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symmetries <=> conservation laws

* Emmy Noether discovered the connection between symmetries and conservation
laws while working with David Hilbert and Felix Klein in Gottingen

* In 1918 she proved two theoremes, for finite continuous groups and infinite
continuous groups which are the foundations of the modern (XXth century) physics.
The theorems are collectively known as “Noether’s theorem”

* Informally, Noether’s theorem says:

differentiable symmetry generated by local actions <=> conserved current
or

there is one-to-one correspondence between symmetries and conservation laws
symmetry <=> conservation law
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symmetries <=> conservation laws

* examples:

— energy is conserved if and only if (iff) the physical laws are invariant under time
translations (if the form of physics laws do not depend on time)

— linear momentum is conserved only iff the physical laws are invariant under
space translations (if the form of physics laws do not depend on the position)

— angular momentum is conserved iff the physical laws are invariant under
rotations (if the physics laws do not depend on orientation; if only true about a
particular direction <=> only the component of angular momentum in that
direction is conserved)
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symmetries <=> conservation laws

* Symmetries observed in physics:

— Symmetries of discrete space-time transformations: parity, time-reversal, charge
conjugation

— Symmetries of continuous space-time transformations: translational and rotational
invariance and Lorentz (space-time rotations) invariance

— Symmetries of permutations: lead to two kind of particles: bosons, which obey Bose-
Einstein statistics, and fermions, which obey Fermi-Dirac statistics

— Gauge symmetries: internal symmetries inherent from the nature of the field associated
with a given particle carrying such attributes as electric charge - U(l), color - SU(3) et
cetera (conservation of electric charge <=> invariance under the global phase
transformation in the internal space; electromagnetic field <=> invariance under the local
phase transformation; et cetera....you’ll learn all this in the next 2 years!)
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symmetries <=> conservation laws

* Modern particle physics is based entirely on the idea of underlying internal
symmetries:

— The electro-weak sector is based upon the (internal) symmetries which the
electromagnetic and weak interactions obey - U(1) and SU(2)

— The strong sector of the Standard Model (SM), quantum chromodynamics
(QCD) is based on the (internal) SU(3) symmetries observed in hadron
spectroscopy

— Spontaneous symmetry breaking has been proposed to explain massive weak
bosons (Z, W) and the massless photon. The prediction of the W and Z
bosons came from symmetry arguments and the discovery of these particles at
CERN was one of the greatest successes of modern particle physics
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STANDARD MODEL

* Current understanding of elementary particles and their strong and electro-weak interactions
is given by Standard Model, a gauge theory based on the following internal symmetries:

SU(3).xSU(2)xU(1)y

* The SU(3) is an unbroken symmetry, it gives QCD, a quantum theory of strong interactions,
whose carriers (gluons) are massless

 SUR)xU(I) (quantum theory of electroweak interactions) is spontaneously broken by the
Higgs mechanism; which gives mass to electroweak bosons (W*, W-, Z° and a massless
photon)

* In the Minimal Standard Model, the Higgs sector is the simplest possible: contains
two complex Higgs fields, which after giving masses to W,Z give leaves a neutral
scalar Higgs particle which should be observed - the ONLY particle not yet
discovered in MSM
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STANDARD MODEL

e Matter is build of fermions - quarks and leptons, three families of each, with
corresponding antiparticles; quarks come in three colors

* Bosons are carriers of interactions: 8 massless gluons, 3 heavy weak bosons (W,Z)
and | massless photon

* A massive scalar Higgs field permeates the Universe and is (in some way)
responsible for masses of other particles
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*  Masses of quarks and leptons, as well as
those of carriers of interactions and Higgs
scalar particle are fundamental parameters of
SM - to be determined by measurement

* mixing angles in quark and lepton sector, and
the phases are also parameters to be

measured

* ltis possible to verify the internal
consistency of SM through precise
measurements: together with other already
very precise EW measurements, precise
measurements of W and top mass constrain
Higgs mass. Fundamental consistency tests of
Standard Model; sensitivity through radiative
corrections (quadratic in m,, logarithmic in

my)

