv at acceptable backgrounds
- Radiation damping of emittance increases luminosity
 - \rightarrow Limited by
 - Quantum fluctuations
 - Beam-beam effects
 - Gas scattering
 - Intra-beam scattering
 - → Maybe eases injection
 - → Maybe loosen tolerances
 - ==> Saves money ?

- Energy losses limit I_{beam}
 - → 1 Heating walls ==> cryogenic heat load ==> wall resistivity ==> instability
 - → 2 Indirect heating via two stream effects
 - → 3 Photo-desorption => beam-gas scattering => quench of SC magnets ==> Costs money

$$U_{o} = \frac{4\pi r_{p} m_{p} c^{2}}{3} \frac{\gamma^{4}}{\rho} = 6.03 \times 10^{-18} \frac{\gamma^{4}}{\rho (m)} \text{ GeV}$$

Beam distribution may change Δv_{max} **consistent with acceptable backgrounds**

Damping decrement fractional damping per turn Beam dynamics of marginally damped collider needs experimental study

Comparison of SR characteristics

		LEP200	LHC	SSC	HERA	VLHC
Beam particle		e+ e-	р	р	р	р
Circumference	km	26.7	26.7	82.9	6.45	95
Beam energy	TeV	0.1	7	20	0.82	50
Beam current	А	0.006	0.54	0.072	0.05	0.125
Critical energy of SR	eV	7 10 ⁵	44	284	0.34	3000
SR power (total)	kW	1.7 104	7.5	8.8	3 10 ⁻⁴	800
Linear power density	W/m	882	0.22	0.14	8 10-5	4
Desorbing photons	s ⁻¹ m ⁻¹	2.4 1016	1 1017	6.6 10 ¹⁵	none	3 1016

Thermal loads constrain current in high field designs

Direct thermal effects of synchrotron radiation:

- Considerations that can limit luminosity: residual gas, instabilities
- Holes for heat removal & pumping must be consistent with low $Z(\omega)$
- As plenum gets larger & more complex cost rises rapidly

Vacuum/cryo systems: Scaling LHC is not an option

Beam screen (requires aperture)

- 1. Physical absorption
 - a) shield & absorber are required
 - b) regeneration @ 20 K tri-monthly
- 2. Chemical absorption
 - a) finite life
 - b) regeneration at 450 600 K annually
- 3. "Let my photons go"
 - a) Not-so-cold fingers
 - b) Warm bore / ante-chambers

Cryogenics

- \rightarrow sensible heat v. latent heat systems
- \rightarrow LHC tunnel cryogenics have more than 1 valve per magnet average
- \rightarrow Superfuild systems are impractical at this scale

Synchrotron masks and novel materials may enhance performance

BUT, masks work best in sparse lattices & with ante-chambers

2-in-1 transmission line magnet lets photons escape in a warm vacuum system

Radiation power is low, but number of photons is large

- * Width 20 cm.
- * 2-in-1 Warm-Iron "Double-C" Magnet has small cold mass.
- * B @ conductor ~ 1 T; NbTi has high Jc ==> low superconductor usage.
- * Extruded Al warm-bore beam pipes with antechambers.
- * 75 kA SC transmission line excites magnet; low heat-leak structure.
- Simple cryogenic system.
- Current return is in He supply line.

Technical challenges for RF System

- Provide large power for synchrotron radiation losses
 → (5.5 MW in B factory HER @ L_{des}; ≈ 2 MW in VLHC)
- Provide large voltage for short bunches (easier with SC rf)
- Minimize Higher Order Mode (HOM) impedance
- Options:
 - → 1) Fundamental mode frequency (200 600 MHz)
 - \rightarrow 2) Room temperature v. SC rf-cavities (Need fewer cavities)
 - \rightarrow 3) Time domain or frequency domain feedback
- Design approach (B factories):
 - \rightarrow Minimize number of cavities with high gradient
 - \rightarrow 500 kW/window ==> >120 kW_{therm}/cavity => difficult engineering
 - \rightarrow Shape cavity to reduce HOMs
 - → High power, bunch by bunch feedback system $(T_{multi-bunch} \approx 1 5 \text{ ms})$

