
E. Hazen – NEPPSR 2005

NEPPSR 2005

Trigger and DAQ Electronics
Part 2 – Programmable Logic

Eric Hazen, Boston University

E. Hazen – NEPPSR 2005

Programmable Logic Introduction

For HEP applications we typically use
FPGAs (Field-Programmable Gate Arrays)

This particular one (XC2V3000) contains:

o 684 inputs and outputs
o 32,256 logic cells

any arbitrary function of 4 inputs
plus a register (D flip-flop)

o 96 18k bit dual-port RAMs
o 96 18x18 multipliers
o 12 digital clock managers

... and various other goodies

What is all this stuff and how do we use it?

E. Hazen – NEPPSR 2005

Boolean Logic

aka INVERTER

All digital logic can be described using the operations above.

not A (VHDL)
other notations:
A /A !A

A nand B
AB (A*B) A•B !(A&B)

A and B
AB A*B A•B A&B

A nor B
A+B A|B !(A|B)

A or B
A+B A|B

A xor B
A⊕B A^B

Basic Gates Derived Gates
Truth Table

E. Hazen – NEPPSR 2005

Boolean Identities

The usual algebraic laws (commutative, associative, distributive, identity) apply:

A and B = B and A
A or B = B or A
(A and B) and C = A and (B and C)

etcetera

De Morgan's Theorem:

not(A and B) = not(A) or not(B)
not(A or B) = not(A and B)

De Morgan's Theorem essentially states that you can exchange AND with OR
in an expression provided that all the inputs and outputs are inverted.

E. Hazen – NEPPSR 2005

Asynchronous Logic
Any logic composed of basic or derived gates without memory or latches
is called asynchronous logic. The outputs of a circuit will change to reflect
changes in input state (plus a certain propagation delay).

Asynchronous logic is also known as combinatorial logic.

In FPGAs, typically a “look-up table” is used for
combinatorial logic. For example, a table which
stores all possible functions of 4 bits ----->
(You can fill in the 'Y' column with anything)

Traditionally much emphasis in the classroom was
placed on simplification or “minimization” of complex
boolean expressions. This is largely handled by
software now, and is typically not necessary when
working with FPGAs.

A B C D Y
0 0 0 0 -
0 0 0 1 -
0 0 1 0 -
0 0 1 1 -
0 1 0 0 -
0 1 0 1 -
0 1 1 0 -
0 1 1 1 -
1 0 0 0 -
1 0 0 1 -
1 0 1 0 -
1 0 1 1 -
1 1 0 0 -
1 1 0 1 -
1 1 1 0 -
1 1 1 1 -

E. Hazen – NEPPSR 2005

Flip-Flops and Synchronous Logic

D
CLK

Q
Q/

D CLK Q /Q
0 Q0 /Q0-

0 0 1
1 1 0

This gate transfers data from D-Q on the rising edge (0-1 transition) of the CLK input.
At all other times, Q is unchanging. The D Flip-Flop is a 1-bit memory.

Many D Flop-Flops may be controlled by the same clock to store a number of bits
simultaneously. This is called a Register.

The foundation of synchronous (clocked) logic is the D Flip-Flop.

A latch uses positive feedback to make a stable circuit which can store a bit.
The RS Latch is one of the simplest examples:

/S

/R

Q

/Q

/S /R Q /Q
 1 1 Q0 /Q0

 0 1 1 0
 1 0 0 1
 0 0 1 1

R/
S/

Q
Q/

E. Hazen – NEPPSR 2005

Synchronous Logic
Most logic used in trigger/DAQ systems is pipelined, and consists of
blocks of combinatorial logic between registers.

All registers should be clocked by the same clock. Often there is an
obvious choice, such as the 40MHz RF clock at the LHC, or the
53MHz equivalent at the Tevatron.

Combinatorial
Logic

Combinatorial
Logic

Clock

Inputs
Outputs

A critical requirement is that the propagation delay through the combinatorial
logic must be less than the time between successive clock edges!

Register Register Register

E. Hazen – NEPPSR 2005

Memories

RAM (Random-Access Memory)
a read/write array of storage cells

ROM (Read-Only Memory)
an array of fixed values loaded
at system start-up
note: for look-up tables, often the memory is
“read mostly” and can be written if required

FIFO (First-In First-Out) buffer – an ordered
list in which items are added
at one end and removed from the other
Used commonly where temporary storage is
needed in a data stream, or to cross the boundary
between parts of the system which use different clocks.

Dual-Port Memories – a type of RAM in which
two different addresses may be
accessed simultaneously.
FPGAs provide these as basic building blocks.
They are used to create all the other types above.

