Top Quark Physics – 10 years later

Darien Wood Northeastern University

New England Particle Physics Student Retreat Craigville, MA 23 Aug, 2005

The top quark in the Standard Model

- The 6th quark
 - Last of 6 to be discovered
- The isospin partner of the bquark
 - Important in loop cancellations
- The heaviest known fundamental particle
 - Mass ~175 GeV
- The last quark?
 - Z decays prove no 4generation of light neutrinos with SM couplings
- Mass is not a parameter predicted by the SM

29 Years ago – discovery of the b-quark

- Like the charm quark, the bottom quark was first discovered in is QQ "onium state"
 - bb, J=1 state = Upsilon (Υ)
- Fermilab experiment E288 (Leon Lederman)
 - $pp \rightarrow \Upsilon + X \rightarrow \mu^+ \mu^-$
 - peak in $\mu^+\mu^-$ invariant mass
- Further study at DORIS (DESY) and CESR (Cornell)
 - $e^+e^- \rightarrow \Upsilon \rightarrow ff$
 - signature #1: resonant peak at Upsilon mass
 - signature #2: step in the ratio R=(had/muon)

R in the b-threshold region

Search for the top quark begins

- naive predictions (based on quark mass ratios) implied $m_t \approx 10\text{--}20 \text{ GeV}$
- $e+e- \rightarrow t t \text{ searches}$
 - PETRA (DESY) scanned up to sqrt(s)=46.4 GeV (mt<23 GeV)
 - TRISTAN (KEK) scanned up to sqrt(s)=64 GeV (mt<32 GeV)
 - SLC/LEP at the Z pole, $m_t < 46 \text{ GeV}$

e+e- collider energy scans

R

$$R = \sigma(e^+e^- \rightarrow hadrons) / \sigma(e^+e^- \rightarrow \mu^+\mu^-)$$

Searches for top at hadron colliders

- We know now that $m_t \approx 175 \text{ GeV}$
 - Question: Why wasn't top discovered at the SppS collider, where sqrt(s)=630 GeV?
- We know that top was eventually discovered in 1995 at the Tevatron with sqrt(s)=1800 GeV. The Tevatron began running at this energy in 1987.
 - Question: Why did it take so long to find top at the Tevatron?
- The answers have to do with
 - parton distributions
 - backgrounds
 - statistics

Coordinate system

Hadron collisions: experimental consequences

- Energy involved in "hard scatter" is less (typically <10%) than the full proton-antiproton center-of-mass energy
- "hard scatter" system is generally
 - Not at rest along the beam direction $\sum p_z \neq 0$
 - Nearly at rest transverse to the beam direction $\sum \vec{p}_T \approx 0$
- Additional particles & energy are present from the "underlying event"

Parton distribution functions

• Probability of finding a parton (quark or gluon) with a fraction x of the (anti)proton's momentum is given by the pdf, $f(x,Q^2)$ for a momentum scale Q

UA1 & UA2 top searches

- SppS, proton-antiproton collider, sqrt(s)=630 GeV
- Searches concentrated on top lighter than M_w-M_b:
- Final state signature
 - one isolated lepton of moderately-high transverse momentum
 - missing transverse energy (from the neutrino)
 - two jets (from b and b)

$$p\overline{p} \rightarrow W + X$$

$$W \rightarrow t\overline{b}$$

$$t \rightarrow \overline{\ell} vb$$
EVENT 7443/509
$$\overline{t} \rightarrow \overline{\ell} v b$$

UA1 & UA2 top searches (cont.)

- 1984: Publication by UA1 of excess of events attributable to a top quark with a mass in the range 30-50 GeV (PL 147B, 493)
- UA1 claim later retracted with analysis of more data and better understanding of backgrounds (J/ψ,Y,bb and cc)
- Final limits from the SppS:
 - UA1: m_t>60 GeV
 - UA2: m_t>69 GeV

top production at the Tevatron

In proton anti-proton collisions at Tevatron energies, top quarks are primarly produced in pairs via strong interactions

➢ Br(t→Wb)=100%

tt decay modes

Typical production rates for p-p at 2 TeV

Final state	Cross section (pb)	Rate at $L=10^{32} \text{ cm}^{-2} \text{s}^{-1}$
"minimum bias"	$4x10^{10}$	4 MHz
2 jets	$4x10^{6}$	400 Hz
4 jets	1.6x10 ⁵	16 Hz
6 jets	6000	0.6 Hz
W	30000	3 Hz
Ζ	9000	0.9 Hz
WZ	3.5	3.5x10 ⁻⁴ Hz (1.3/hour)
t tbar	7.5	7.5x10 ⁻⁴ Hz (3/hour)

