NEPPSR 2005

Trigger and DAQ Electronics Part 1 – CMS Trigger/DAQ

Eric Hazen, Boston University

Data Volume- the problem!

- At the LHC design luminousity of 10³⁴cm⁻²s⁻¹ there are ~20 pp events every 25ns
 - This is an event rate of <u>800 MHz</u>
- In CMS (for example), there are 7.5x10⁷ channels
 - The data rate is <u>800GB/sec</u>
- How do we handle this? With a *trigger* system
 - The "Level 1" trigger -- hardware
 - Reduces event rate to 100kHz (1GB/sec) Looks for patterns which represent possibly interesting physics events and generating an "accept" for each candidate event
 - The "Level 2" trigger software
 - Processes individual events in CPU farm
 - Reduces the event rate 100Hz (100MB/sec) (some detectors have hardware for Level 2 as well)

Let's look more closely at the <u>Compact Muon Solenoid</u>

The CMS Trigger/DAQ

Front-end electronics digitizes the charge (energy) present in each detector channel once per clock (25ns)

Pipelines (memories, usually digital) which store data for 3.2us while the level 1 trigger processes the data

When the Level 1 trigger logic accepts an event, data is copied to a readout buffer

Switch network reads event fragments from buffers and sends complete events to CPUs for high-level trigger processing

Finally, at about 100Hz, interesting events are written to permanent storage (disk)

Level 1 Trigger

- Level 1 Trigger identifies:
 - muons (μ)
 - electrons (e)
 - photons (γ)
 - jets
 - isolated hadrons
 - neutrinos (v), indirectly
 - missing E_T or large total E_T (E_T = transverse energy = E•sin θ)
- Level 1 Trigger uses only ECAL, HCAL and muons (in CMS and ATLAS)

Particle signatures in a typical LHC detector

Level 1 Calorimeter Trigger

- *Trigger primitives* are calculated in the readout electronics and sent to the L1 processor.
 - calculate $E_T (= E \bullet \sin \theta)$ where θ is constant and E is measured
 - sum E_{τ} in trigger regions for jet energy measurement
 - identify isolated clusters (e, γ)

jet signature

e, γ signature

Electron, Photon Triggers

 E_{τ} sum of two ECAL towers used to identify e, γ candiates, which are further refined by:

Isolation (lower limit on energy in neighboring crystals) Electromagnetic/Hadronic energy ratio Lateral spread of shower in ECAL

Regional Calorimeter Trigger (RCT)

RCT crate outputs 4 top candidates in each category, with a rank based on E_{τ} :

- isolated and non-isolated e, $\boldsymbol{\gamma}$
- central and forward jets
- τ (isolated narrow jets)

Plus total ET for 4x4 tower regions

Global Calorimeter Trigger

- Final-stage sorting of e/γ , jet and τ jet trigger objects according to rank
- Jet counting for multi-jet events
- Calculation of total and missing transverse energy
- Final Outputs to Global Trigger:
 - Jet Counts 8 x 4 bits
 - Energy Sums
 - 36 regions E_{T} 36 x 11 bits
 - missing E_{T} magnitude 13 bits
 - missing $E_{T} \phi$ 6 bits

Muon Trigger (Drift Tubes)

Based on pattern matching of hits to identify muon candidates. Pattern matching logic is located

Muon Track Fitting

Global Trigger

- Inputs from Calorimeter and Muon Triggers:
 - Best 4 of each, ranked by E_{τ} , ρ , quality:
 - muons; isolated e, γ ; non-isolated e, γ central and forward jets; isolated hadrons
 - Total missing E_{T} , total E_{T} , count of jets
- Processes up to 128 trigger algorithms in parallel, outputs L1A if any enabled algorithm succeeds

CMS HCAL Readout Some Hardware Details

HCAL Detector and Readout

Signal Digitization

Sampling rate 40MHz = LHC bunch crossing rate In principle, peak of pulse should always be in the center of a 25ns time bin

HCAL Front-End Module

Some QIE Details

QIE response is highly non-linear to cover a large dynamic range with a minimum of bits.

QIE Output = 2 range bits + 5 ADC bits = 7 bits total to cover a 10,000:1 dynamic range

Optical Link

Transmits 32 bits of error-free data at 40MHz to the counting house

GOL transmitter is custom-designed because it must survive a high radiation dose

Counting house electronics is built entirely of standard industrial components

HTR (<u>HCAL Trigger R</u>eadout board)

HTR (<u>HCAL Trigger R</u>eadout board)

Process 48 HCAL channels (16 optical fibers) Generate trigger primitives Buffer all data for DAQ

HTR Trigger Path

1. Linearize

Convert energy to $\mathsf{E}_{_{\mathsf{T}}}$ using a LUT

Identify bunch crossing with peak of pulse.

Integrate energy in entire pulse.

3. Compress

Compress E₇ using a LUT

(Saves bits in output to central calorimeter trigger.)

HTR DAQ Path

DCC (Data Concentrator Card)

DCC Data Paths

HTR / DCC Crate

CMS Central DAQ

Barrel Shifter data switch routes data from multiple sources to multiple destinations.

Data Switch

Barrel shifter

CPU Farms

Data is distributed world-wide via the Grid.

CPU farms are located in various countries for analysis.