Address

Data In Data Out

Write Enable

Read Enable

Address Data Out

Read Enable

Data In Data Out
Write Enable

Full

Read Enable
Empty

Address
Data In Data Out

Write Enable
Read Enable

Address
Data In Data Out

Write Enable
Read Enable

Port 1

Port 2

E. Hazen – NEPPSR 2005

The VHDL Language
Most logic design for Trigger/DAQ systems is done in VHDL (or Verilog, a similar
language). These are specialized languages developed to describe logic.

VHDL has many features, but you can get by with just a few. Here we define logic
to compare two 2-bit binary values in several ways to illustrate the 4 basic
VHDL statement types.

Boolean Equations: aeqb <= (a(0) xor b(0)) nor ((a(1) xor b(1));

Structural (Netlist): u1: xor2 port map(a(0), b(0), x(0));
u2: xor2 port map(a(1), b(1), x(1));
u3: nor2 port map(x(0), x(1), aeqb);

Concurrent: aeqb <= '1' when a = b else '0';

Sequential: aeqb <= '0';
if a = b then aeqb <= '1';

Simplest and most straightforward way to describe combinatorial logic

Use to “wire together” existing elements. Used particularly for large, pre-defined functions provided
by the FPGA vendor.

Use for logic with multiple conditions which is difficult to describe in simple Boolean Equations.
Functionally, concurrent statements behave as combinatorial logic, that is they evaluate simultaneously.
Note that the comparison of multi-bit vectors is handled automatically.

Must be used inside a controlling process, usually a clocked process which defines synchronous logic.
The order of sequential statements is important; the last assigned value to a signal takes precidence.

E. Hazen – NEPPSR 2005

A Few More VHDL Statements

With...select...when

Assigment is based on a selection sighal. WHEN clauses must be mutually exclusive.
Always use 'others' clause... in simulation there are values other than '1' and '0'.

WITH inc SELECT
outc <= ina WHEN ’0’,

inb WHEN ’1’,
inb WHEN OTHERS;

CASE inc IS
WHEN ’0’ => outc <= ina;
WHEN ’1’ => outc <= inb;
WHEN OTHERS => outc <= ind;

end CASE;

Case...When

Similar to with...select except that any arbitrary assignment may occur after the '=>'.
This is a sequential statement, so must appear inside a process.

E. Hazen – NEPPSR 2005

VHDL Operators and Constants
(subset used for logic synthesis)

Logical (use ieee.std_logic_1164.all)

AND, NAND, OR, NOR, XOR, XNOR, NOT

Relational (use ieee.std_logic_1164.all)

=, /=, <, <=, >, >=

Unary arithmetic - Arithmetic +, - (*, /, mod, rem, ** exist too,
but are not synthesizable)

Concatenation – for bit strings &

x"ffe" (12-bit hexadecimal value)
o"777" (9-bit octal value)
b"1111_1101_1101" (12-bit binary value)

Constants (integers) 16#9fba# (hexadecimal)
2#1111_1101_1011# (binary)

Constants (bit vectors)

Don't even think about
floating point or character strings!

Watch out for “double meaning” of <= and =>

E. Hazen – NEPPSR 2005

VHDL Synchronous Logic Example:
Divide-by-10 Counter

Architecture Definition
 an entity can have more than
 one alternative architecture

Signal declaration. Signals
represent “wires” which connect
elements together

A process is a group of sequential
statements controlled by one
or more signals. Most processes
are synchronous like this one,
triggered by the rising edge of
a clock.

These statements execute
on every rising clock edge

E. Hazen – NEPPSR 2005

Track Segment Finder Example

A

B

C

D

Here is an array of 16 circular detector elements
(drift tubes or scintillating fibers)

Assume each is wired to the input of an FPGA,
and we want to generate a trigger output for
each case where a track segment is present.

Here are boolean expressions for 3 example tracks:1 2 3 4

Tracks
T

1
T

2
T

3

T1 = (A1 and B1 and C1) or
 (A1 and B1 and D1) or
 (A1 and C1 and D1) or
 (B1 and C1 and D1)

This is simple enough, but if we want to account
for inefficiencies in the detector, then we must also
include all forms with 1 channel missing:

T1 = A1 and B1 and C1 and D1
T2 = A3 and B2 and C3 and D3
T3 = A4 and B3 and C4 and D3

Virtex

E. Hazen – NEPPSR 2005

Track Segment Finder

A

B

C

D

1 2 3 4

Tracks
T

1
T

2
T

3

Virtex

How do we generate the equations?

One option is to use geometry... for muon trackers where
all the particles can be assumed to come from the
interaction point this works well.

