

Outline

Introduction

QCD basics

Experimental aspects

Selected QCD topics at high-energy collider experiments

- > Electron Positron
- > Electron Proton
- > Proton Anti-proton / Proton Proton

 \bar{q}

 e^+

 \boldsymbol{q}

Introduction

Visible Universe

Galaxies, stars, people,...

Protons & Neutrons

3 valence quarks +...

Silent Partners:

Virtual quark-antiquark pairs $(\Delta E \Delta t \sim h)$

Gluons!

Structure and dynamics of proton (mass) (\rightarrow visible universe) originates from QCD-interactions!

What about spin as another fundamental quantum number?

NEPPSR IV Craigville, Cape Cod, 08/18/2005

Introduction

NEPPSR IV Craigville, Cape Cod, 08/18/2005

Introduction

Exploring nuclear structure - elastic electron-nucleus scattering

Bernd Surrow

- Fundamental QCD ingredients
- Asymptotic freedom:

 $\alpha_s \rightarrow 0$ at short distances: \Rightarrow perturbative QCD

 α_s large at long distances: \Rightarrow non-perturbative QCD

• Factorization: hard scale Q², m_c, m_b

$$\sigma^{ep} = \gamma(x, Q^2) \times f_j(x, Q^2) \times \sigma_h(x, Q^2)$$

non-perturbative part

QCD vertex

blue quark

Evolution:

 Beyond Quark-Parton model, Parton densities become functions of Q²
 Predict Q² dependence of parton distribution functions (DGLAP evolution equations)

Asymptotic freedom

Leading-log approximation:

 $\alpha_s(Q) = \frac{12\pi}{(11n_c - 2n_f)\ln(Q^2/\Lambda^2)}$

 $11n_c > 2n_f$

Discovery of asymptotic freedom in the theory of strong interaction (Quantum Chromo Dynamics): Nobel prize in physics

Bernd Surrow

9

Craigville, Cape Cod, 08/18/2005

Evolution (2)

 \Box Consider the change of the quark density $\Delta q(x,Q^2)$ over an interval of $\Delta \log Q^2$

P_{qq}

 $\mathbf{P}_{\mathbf{gq}}$

General including other types of splitting functions:

Singlet distribution

$$\Sigma(x,Q^2) = \sum_{i=1}^{n_f} [q_i(x,Q^2) + \bar{q}_i(x,Q^2)]$$

Gluon distribution

$$g(x,Q^2) = \sum_{i=1}^{n} [q_i(x,Q^2) + q_i]$$

$$\frac{d\Sigma(x,Q^2)}{d\ln Q^2} = \frac{\alpha_s(Q^2)}{2\pi} \int_x^1 \frac{dz}{z} \left[P_{qq}\left(\frac{x}{z}\right) \Sigma(z,Q^2) + P_{qg}\left(\frac{x}{z}\right) g(z,Q^2) \right]$$
$$\frac{dg(x,Q^2)}{d\ln Q^2} = \frac{\alpha_s(Q^2)}{2\pi} \int_x^1 \frac{dz}{z} \left[P_{gq}\left(\frac{x}{z}\right) \Sigma(z,Q^2) + P_{gg}\left(\frac{x}{z}\right) g(z,Q^2) \right]$$

Probability of finding a parton of type i with momentum fraction x which originated from parton j having momentum fraction y!

 P_{ij}

 $\mathbf{P}_{\mathbf{gg}}$

 $\mathbf{P}_{\mathbf{qg}}$

DGLAP evolution equations:

G. Altarelli and G. Parisi, Nucl. Phys. B 126 (1977) 298; V. Gribov and L.N. Lipatov, Soc. J. Nucl. Phys. 15 (1972) 438; L.N. Lipatov, Soc. J. Nucl. Phys. 20 (1975) 96; Y.L. Dokshitzer, Soc. Phys. JETP 46 (1977) 641.