COMPARE WITH DIRECT LIMITS ON

HIGGS MASS
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spontaneous breaking of the electroweak
symmetry by Higgs mechanism
* This part of SM is the only remaining untested part of SM. Higgs has not

been observed as of yet; remember, the EW symmetry could be broken in a
different way, not necessarily like in MSM

e Difficulties with the elementary Higgs sector: suppose that SM is just an
effective theory and that NEW physics is at some scale A.

the quantum corrections to fermion masses would depend only
logarithmically on scale A:

M
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spontaneous breaking of the electroweak
symmetry by Higgs mechanism

* Difficulties with the elementary Higgs sector: the analogous quantum corrections to
scalar particle (Higgs) would exhibit a quadratic dependence on scale A. This means
that Higgs mass is VERY sensitive to the scale of the NEW physics => FINE TUNING
PROBLEM (for m_) as m ;=O(100) GeV in SM !!

2 = _m.2 + o2A2
m, my* + g’A

SM cannot be valid for very large momenta, the scale A serves as a cutoff above which

physics not contained in SM becomes important. At least one such scale, Planck scale at
which gravity becomes relevant, A=O(10'?) GeV, must be present in any theory.

|

(AR 202 o ¢ 6mH2 ~ A2
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spontaneous breaking of the electroweak
symmetry by Higgs mechanism

* This fine tuning has to be performed for each order of perturbation theory;
this is a very unpleasant feature of SM

* This sensitivity is called also the GAUGE HIERARCHY PROBLEM, as the
Higgs mass is related to the weak boson masses in the spontaneously broken
gauge theory. One may say that the original problem of how to give masses to
weak gauge bosons in a gauge invariant way was only partially solved by Higgs
mechanism, and the problem was transferred to a new level, where the new
puzzle is how to keep Higgs mass stable against large quantum corrections
from the higher energy scales

* A method of controlling Higgs mass divergence other than fine tuning of
parameters would be very welcomed

krzysztof.sliwa@tufts.edu NEPPSR, Craigville, August 19, 2005 I



supersymmetry - the most elegant solution!?

* the interesting thing about the scalar mass divergencies from virtual particle
loops (quantum corrections) is that virtual fermions and virtual bosons contribute
with opposite signs and would cancel each other exactly if for every boson there was
a fermion of the same mass and charge - divergencies would cancel without any fine
tuning and in all orders of perturbation theory !!

 supersymmetry is such a symmetry: it connects bosons to fermions, it
introduces a fermionic partner to every boson and vice-versa, identical in all
quantum numbers; such boson <=> fermion connection is unique to
supersymmetry; all the symmetries listed before provide no such connection
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supersymmetry - the most elegant solution!?

e at the quantum mechanical level, this Fermi-Bose symmetry would require
some quantum operator, Q, whose action would be to transform bosons into
fermions and vice-versa

Q|fermion> = |boson>

Q|boson> = |fermion>

* and since this is is a symmetry, this operator must commute with the
Hamiltonian

[QH]=0
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supersymmetry - the most elegant solution!?

® Such a theory is called a supersymmetric theory and the operator Q is called the
supercharge. Since the operator Q changes a particle with spin /2 to a particle with
spin | or 0, the Q itself must be a spinor that carries spin 1/2 of its own

* Bosons are particles with integer spins, they obey Bose-Einstein statistics, any number
of them may occupy the same quantum state at a time. Fermions carry half-integer spin
(or odd multiples of 1/2), they obey Fermi statistics and only one fermion can occupy
any given quantum state at a time. The classical limit of quantum mechanics is
approached when the occupation numbers of available states are very high. The
quantum photon field behaves like the classical EM field described by Maxwell’s
equations. However, there is NO classical limit for fermions, fermion fields are
quantum phenomena.