For central trackers, often a monte-carlo simulation
of many events is used. Here is a single equation
from the D∅ Level 1 Central Track Trigger firmware!

m(0) <= (ai(15) and bi(19) and ci(23) and co(23) and di(27) and do(28)
 and eo(32) and fi(36) and gi(41) and go(41) and hi(45)) or
 (ai(15) and bi(19) and bo(19) and co(23) and di(27) and eo(32) and fi(36) and fo(36) and go(41) and hi(45) and ho(45)) or
 (ai(15) and bi(19) and ci(23) and di(27) and do(28) and eo(32) and fi(36) and gi(41) and hi(45) and ho(46)) or
 (ai(15) and ao(15) and bo(19) and co(23) and di(27) and do(27) and ei(31) and eo(32) and fo(36) and go(41) and hi(45)) or
 (ai(15) and bo(19) and co(23) and di(27) and ei(31) and eo(32) and fo(36) and go(41) and hi(45) and ho(45)) or
 (ai(15) and ao(15) and bo(19) and co(23) and di(27) and do(27) and ei(31) and eo(32) and fo(36) and go(41) and ho(45)) or
 (ai(15) and ao(15) and bo(19) and co(23) and di(27) and do(27) and ei(31) and fo(36) and gi(40) and go(41) and ho(45)) or
 (ai(15) and ao(15) and bo(19) and co(23) and di(27) and do(27) and ei(31) and fo(36) and go(41) and hi(45) and ho(45)) or
 (ai(15) and bi(19) and bo(19) and co(23) and di(27) and ei(31) and eo(32) and fo(36) and go(41) and ho(45)) or
 (ai(15) and bo(19) and co(23) and di(27) and ei(31) and eo(32) and fo(36) and gi(40) and go(41) and ho(45)) or
 (ai(15) and bo(19) and ci(23) and co(23) and di(27) and eo(32) and fi(36) and fo(36) and go(41) and hi(45) and ho(45)) or
 (ai(15) and bo(19) and co(23) and di(27) and eo(32) and fi(36) and gi(41) and hi(45) and ho(46)) or
 (ao(15) and bo(19) and ci(22) and co(23) and do(27) and ei(31) and fi(35) and fo(36) and gi(40) and go(41) and ho(45)) or
 (ai(15) and ao(15) and bo(19) and co(23) and di(27) and ei(31) and eo(32) and fo(36) and gi(41) and go(41) and hi(45)) or
 (ai(15) and bi(19) and ci(23) and co(23) and di(27) and eo(32) and fi(36) and fo(36) and gi(41) and go(41) and hi(45)) or
 (ai(15) and bi(19) and bo(19) and ci(23) and co(23) and di(27) and eo(32) and fi(36) and fo(36) and go(41) and hi(45)) or
 (ao(15) and bi(18) and bo(19) and ci(22) and co(23) and do(27) and ei(31) and fi(35) and fo(36) and gi(40) and ho(45)) or
 (ao(15) and bi(18) and bo(19) and ci(22) and co(23) and do(27) and ei(31) and fo(36) and gi(40) and go(41) and ho(45)) or
 (ai(15) and ao(16) and bi(19) and ci(23) and do(28) and eo(32) and fi(36) and gi(41) and go(42) and hi(45) and ho(46)) or
 (ai(15) and ao(15) and bo(19) and co(23) and di(27) and ei(31) and eo(32) and fi(36) and fo(36) and go(41) and hi(45)) or
 (ai(15) and bi(19) and bo(19) and ci(23) and di(27) and do(28) and eo(32) and fi(36) and fo(36) and gi(41) and go(41) and hi(45)) or
 (ai(15) and bo(19) and co(23) and di(27) and eo(32) and fi(36) and fo(36) and gi(41) and go(41) and hi(45)) or
 (ai(15) and bo(19) and ci(23) and co(23) and di(27) and eo(32) and fi(36) and gi(41) and go(41) and hi(45)) or
 (ao(15) and bo(19) and co(23) and di(27) and do(27) and ei(31) and eo(32) and fi(36) and fo(36) and gi(41) and go(41) and hi(45)) or
 (ao(15) and bi(18) and bo(19) and ci(22) and do(27) and ei(31) and eo(31) and fi(35) and gi(40) and go(41) and ho(45)) or
 (ao(15) and bi(18) and bo(19) and ci(22) and co(23) and do(27) and ei(31) and fi(35) and fo(36) and go(41) and ho(45)) or
 (ai(15) and bi(19) and bo(19) and ci(23) and co(23) and di(27) and do(28) and eo(32) and fi(36) and gi(41) and hi(45)) or
 (ao(15) and bi(18) and ci(22) and di(26) and do(27) and ei(31) and eo(31) and fi(35) and gi(40) and ho(45)) or
 (ao(15) and bo(19) and ci(22) and co(23) and di(27) and do(27) and ei(31) and fo(36) and go(41) and hi(45) and ho(45)) or
 (ao(15) and bo(19) and co(23) and di(27) and do(27) and ei(31) and eo(32) and fo(36) and go(41) and hi(45) and ho(45));

E. Hazen – NEPPSR 2005

Calorimetry Example - Linearizing Energy Scale

Input Charge (fC)

Li
ne

ar
iz

ed
 (

ar
b.

 u
ni

ts
)

Non-Linear ADC scale (i.e. QIE) Linear Energy Scale
(necessary for summing)

In an FPGA, this is typically done with a look-up table (LUT).
A LUT is just a memory where the address is the non-linear value,
while the data stored at that address is the linear value.