NEPPSR IV Craigville, Cape Cod, 08/18/2005

- Three step process:
 - Partons (quarks/gluons) in initial state: Long distance (non-perturbative QCD domain)

12

- ⇒ Parton (quarks/gluons) distribution functions
- Hard interaction: Small distances (high energies) (perturbative QCD domain)
 - \Rightarrow Cross-section prediction (LO,NLO,NNLO)
- Quarks in final state: Long distance (non-perturbative QCD domain):

⇒ Quarks fragment into observable hadrons described by fragmentation functions Bernd Surrow

NEPPSR IV Craigville, Cape Cod, 08/18/2005

 l_2

Experimental QCD tests in ee

- \square Measurement of α_s
- □ Fragmentation functions
- Color/spin dynamics
- Quark-Gluon jet properties
- □ Event shape variables (Sphericity, thrust, ...)

- LEP and LHC at CERN, Geneva
 - □ LEP: Centre-of-mass energy (e⁺e⁻) up to 205GeV
 - □ LHC: Centre-of-mass energy (pp): 14000GeV = 14TeV
 - □ Circumference: 27km

Luminosity

NEPPSR IV Craigville, Cape Cod, 08/18/2005

- Experimental QCD tests in ep
 - \Box Measurement of α_s
 - Fragmentation functions
 - Extraction of parton distribution functions
 - Color/spin dynamics
 - Quark-Gluon jet properties
 - Event shape variables (Sphericity,
 - thrust, ...)
- Diffraction

NEPPSR IV Craigville, Cape Cod, 08/18/2005

k

p

ep kinematics (1)

 $e(k) + P(p) \to l(k') + X(p')$

 \square Four vectors: k, p, k', p'

- \Box Neutral current exchange (NC): γ^*, Z^0
- \square Charged current exchange (CC): W^{\pm}

- NC: Scattered electron and/or hadronic final state
- CC: Hadronic final state (neutrino escapes detection)

Determine kinematics!

q

p'

Collider experiment: Electron-Proton collisions at HERA (DESY, Hamburg, Germany)

$E_e = 27.5 \, GeV$ $E_p = 920 \, GeV$

Collider experiment: Electron-Proton collisions at HERA (DESY, Hamburg, Germany)

□ Luminosity:

Et=180 GeV Pt=4 GeV (uncorrected)

- Onion-shell structure of various detector systems around the collision point:
 - Energy measurement
 - Momentum measurement
 - Particle identification

- Experimental QCD tests in pp
 - $\hfill\square$ Measurement of α_s
 - Fragmentation functions
 - Extraction of parton distributionfunctions
 - Color/spin dynamics
 - Quark-Gluon jet properties
 - Event shape variables (Sphericity, thrust, ...)
 - Diffraction

pp kinematics (1)

- Two incoming hadron beams:
 - Spectrum of longitudinal momenta determined by parton distribution functions
 - Centre-of-mass of parton-parton system is boosted with respect to two incoming hadrons, i.e. x₁ ≠ x₂
 - Therefore: Classify final state using variables that transform simply under longitudinal boosts:
 - Rapidity: y
 - Transverse momentum: p_T
 - Azimuthal angle:
 - Four-vector formulation: $p^{\mu}=(E,p_x,p_y,p_z)$

 $= (m_T \cosh y, p_T \sin \phi, p_T \cos \phi, m_T \sinh y)$

$$m_T = \sqrt{p_T^2 + m^2} \qquad \qquad y = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z} \right)$$

NEPPSR IV

Craigville, Cape Cod, 08/18/2005

Property of rapidity:

- Additive under the restricted class of Lorentz transformations corresponding to a boost along the z direction.
- Therefore: Rapidity differences (Δy) are boost invariant!
- Pseudorapidity: y for $m \rightarrow 0$

$$\eta = \frac{1}{2} \ln \frac{|\vec{p}| + p_z}{|\vec{p}| - p_z} = -\ln \tan \frac{\theta}{2}$$
$$p_z = |\vec{p}| \cos \theta$$

 Transverse energy: Measured quantity in a calorimeter system, rather than p_T!

$$E_T = E\sin\theta$$

Jet definition: Cone jet finder

Concentration of transverse energy E_{τ} in a cone of radius R:

$$R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$$

Invariant under longitudinal boost!