* A symmetry that interchanges fermions and bosons is a symmetry that exchanges
physics that has a classical limit with physics with NO classical limit - POTENTIALLY
EXTREMELY POWERFUL and interesting

krzysztof.sliwa@tufts.edu NEPPSR, Craigville, August 19, 2005 I5



supersymmetry - the most elegant solution!?

* Obviously, if supersymmetry were real, it must be somehow broken as we
have not yet observed superparticles. One needs to allow such breaking of
supersymmetry while still keeping the ability of such a theory to solve the
gauge hierarchy problem. Not easy, depends on the scale at which SUSY is
broken, and on how it is broken. To some extent it remains still an open
question

* Another reason for SUSY theories being attractive is that in string theories
the most viable versions are supersymmetric

* Local supersymmetry could also be a viable theory of gravity, supergravity.
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supersymmetry - the most elegant solution!?

* space-time symmetries in relativistic QM are contained in the Poincare
group, it includes symmetries under spatial rotations, translations in space and
time ans space-time boosts (space-time rotations)

e a symmetry group is described by the algebra of the group which is defined
by a set of commutation relations. For the Poincare group:

PYPY] =0

]MV’PK] = PMnVK - Pvnw(

]uv’ JK?\.] = Ju?»nwc _ Jv?»nw( _ Jw(nvk + JVKnpﬂ\.

P is the momentum generator which generates space and time translations,

the Lorentz matrices |'* generate rotations in space and Lorentz boosts
(rotations) in space-time, and "~ is the metric tensor.

These are all bosonic symmetries, which should be true as energy, momentum
and angular momentum conservation and Lorentz invariance are present in
classical physics
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supersymmetry - the most elegant solution!?

e our world is decribed by:

Poincare (space-time) symmetry: with generators P* |V¥
internal symmetries (U(1)xSU(2)xSU(3) of SM): with generators T,

* However, the Poincare group also has representations that describe
fermions. This should be expected as spin |/2 particles appear as solutions to
a relativistically invariant equation - the Dirac equation. If there exist spin 1/2
particles could there be spin /2 symmetry generators in a space-time
symmetry algebra!?

* This would be an extension of Poincare group of symmetries valid for
relativistic QFT in D=4
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supersymmetry - the most elegant solution!?

* in 1971 Golfand and Likhtman (whose work was forgotten for years..):
[P+P'] =0
[P1Q,] = [P4,] = 0
{Q,Qu} = {0y} =0
{Q, O} = 29" 5Py,
Note E=H =P% =>[Q_,H]=0 => Q is a conserved charge.

Q, is fermionic generator (spinor) with O, its complex conjugate. What are
these new symmetry generators Q? These are the supercharges mentioned
before (note anticommutators {,} instead of commutators [,])

* If there is just one fermionic generator (supercharge) Q we call such a
theory N=1 SUSY; if there are two, we have N=2 SUSY, et cetera...

*in 1974 Wess and Zumino wrote a Lagrangian with the same symmetries
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SM and MSSM particle spectrum
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supersymmetry - classification of models

* in the past 30 years extended studies of low-energy SUSY and a humber of
experimental searches => no evidence for SUSY. However, if SUSY is broken
on a scale of ~I TeV, LHC will have a great chance to discover superparticles

e the minimal supersymmetric standard model (MSSM), two Higgs doublets.
Has one less parameter than SM if SUSY is unbroken. Obviously this is not
true; supersymmetry must be broken without destroying the cancellations
which solve the fine-tuning problem => soft SUSY breaking, however no
particular way that it is done is assumed. In MSSM R parity is conserved (R=+1
for SM particles, R=-1 for superparticles) which means SUSY particles must be
produced in pairs and that the lighest SUSY particle (LSP) is stable (a candidate
for “dark matter”)

R= (_ | )3B+25+L

Difficult to use MSSM for experimental studies because of large number of
parameters (~105 free parameters !)
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supersymmetry - classification of models

