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Statistics of Small Signals

 In 1998, Bob Cousins and I were working on the
NOMAD neutrino oscillation experiment and we
were interested in the optimum way to analyze the
experiment, particularly if it were to have a null
result (which it turned out to have).

 This led us to write a more general paper entitled
“Unified Approach to the Classical Statistical
Analysis of Small Signals,” [Phys. Rev. D 57, 3873
(1988)]

 The technique has received wide acceptance in
particle physics (555 citations so far).

 This talk will be a partial discussion of this paper.
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A Simple Example (1)

 Suppose you are searching for a rare process and have a
well-known expected background of 3 events, and you
observe 0 events.  What 90% confidence limit can you set on
the unknown rate for this rare process?

 A classical (or frequentist) statistician makes a statement
about the probability of data given theory.  That is, given a
hypothesis for the value of an unknown true value µ, he or
she will give you the probability of obtaining a set of data x,
P(x | µ).

 A classical confidence interval (Jerzy Neyman, 1937) is a
statement of the form: The unknown true value of µ lies in
the region [µ1,µ2].  If this statement is made at the 90%
confidence level, then it will be true 90% of the time, and
false 10% of the time.  This is known as “coverage.”
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A Simple Example (2)

 Poisson statistics P(x = 0 | µ = 2.3) = 0.1.  Therefore, in the
“standard” classical approach, µ < 2.3 at 90% C.L.  Since µ =
s + b, and b = 3.0, s < -0.7 at 90% C.L.

 Thus, we are led to a statement that we know is a priori false.
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Bayesian Statistics

 A Bayesian takes the opposite position from a classical
statistician.  He or she calculates the probability of theory
given data.  That is, given a set of data x, he or she will
calculate the probability that the unknown true value is µ,
P(µ | x).

 This appears attractive because it is what you really want to
know.  However, it comes at a price:
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Bayes’s Theorem

 P(x | µ) and P(µ | x) are related by Bayes’s Theorem, which in
set theory is the statement that an element is in both A and B
is

P(A | B) P(B) = P(B | A) P(A)
which for probabilities becomes

P(µ | x) = P(x | µ) P(µ)/P(x).

P(x) is just a normalization term, but Bayes’s Theorem
transforms P(µ), the prior distribution of “degree of belief” in
µ, to P(µ | x), the posterior distribution.

A “credible interval” or “Bayesian confidence interval” is
formed by

    
P(µ | x ) dµ

µ1

µ2∫ = 90%.
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Aside

 If you think that P(A | B) = P(B | A), consider the following
example:

 Averaged over the  population, given that a person is female,
the probability that she is pregnant is about 3%.

 However, given that a person is pregnant, the probability that
she is female is considerably higher.
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An Example (1)

 Suppose you have a large number of marbles, which are
either white or black, and you wish information on the
fraction that are white, µ.  You draw a single marble, and it is
white.  What can you say at 90% confidence?

Classical: µ ≥ 0.1

Prior
Bayesian: flat µ ≥ 0.316

µ µ ≥ 0.464
1/µ µ ≥ 0.1
(1-µ) µ ≥ 0.196
1/(1-µ) unnormalizable
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An Example (2)

 Notice that most of the Bayesian priors do not cover, i.e.,
they are not true statements the stated fraction of the time
(90% in this case).  There is no requirement that credible
intervals cover.  However, Bob Cousins warns [Am. J. Phys.
63, 398 (1995)],

“…if a Bayesian method is known to yield intervals with
frequentist coverage appreciably less than the stated C.L. for
some possible value of the unknown parameters, then it
seems to have no chance of gaining consensus acceptance
in particle physics.”
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The Role of
 Bayesian Statistics (1)

 Harrison Prosper [Phys. Rev. D 37, 1153 (1988)] argues for a
1/µ prior based on a scaling argument.  I found it
unsatisfactory for two reasons:

 It fails for x = 0.  (Unnormalizable)
 In general, it undercovers.

 To quote Bob’s prose from our paper:

 “In our view, the attempt to find a non-informative prior
within Bayesian inference is misguided.  The real power
of Bayesian inference lies in its ability to incorporate
‘informative’ prior information, not ‘ignorance.’”
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The Role of
 Bayesian Statistics (2)

 Prosper wrote that he was using a Bayesian approach
because

 “…we are merely acknowledging the fact that a coherent
solution to the small-signal problem is more easily
achieved within a Bayesian framework than one which
uses the methods of ‘classical’ statistics.”

 Through this talk, I hope to convince you that this is no
longer true.
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Louis Lyons’s Characterization of
Bayesians and Frequentists

 Bayesians address the question everyone is
interested in by using assumptions that no one
believes.

 Frequentists use impeccable logic to deal with an
issue of no interest to anyone.