Hadron Collider Detectors

- Important features to keep in mind
 - Collisions take place at the (approximate) center of the detectors
 - Detectors must have apertures in the forward and backward directions for the beams to enter and exit
 - Detectors try to measure momentum and or energy of particles produced in collison

Top quark event signatures

b-quark jets

• Recall the steps between production of a quark and detection of a jet:

Identifying b-jets ("tagging")

Tagged analyses: higher purity, loss in efficiency

vtx

Soft Lepton tagging

Exploits the *b*-quarks semi-leptonic decays:

➤These leptons have a softer p_T spectrum than leptons from W/Z
 ➤are not isolated

Signature of a *b*-decay is a displaced vertex: Long lifetime of b-hadrons $(c\tau \sim 450 \mu m)$ +boost >B hadrons travel L_{xv} ~ 3mm before decay with large charge track multiplicity jet Secondary vtx displaced tracks Primary َd

Lifetime tagging

prompt tracks

t-tbar candidate event with b-tags

Other processes will also mimic this topology \Rightarrow backgrounds

Decaying particles: examples

Particles	Lifetime	сτ	Lifetime signature
W,Z,top	<10 ⁻²³ s	~0	Decay immediately
$\pi^0(\rightarrow\gamma\gamma)$	8x10 ⁻¹⁶ s	25 nm	Decay length undetectable
τ	2.9x10 ⁻¹³ s	87 µm	Inside beam pipe; hard even with SMT
D ⁰ /D [±] /D _s	0.4-1.0x10 ⁻¹² s	150- 350 μm	Inside beam pipe; possible w/ SMT
B ⁰ /B [±] /B _s /b- baryon	~1.5x10 ⁻¹² s	450 μm	Inside beam pipe; possible w/ SMT
$\mathrm{K}^{0}_{s}(\rightarrow\pi\pi)$	0.8x10 ⁻¹⁰ s	2.7 cm	decays in outer tracking chamber
K [±] , π^{\pm} , μ^{\pm}	>10 ⁻⁸ s	>3 m	reach cal without decaying

Tevatron top physics: pre-discovery

• Mass limits from Tevatron:

Year	Experiment	limit on m _t
1990	CDF	77 GeV
1992	CDF	91 GeV
1994	CDF	118 GeV
1995	DØ	131 GeV

• 1994 statistical excesses (CDF evidence publication)

Experiment	Observed events	expected (non-top) background	stat. significance
CDF	12	6.0	2.8σ
DØ	9	3.8	1.9σ

1995 – Observation of the top quark

- March 2, 2005 presentations at Fermilab
- Articles from DØ and CDF published in same issue of Physical Review Letters:
 - PRL 74, 2632 (1995).
 - PRL 75, 2662 (1995).
- Headlines around the world
- Social hour activity: ask faculty when and how they were first convinced that the top quark had been found
 - many people here at NEPPSR who were in the middle of it all in 1995

March '95: top counting

- Statistical excess over non-top background:
 - CDF:

prob of bkg fluctuation: 1x10⁻⁶

channel	SVX-	SLT-	Dilepton
	tagged	tagged	
observed	27 tags	23 tags	6 events
expected bkg	6.7±2.1	15.4±2.0	1.3±0.3

	DØ
--	----

prob of bkg fluctuation: $2x10^{-6}$

channel (exclus.)	untagged l+jets	SLT- tagged	Dilepton	Total
observed	8 events	6 events	3 events	17 events
expected bkg	0.65	1.2	1.9	3.8±0.6

March '95: top cross section

March '95: top mass

Cross section

Virtual effects: one reason why m_t is so interesting

•W mass has quadratic dependence on top mass, logarithmic dependence on Higgs mass

- top mass is essential in
 - •predicting Higgs mass
 - •tests SM if Higgs is found

Top quark mass measurement

Improvements in top mass since discovery

- statistics:
 - ~50-70 pb at discovery, ~300 pb⁻¹ used in latest results
 - samples up to ~200 events used in mass fits
- reduced backgrounds (in some cases)
- more channels
 - dilepton (need special treatment because of two neutrinos)
 - all jets
- more advanced methods to extract mass

top mass extraction methods (partial list)

- "template" fits (used in 1995)
 one mass per event determined by
 - kinematic fit
- "neutrino weighting" in dileptons
- matrix element, dynamical likelihood
 - events get different weights at different top masses according to quality of agreement with SM top production/decay matrix element
 - concurrent fit to jet energy scale calibration from W→qq
- ideogram
 - each event gives a distribution of top masses
- Lxy
 - lifetime measurement of b is used to infer boost which