* Different models of SUSY breaking are used to reduce the number of
parameters. They all have a common feature: SUSY is broken in some hidden
sector and then transmitted to the MSSM fields. The models differ in how this
is done:

* SUGRA: in supergravity models all scalar masses (M,), the gaugino mass
(M,,), and the A and B parameters are assumed to be unified at at GUT scale
(~10"> GeV). Five parameters: M,, M, ,, A, sgn(u) and tanf} completely
determine the mass spectrum and decay patterns of particles (tanff=ratio of
vacuum expectation values of the two Higgs doublets, A-trilinear coupling and
sgn(w)-sign of supersymmetric Higgs parameter. Mediating interaction is
gravitational
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supersymmetry - classification of models

* GMSB: (gauge mediated symmetry breaking) rather than using gravity to
transmit the SUSY breaking, gauge interactions are used. The messenger
sector consists of some particles, X, which have SM interactions and are
aware of SUSY breaking. The LSP is almost massless gravitino. The model has
6 parameters....

* AMSB: (anomaly mediated symmetry breaking); the mAMSB model has 5
parameters, very similar to mSUGRA

* as you can imagine, many others......
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spectrum of particle masses in SUSY models
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Merging forces
Forces Merge at High Energies
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running coupling constants in SM and MSSM models

Solid lines - SM
Dotted lines - MSSM
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RUN-II AT TEVATRON
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RUN-II AT TEVATRON
2001-?

New Main Injector = CM energy (Vs) increased from
1800 GeV to 1960 GeV (tt cross section increases by ~35%)

Different beam crossing time (396 ns and 132 ns later (?), instead
of 3.5 us in Run-|) - fewer multiple interactions

Significant upgrades to both detectors:

DO : addition of SVX to allow better b-tagging

addition of a solenoid to allow track momentum reconstruction

CDF : new calorimeter for |.1< |n|<3.5 (much better energy resolution)

new (longer) SVX with double the Run-| tagging efficiency
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RUN-II AT TEVATRON 2001-?

- CDF and DO: well-understood, mature detectors with excellent particle
identification, coverage, tracking and triggering
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RUN-II AT TEVATRON 200/
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RUN-II AT TEVATRON 2001 -?
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chargino-neutralino searches

NO ~ +

X X1

— [*['[*

+NON

X X X

. at Tevatron: look for lightest chargino, 2" neutralino

- final state with many leptons, large E;/MSs from LSP

. one of the SUSY “golden modes”

- small SM backgrounds but small (EW) cross sections

- striking signature
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chargino-neutralino searches (DO0)
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chargino-neutralino searches (DO0)

“3l-max”’
°

Limits :
B M(xt)>116 GeV/c?

“Heavy Squarks”
o

B M(xt,)>128 GeVic2

“Large m,”
* M(=0>>M(% x*)
— No sensitivity due to
smaller leptonic BR’s

krzysztof.sliwa@tufts.edu

o(x;x3) x BR(3I) (pb)
o © © © o o
— N W = (4] : |<|”u -

o

lIf"l‘r‘IT]I']lTIIIIITIIVllfll[l]lll‘ll]lli_

-1

Search for y71; — 31+X D@, 320 pb’ -
= ) - 2 Wslepron) > 1) Preliminary 4
",' 1anf = 3, u> 0, no slepton mixing

——— Expected Limit (no 1)
= Observed Limit
------- Expected Limit

B
‘e,
.,
.,
.,

IlllIlIlllllIlIlll

RAREL 220 s .,

= al s

‘e,
Sie,
L
......