Non-linear
Quantity

Linear QuantityAddress Data

E. Hazen – NEPPSR 2005

Calorimetry Example - Linearizing Energy Scale

● Nonlinear ADC with 7-bit output (i.e. QIE) requires 128 RAM cells.

● You can also perform any needed calibration, pedestal subtracion, etc in a LUT.

● A large FPGA has ~100 block RAMs, each 18k bits (each could hold 8 128x16 LUTs)

This is an example of a pre-defined
block (RAM, in this case)
instantiated in a design file

E. Hazen – NEPPSR 2005

Some Other Building Blocks

● DAC (Digital to Analog Converter)
Converts a binary value to a voltage

● ADC (Analog to Digital Converter)
Converts a voltage to a binary value

V

X

X

CLOCK

CLOCK

V X

ADCs and DACs convert one sample
per clock cycle. The maximum clock
rate is called the sampling rate.

For HEP applications, ADC which
sample at the accelerator RF clock
(40MHz – CERN and 53MHz – FNAL)
are quite popular.

E. Hazen – NEPPSR 2005

Data Links

● Optical Fiber links
– Relatively expensive

– Used for long distance runs (>10m up to many km)

– Fast (today: 1-10GB/sec, soon: 10-40GB/sec)

● Copper links (circuit board traces or cables)
– LVDS Serial links

● Built-in to modern FPGAs, so “free”
● Up to 10GB/sec for short runs, 500MB/sec for 10-20m runs

– Other technologies (Hot-Link, Taxi, Vitesse...)
● Built-in equalization to compensate for dispersion in long cables
● Becoming obsolete, but still widely used

E. Hazen – NEPPSR 2005

Data Links

● To the user, links essentially all look the same:

Serializer

Chip or
FPGA

16-40 bits

Transmitter
Reference
Clock

Deserializer

Chip or
FPGA

Transmitter accepts a clock (constant rate)
and one parallel data word per clock cycle

Data appears at receiver after
a certain latency delay (in addition
to cable/fiber propagation delay)

Data

Serial Data
 100-500M Bits/sec (cable)
 1-10 GBits/sec (fiber)

Clock Out

or

Receiver
Reference
Clock

Cable (twisted pair/coax)
or optical fiber

Data

E. Hazen – NEPPSR 2005

FPGA Design Tools

● For FPGA logic design, you need some software:
– An editor. Emacs is fine, and has a very nice VHDL mode

– A synthesis tool, which translates VHDL into RTL
● (Register Transfer Logic, essentially boolean expressions and registers)
● This tool can come from the FPGA vendor (Xilinx, Altera) or may be a separate

program (i.e. Synplify, Leonardo Spectrum)

– Implementation tools, which convert the generic RTL into a file
which can be downloaded to the FPGA

● These are always provided by the FPGA vendor

– A simulator. There are two types of simulation:
● Functional Simulation – based only on VHDL. Tests for correct design.
● Timing Simulation – uses post-implementation data, check for timing problems.
● Simulator may be supplied by the FPGA vendor, or a separate tool

E. Hazen – NEPPSR 2005

Xilinx ISE 7.1

www.xilinx.com
Free download (limited version)
Full version at low cost to Universities

Includes complete tool chain:
Design entry

(Schematic, VHDL, StateCAD)
Synthesis (XST)
Simulation

(Modelsim XE or ISE Simulator)
Programming tool (Impact)

E. Hazen – NEPPSR 2005

Getting Started

● Download free software
● Buy an Evaluation Board

for example:
– $99 Spartan-3 Board from Digilent

● Comes with all cables, etc
so you can get started immediately

● Uses Spartan-3 FPGA
– 90nm CMOS, latest technology

● Has a serial port and RAM so
you can experiment with the
Microblaze embedded CPU

● See www.digilentinc.com

E. Hazen – NEPPSR 2005

Summary

● Trigger systems for large colliders are very complex
systems, but are built of simple building blocks

● Large FPGAs and modern design tools have
substantially reduced the learning curve required
for logic design.

● Careful engineering is still needed for the
interfaces.

● Electronics is lots of fun, and we couldn't do it
without huge contributions made by you!
(Students – Grad and Undergrad, Post-docs and
even faculty)