                                    Louis Lyons
                                      Academic Lecture at Fermilab
                                      August 17, 2004
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Construction of
Confidence Intervals

 Neyman’s prescription:  Before doing an experiment, for
each possible value of theory parameters determine a region
of data that occurs C.L. of the time, say 90%.  After doing the
experiment, find all of
values of the theory par-
ameters for which your
data is in their 90%
region.  This is the
confidence interval.

 Notice that there is com-
plete freedom of choice
of which 90% to choose.
This will be the key to our
solution.
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Examples of Poisson
Confidence Belts

• For our example: 90% C.L. limits for Poisson µ with
   background = 3 

Upper limits Central limits
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The Solution

 For both the upper limit and central limit, x = 0 excludes the
whole plane.  But consider the problem from the point of
view of the data.  If one measures no events, then clearly the
most likely value of µ is zero.  Why should one rule out the
most likely scenario?

 Therefore, we proposed a new ordering principle based on
the ratio of a given µ to the most likely µ:

where µ* is the most likely value of µ given x.

    

� 

R = P(x | µ)
P(x | µ *)
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An Example (1)

 Example for µ = 0.5 and b = 3:

   x0.1210.1405.00.0178

  x   x0.2590.1494.00.0397

  x   x70.4800.1613.00.0776

  x   x40.7530.1752.00.1325

  x   x10.9660.1951.00.1894

  x   x20.9630.2240.00.2163

  x   x30.8260.2240.00.1852

  x   x50.7080.1490.00.1061

60.6070.0500.00.0300

C.L.U.L.rankRP(x|µ*)µ*P(x|µ)x



Gary Feldman                   NEPPSR     17 August 2005                          17

Unified Poisson Limits

 90% C.L. unified limits for Poisson µ with background = 3

•  Solution to our original problem: µ < 1.08 at 90% C.L.
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Examples of Gaussian
Confidence Belts

•  90% C.L. limits for Gaussian µ ≥ 0 vs. x (total – background) in σ

Upper Limits Central Limits
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Flip-Flopping (1)

 How does a typical physicist use these plots?

 “If the result x < 3σ, I will quote an upper limit.”

 “If the result x > 3σ, I will quote a central confidence
interval.”

 “If the result x < 0, I will pretend I measured zero.”



Gary Feldman                   NEPPSR     17 August 2005                          20

Flip-Flopping (2)

 This results in the following:

 In the range 1.36 ≤ µ ≤ 4.28, there is only 85% coverage!
 Due to flip-flopping (deciding whether to use an upper limit

or a central confidence region based on the data) these are
not valid confidence intervals.
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Unified Solution for
the Gaussian Case (1)

 Notes:

 This approaches the central limits for x >>1

 The 90% CL upper limit for x = 0 is 1.64, the two-sided
rather than the one-sided limit.
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Unified Solution for
the Gaussian Case (2)

 Notes (continued):

 From the defining 1937 paper of Neyman, this is the only
valid confidence belt, since there are 4 requirements for a
valid belt:

(1) It must cover.

(2) For every x, there must be at least one µ.

(3) No holes (only valid for single µ).

(4) Every limit must include its end points.
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Sensitivity

 The main objection to this work has been that an experiment
that observes fewer events than the expected background
may report a lower upper limit than a (better designed ?)
experiment that has no background.

 To address this problem and to provide additional
information for the reader’s assessment of the significance
of the results, we suggested that experiments that have
fewer counts than expected background also report their
sensitivity, which we defined as the average* upper limit that
would be obtained by an ensemble of experiments with the
expected background and no true signal.      *Should be median

 We did this in the NOMAD experiment and other experiments
have been doing the same thing.
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Visit to Harvard Statisticians (1)

 Towards the end of this work, I decided to try it out on some
professional statisticians whom I know at Harvard.

  They told me that this was the standard method of
    constructing a confidence interval!

   I asked them if they could point to a single reference of 
     anyone using this method before.

   They could not.
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Visit to Harvard Statisticians (2)

 Their logic:

 In statistical theory there is a one-to-one correspondence
between a hypothesis test and a confidence interval.
(The confidence interval is a hypothesis test for each
value in the interval.)

 The Neyman-Pearson Theorem states that the likelihood
ratio gives the most powerful hypothesis test.

 Therefore, it must be the standard method of
constructing a confidence interval.
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Kendall and Stuart (1961)

 So I started reading about hypothesis testing.

 At the start of chapter 24 of Kendall and Stuart’s The
Advanced Theory of Statistics  (chapter 23 of Stuart and
Ord), I found 1 1/4 cryptic pages that propose this method
and its extension to errors on the background.

 We were able to include a reference to Kendall and Stuart in
a note added in proof to our paper.
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Extensions

 This technique is more general than the simple examples
described here.

 The paper discusses the application to neutrino oscillations,
in which limits are set on two parameters, sin22θ and Δm2,
simultaneously.

 It can also be extended to cases in which the backgrounds
are not precisely known (but we have not yet published this).

 In fact, I have yet to find a problem in the construction of
classical confidence intervals and regions that is not
solvable by the ordering principle suggested here.