N large-m -
mulko&ov'ooo AR LIRS AR SRR . D

her

T A
l uuluunnnununnln|unnnn--|nluunnnnnnn'unnnu 1T
[N | Ll L P P |

115 120 125 130 135 140
Chargino Mass (GeV)

NEPPSR, Craigville, August 19, 2005 34



chargino-neutralino searches (CDF)
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chargino-neutralino searches (DO)
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gluino-sbottom searches (CDF)
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LHC at CERN: SUSY particles factory!?
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ATLAS 18/02/2002

Vs Luminosity f Ldt
[TeV] [cm2s!] [fb-!/y]
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Future: SUSY at LHC

A Toroidal LHC Apparatu$

Muon Detectors Electromagnetic Calorimeters

Forward Calorimeters
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Future: SUSY at LHC

Superconducting Solenoid
Silicon Tracker

Very-forward Pixel Detector

Calorimeter

Preshower

Hadronic
Calorimeter
Electromagnetic

Calorimeter Muon

Detectors

Corﬁpact Muon Solenoid
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SUSY signatures at LHC

Heavy gluinos and squarks (strongly interacting particles) produced in initial interaction
Long decay chains and large mass differences between SUSY states; many high P; objects are
observed (lepton, jets, b-jets)

If the model is mMSUGRA R-Parity is conserved, lighest SUSY particle (LSP) is a stable
neutralino, cascade decays lead to stable undetected LSP => large E[" signatures

If the model is GMSB, LSP is gravitino. Additional signatures from NLSP (next-to-lightest
SUSY particle) decays; for example photons (neutralino decays into photon and gravitino)
and leptons from slepton decays (from neutralino decaying into lepton and gravitino)

If R-parity is not conserved LSP decays to 3-leptons, 2leptons+ ljet, 3 jets; E;/™ signature is
lost
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MSUGRA

- mSUGRA framework: five free parameters: m,, m,,, Ay, tan(3), sgn(y)
- sensitivity only weakly dependent on A, tan(B), sgn(u)

- multiple signatures on most of parameter space: £, (dominant signature),
E;™ss with lepton veto, one lepton, two leptons same sign (SS),

two leptons opposite sign (OS)
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mMSUGRA: selected points

. DC1 bulk region point (new underlying event in generation)

- m,=100 GeV, m,, = 300 GeV, A, =-300 GeV, tanf =6, sgn(y) = +

- LSP is mostly bino, light |5 enhance annihilation. ‘Bread and butter’ region for

the LHC experiments
. llg distributions, tau-tau measurements, third generation squarks (both tau
identification and B tagging improved)

. Coannihilation point

-m,=70 GeV, m,, =350 GeV, A, =0 GeV, tanf = 10, sgn(u) = +

- LSP is pure bino. LSP/sparticle coannihilation. Small slepton-LSP mass
difference gives soft leptons in the final state

. Focus point

- m, = 3350 GeV, m,,, =300 GeV, A,=0 GeV, tanB =10, sgn(u) = +

. LSP is Higgsino, near y?=0 bound. Heavy sfermions; all squarks and sleptons
have mass >2 TeV, negligible FCNC, CP, g -2, etc. Complex events with lots
of heavy flavor

. Funnel region point

- m, =320 GeV, m,, =375 GeV, A, =0 GeV, tanf = 50, sgn(y) = +

- wide H, A for tan >> 1 enhance annihilation. Heavy Higgs resonance (funnel); main
annihilation chain into bb pairs

- dominant tau decays

. Low mass point at limit of Tevatron Runll reach

- m, =200 GeV, m,, =160 GeV, A, = -400 GeV, tanf = 10, sgn(u) = +

- big cross section, but events rather similar to top

- measure SM processes in presence of SUSY background to show detector is understood
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The (my,m,,) - MSUGRA plane
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mSUGRA points

The following points in the mSUGRA space have been selected for
analysis with the full ATLAS detector simulation (GEANT4).