Short luminosity lifetime at maximum L requires powerful injection chain

Beam loss by collisions at L_{max} limits minimum I_{beam} at injection

$$\frac{1}{L} \frac{dL}{dt} = \frac{2}{N_{bunch}} \frac{dN_{bunch}}{dt} - \frac{1}{\epsilon} \frac{d\epsilon}{dt}$$
$$\tau_{1um}^{-1}(E) = \frac{1}{N_{bunch}} \frac{dN_{bunch}}{dt} = \frac{L}{N_{bunch}} \frac{\Sigma_{inel}(E)}{MN_{bunch}}$$
$$T_{1/2, lum} \approx 0.41 \tau_{lum}(E)$$
$$T_{inj} < 0.1 T_{1/2, lum}$$

- For large I_{beam} & N_{bunch} : resistive wall instability sets minimum injection energy for main ring
- Space charge tune spread sets energy of linac & boosters

Example: Loading 500,000 bunches for high L

		Circum (km)	Max E	Min E
	Main Ring	270	100 TeV	5 TeV
Main Ring: 100 TeV 200 - 300 km	HEB	28	5 TeV	0.5 TeV
	MHEB	2.9	500 GeV	70 GeV
	MLEB	0.35	70 GeV	12 GeV
	LEB	0.1	12 GeV	1.7 GeV
High Energy Booster: 5 TeV, 28 km	LINAC	0.1	1.7 GeV	—
MHEB: 500 GeV MLEB: 70 GeV		Bunches	Δν _{SC}	Cycle T (s)
/ ⁰ LEB: 12 GeV LINAC: 17 GeV	Main Ring	500000	1.60E-04	1000
	HEB	50000	1.60E-03	300
$T_{lum 1/2} = 10^5 sec @ L = 10^{35} cm^{-2}s^{-1}$	MHEB	5000	7.97E-03	30
uun, 1/2	MLEB	200	9.61E-03	1.2
	LEB	10	1.23E-02	0.06

Total loading time 3000 sec / main ring (1.5 nC/bunch)

Total acceleration time 1000 sec / main ring ==> Total fill at 100 TeV = 8000 sec

Plii Radiation from IP at high L

From hadronic shower

or

Dose $\propto N_{\text{collision}} \times \sigma_{\text{inel}} \times \text{Charged multiplicity/event} \times \frac{d E}{dx}$ Dose $\propto N_{\text{collision}} \frac{d^2 N_{\text{charged}}}{d\eta \, dp} \frac{d E}{dx}$ where $\frac{d^2 N_{charged}}{d^2 N_{charged}} \approx H f (p_{\perp})$ dη dp with η = psuedo-rapidity = - ln (tan $\theta/2$)

H = height of psuedo-rapidity plateau

- Detailed studies show that dose is insensitive to form of $f(p_1)$; use $f(p_1) = \delta(p_1 - \langle p_1 \rangle)$
- Approximately half as many π° 's are produced

Scaling of radiation from hadronic shower

Power in charged particle debris (per side)

$$P_{\text{debris}} = 350 \text{ W} \left(\frac{\text{L}}{10^{33}}\right) \left(\frac{\sigma_{\text{inel}}}{90 \text{ mb}}\right) \left(\frac{\text{E}}{20 \text{ TeV}}\right)$$

Radiation dose from hadron shower

$$D(E,r) = 26.1 \frac{Gy}{yr} \left(\frac{L}{10^{33}}\right) \left(\frac{\sigma_{inel}}{90 \text{ mb}}\right) \left(\frac{H(E)}{7.5}\right) \left(\frac{\langle p_{\perp} \rangle}{0.6 \text{ GeV}}\right)^{0.9} \frac{\cosh^{2.9} r}{r^2}$$

where

 $\mathbf{r} = \mathbf{distance from IP in meters}$

 $\eta = \text{psuedo-rapidity} = -\ln (\tan \theta/2)$ $H = \text{height of rapidity plateau} = 0.78 \text{ s}^{0.105}$ $\approx \text{ constant for } \eta < 6 (\theta > 5 \text{ mr})$ for $\eta > 6$, $H(E) \longrightarrow 0$ linearly @ kinematic limit $<p_{\perp>} = 0.12 \log_{10} 2E + 0.06$ $s = 4 E^2$

Radiation damage of IR components severely limits maximum luminosity

* Distance to first quad, Q1: 1* $\propto \beta^* \propto (\gamma / G)^{1/2}$

$$l^* = 20 m \left(\frac{E}{20 \text{ TeV}}\right)^{1/2}$$

Let Q1 aperture = 1.5 cm ==> At 100 TeV & L = 10^{35} cm⁻²s⁻¹ $P_{debris} = 180$ kW/side With no shielding D (Q1) \approx 4 x 10⁸ Gy/year ==> \approx 45 W/kg in Q1

Superconducting Q1 requires ≈ 20 kW/kg of compressor power

At $L = 10^{35} \text{ cm}^{-2} \text{s}^{-1}$ Q1 requires extensive protection with collimators

Radiation & Beam Abort: Worst- Case Accident

2. 8 GJ ~ 8 x LHC Energy (can liquify 400 liters of SS)

Normally extracted beam beam is swept in a spiral to spread the energy across graphite dump

If sweeper fails, the beam travels straight ahead into a sacrificial graphite rod which takes the damage & must be replaced. Beam window also fails.