Darien Wood, NEPPSR 04

Rec Mass 1-Tag(T): CDF Preliminary

Invariant mass of tt system

- calculate after constraining both t and t systems to 175 GeV each
- test of QCD prediction of tt production
- search for new physics: $X \rightarrow tt$ would produce at peak at m_X

m_x>680 GeV for Z-like couplings

Measurement of $B(t \rightarrow Wb)/B(t \rightarrow Wq)$

$$R = \frac{B(t \to Wb)}{B(t \to Wq)} = \frac{|V_{tb}|^2}{|V_{ts}|^2 + |V_{td}|^2 + |V_{tb}|^2} = |V_{tb}|^2 \sim 0.998$$

Basic method: compare the number of tt events with 0, 1, and 2 b-tags to extract R

hep-ex/0505091

Electroweak interactions of top (1): W helicity

Within the SM, Top has a V-A charge current weak decay: b spin $\frac{1}{2}$ t spin 1/2 V-A V⁺ spin 1 $F_0 = \frac{1}{1+2\omega} \approx 0.7$ $F_{-} = \frac{2\omega}{1+2\omega} \approx 0.3$ $F_{+}=0$ where $\omega = M_W^2 / M_{top}^2$

W helicity extraction

- Fit to distributions of
 - lepton p_T (softer for lefthanded W's)
 - angle between lepton and top directions in W rest frame
- Samples
 - lepton + jets
 - dileptons

result / prediction	F ₀	F ₊
SM	0.7	0
DØ	0.56±0.31	<0.25
CDF	0.27+.3121	<0.18

example:

Electroweak interactions (2): single top production

- rate measurement gives direct measurement of $|V_{tb}|$ CKM element - $\sigma \propto |V_{tb}|^2$
- cross sections a few times smaller than for tt
- signals much harder to distinguish from backgrounds
 - W+ \geq 2jets
 - tt
 - b**b**

extracting single top

- signature
 - lepton
 - neutrino (missing E_T)
 - 2 b-jets (tagged)
 - characteristic kinematic and angular distributions

Darien Wood, NEPPSR 04

typically get weak separation for each variable⇒ need to combine many variables

- cuts
- likelihoods
- neural nets
- decision trees

single top limits

• no significant signal found yet for single top – limits set

top: the next 10 years

- Tevatron:
 - 4-8 fb⁻¹ expected in final data sample
 - more than 10 times the statistics of the analyses completed so far (~thousand events per sample)
 - expected top mass prescison: $\sim 2 \text{ GeV}$
 - expect to observe single top
 - look for surprises in top properties
- LHC
 - enormous rate of top production top factory
 - assuming Higgs is discovered, look at top Yukawa coupling from ttH events

beyond 10 years

- International Linear Collider
 - for sqrt(s)≈350 GeV e⁺e⁻ collider, could scan over top production threshold
 - just like the 70's
 - no toponium (why not?)
 - precise mass measurement from threshold scan
 - avoids theoretical uncertainties that limit the top mass precision at hadron colliders

•

...

A few review articles

- B. Carithers and P. Grannis, "Discovery of the Top Quark," SLAC *Beam Line* **25**, No. 3, p. 4 (Fall 1995).
- C. Campagnari and M. Franklin, "The discovery of the top quark," hep-ex/9608003 and *Rev. Mod. Phys.* **69**, 137-212 (1997).
- S.J.Wimpenny and B.L.Winer, "The Top Quark," *Ann. Rev. Nucl. Part. Sci.* **46**, 149-195 (1996).
- P. Bhat, H. Prosper and S. Snyder, "Top Quark Physics at the Tevatron," hep-ex/9809011 and *Int. J. Mod. Phys* 13, 5113 (1998).
- M. Mangano and T. Trippe, "The Top Quark," Particle Data book

Phase space variables: eta, phi, and p_T

- Recall that the hard scatter system is generally in motion in the z-direction with respect to the laboratory frame
- Under a boost in the z-direction:
 - p_T is invariant
 - $-\phi$ is invariant
 - Rapidity itself is not invariant, but all differences in rapidity are invariant $y \rightarrow y - \tanh^{-1} \beta$

$$y_1 - y_2 \rightarrow y_1 - y_2$$

- At a given p_T , the expected density of particles is (approximately) uniform in eta and phi.
 - In contrast to $e+e^{-}$, where $\cos\theta$ is flat

DØ top to μ +jets Candidate Event

Technique #2: optimized matrix element weighting

Likelihood method using most available information

LO ME used, 4 jets required exclusively, additional cut on background probability (to improve purity) \rightarrow 22 events

$$-\ln L(\alpha) = -\sum_{i=1}^{N} \left\{ \ln \left[c_1 P_{t\bar{t}}(x_i;\alpha) + c_2 P_{bkg}(x_i) \right] \right\} + N \int A(x) \left[c_1 P_{t\bar{t}}(x;\alpha) + c_2 P_{bkg}(x) \right] dx$$

$$\bigwedge_{Acceptance}$$

Likelihood definition: estimate signal and background fractions and m_{top}