Mo (GeV) | Mp(GeV) |A;  |tanB | sgn(k) | my, (GeV)
Coannihilation 70 350 0 |10 + 175
Focus point 3550 300 0 10 + 175
Funnel region 320 375 0 50 + 175
Bulk (ATL-PHYS-2004-011) 100 300 -300 |6 + 175
Scan 130-6000 600,000 0 10 + 175
low mass point 200 160 -400 |10 + 175

Events generated with HERWIG 6.505 (+JIMMY).
SUSY spectra obtained with ISAJET7.71

All results shown in this talk are obtained from new full simulation data!
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DCI: dilepton endpoint
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coannihilation point:
- Chosen point: m ;=70 GeV; m,,=350 GeV; A,=0; tan=10 ; u>0;

- Small slepton-neutralino mass difference gives soft leptons

- Decays of x?, to both I and I kinematically allowed; double dilepton invariant

mass edge structure, edges expected at 58 / 98 GeV

- Stau channels enhanced (tanp); soft tau signatures, edge expected at 79 GeV.

Less clear due to poor tau visible energy resolution
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focus point

- chosen point: m;=3000 GeV; m,,=215 GeV; A,=0; tanB=10 ; p=>0
- large m, = sfermions are heavy
- most useful signatures from heavy neutralino decay
- direct three-body decays x°, — %,lI
. fit results give:
M(%%,)-M(x°,)= 57.45 + 0.28 GeV
M(x%;)-M(x°,)= 73.27 £ 0.47 GeV
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SM background

Dominant SM background processes:

Vv Z+N jets

A  W+N jets

® «+N jets

B multijets (QCD)

sum of all BG
Previous studies are based on Parton shower.

New SM BG estimation using ME generator
(ALPGEN 1.33)

« W/Z + N jets, tt + N jets are generated
and processed with the fast ATLAS
simulation

* Collinear and soft kinematic regions
are assessed with PS (PYTHIA).

MLM method used for ME-PS
matching. |

Counts/10fb™" /400GeV
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SUSY: the “default new physics ??”

SUSY is perhaps the most explored of “beyond the SM” physics scenarios

As such, it will perhaps be “blamed” for any deviations from SM physics if
observed at Tevatron or at LHC

The problem will be to prove that, even if a statistically significant
deviation from SM predictions is found, the observed events are really due
to the supersymmetric particles and NOT to anything else. This will NOT
be easy. As you should realize by now, there is an almost continuous
spectrum of different SUSY models with different parameters

Several times in the past (monojets at UA |- see Gary Taubes’s “Nobel
Dreams”, CDF- the famous eeyy event) the excitement ran quite wild

about what later proved to be just very rare, but still normal SM, events
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SUSY: the “golden” candidate for “new physics”

CDF- the famous eeyYMET event: recorded April 28, 1995 in Run-l. Its “a
posteriori” probability according to SM ~10-¢

eeyylZTCondidoTe Event

e] e Candidate
_ Er = V
Ep=36GeV 1703Ge
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SUSY: the “golden” candidate for “new physics”

KEEP YOUR EYES OPEN, LEARN SM WELL, KNOW WHAT TO IS TO BE
EXPECTED, EVEN IF IT IS RARE

DON’T GET TOO EXCITED, MAINTAIN CLARITY OF THOUGHT AT ALL
TIMES, IF POSSIBLE

THE NEXT 5 YEARS COULD BE VERY INTERESTING, TEVATRON AND
CERTAINLY LHC WILL PROVIDE A CLOSER LOOK AT THE COMPLETELY
UNEXPLORED REGION OF PHASE-SPACE

REMEMBER THAT THE ATTRACTIVENESS OF SUSY IS REALLY PURELY
ESTHETIC, AS IT SOLVES (OR AT LEAST POSTPONES) THE FINE-TUNING
PROBLEM AND PROVIDES THE LINK BETWEEN FERMIONS AND BOSONS

DISCOVERING ANY NEW PHYSICS BEYOND SM WOULD BE A
BREAKTROUGH, WE DON'T KNOW WHAT IT WILL BE, IT DOES NOT
HAVE TO BE SUSY
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