FNAL-BNL-LBNL Study: Staged approach to VLHC

- Each stage promises new & exciting particle physics
 - → Build a **BIG** tunnel, the biggest reasonable for the site
 - \rightarrow E = 40 TeV ==> C = 233 km for superferric design
- First stage assists in realizing the next stage
 - → Choose large diameter tunnel
- Each stage is a reasonable-cost step across energy frontier
 - → Use FNAL as injector & infrastructure base

Parameter list for VLHC study

Stage 1	Stage 2
233	233
40	175
2	2
1	2
24	8
0.9	10.0
2	9.8
35.0	35.0
2.6	0.8
18.8	18.8
0.3	0.71
± 20	± 30
100	133
21	58
0.03	4.7
20	100
30	250
	Stage 1 233 40 2 1 24 0.9 2 35.0 2.6 18.8 0.3 ± 20 100 21 0.03 20 30

R&D will reduce technical risk & cost & improve performance (Stage 1)

Tunneling is the most expensive single part Automation to reduce labor component and make it safer Beam instabilities & feedback: the largest risk factor A combination of calculation, simulation & experiments Magnet field quality at injection and collision energy This does not appear to be an issue, but needs more study Magnet production & handling; long magnets reduce cost Reduce cost of steel yokes and assembly time & labor Installation requires complicated, interleaved procedure Handling long magnets is tricky Vacuum & cryogenics: surprisingly expensive Develop getters that work for methane, or cryopumps Possible cryogenic instabilities due to long lines

Can VLHC be a linear proton collider ?

Say
$$L_{coll} < 250 \text{ km} ==> E_{acc} \sim 1 \text{ GeV/m} ==> f_{rf} \approx 100 \text{ GHz}$$

$$L (10^{33} \text{ cm}^{-2} \text{ s}^{-1}) = \frac{D H_D}{30} \left(\frac{1 \text{ mm}}{\sigma_z}\right) \left(\frac{P_{\text{beam}}}{1 \text{ MW}}\right)$$

 H_D is the luminosity degradation due to the pinch effect D is the disruption parameter that measures the anti-pinch

$$\mathbf{D} = \frac{\mathbf{r}_{p} \mathbf{N}_{B} \boldsymbol{\sigma}_{z}}{\gamma \, \boldsymbol{\sigma}_{x,y}^{2}} = \mathbf{r}_{p} \mathbf{N}_{B} \left(\frac{\boldsymbol{\sigma}_{z}}{\boldsymbol{\beta}^{*} \boldsymbol{\varepsilon}_{n}} \right)$$

For D < 2, the value of $H_D \approx 1$.

At 100 TeV/beam, $\beta^* \sim 1 \text{ m} \& \epsilon_n \sim 10^{-6} \text{ m-rad}$

* For
$$f_{rf} = 100 \text{ GHz}$$
, $\sigma_z \sim 10^{-6} \text{ m} = \sigma_z / \beta^* \varepsilon_n \approx 1 \text{ m}^{-1}$

Assume we can

1) generate bunches of 100 nC & 2) preserve emittance in the linac

$$r_p N_B \sim 10^{-6} m$$

 Hence 10^{33} cm⁻² s⁻¹ ==> P ≈ 30 GW per beam

==> the ultimate supercollider should be a synchrotron

Conclusions

- No insurmountable technical difficulties preclude VLHC at ~10³⁵ cm⁻² s⁻¹ with present technologies
 - \rightarrow Radiation damage to detectors & IR components is a serious issue
- At the energy scale >10 TeV the collider must recirculate all the beam power (must be a synchrotron)
- Proton synchrotrons could reach up to 1 PeV c.m. energy
 - → One must find a way to remove the synchrotron radiation from the cryo-environment
 - → Even given the money, big question is whether the management and sociology of such a project (~1000 km ring) is feasible