In the twodimensional plane, curves of constant R are circles around the jet axis!

pp kinematics (3)

Partonic centre-of-mass energy:

$$\hat{s} = (x_1 p_1 + x_2 p_2)^2$$
 $s = (p_1 + p_2)^2$

 \square Bjorken x_1 and x_2 and rapidity y:

$$x_1 = \frac{1}{2} x_T (e^{y_3} + e^{y_4})$$
$$x_T = \frac{2p_T}{\sqrt{s}}$$

$$x_2 = \frac{1}{2}x_T(e^{-y_3} + e^{-y_4})$$

$$\bar{y} = (y_3 + y_4)/2$$

$$\bar{y} = \frac{1}{2} \ln\left(\frac{x_1}{x_2}\right)$$
 $\cos\theta^* = \frac{p_z^*}{E^*} = \frac{\sinh y^*}{\cosh y^*} = \tanh\left(\frac{y_3 - y_4}{2}\right)$

Partonic centre-of-mass angle!

NEPPSR IV Craigville, Cape Cod, 08/18/2005

World's Highest Energy proton-anti-proton collider - Tevatron (2)

- $\Box \sqrt{s} = 1.96 \text{ TeV}$ (Run I $\rightarrow 1.8 \text{ TeV}$)
- Peak luminosity is now ~ 10³² cm⁻² s⁻¹

Collider Run II Integrated Luminosity

- RUNII Long term luminosity goal
 - Base 4.4 fb⁻¹
 - Design 8.5 fb⁻¹ by the end of 2009

Structure function measurement: Kinematic coverage and measurement

Craigville, Cape Cod, 08/18/2005

Structure function measurement: Q^2 and x dependence

Global fits - Basics

Starting point: DGLAP evolution equations

$$\frac{d\Sigma(x,Q^2)}{d\ln Q^2} = \frac{\alpha_s(Q^2)}{2\pi} \int_x^1 \frac{dz}{z} \left[P_{qq}\left(\frac{x}{z}\right) \Sigma(z,Q^2) + P_{qg}\left(\frac{x}{z}\right) g(z,Q^2) \right]$$
$$\frac{dg(x,Q^2)}{d\ln Q^2} = \frac{\alpha_s(Q^2)}{2\pi} \int_x^1 \frac{dz}{z} \left[P_{gq}\left(\frac{x}{z}\right) \Sigma(z,Q^2) + P_{gg}\left(\frac{x}{z}\right) g(z,Q^2) \right]$$

- \Box Strategy to extract parton densities from a measurement of F_2
- Specify a set of parton distribution functions as a function of x
 - Starting scale Q²
 - Take into account flavor sum rule and momentum sum rule!

$$xf_i = A_i x^{-\lambda_i} (1-x)^{\eta_i} F(x)$$

$$\int_0^1 f_u(x, Q_0^2) dx = 2 \qquad \int_0^1 f_d(x, Q_0^2) dx = 1 \qquad \int_0^1 [x f_u(x, Q_0^2) + x f_d(x, Q_0^2) + x f_s(x, Q_0^2)$$

i: valence (u,d), sea (s) and gluon (g)

- Global fits results from ZEUS
 - $\hfill\square$ Determine F_2^{QCD} in terms of parton distribution functions
 - \Box Evolve F_2^{QCD} through parton distribution functions based on evolution equations
 - □ Minimize χ^2 in terms of F_2^{QCD} and F_2^{data} by adjusting parameters in $xf_i(x,Q^2)$

i: valence (u,d), sea (s) and gluon (g) 37

□ Net result: QCD prediction for $xf_i(x,Q^2)$ and therefore $F_2(x,Q^2)$

Extrapolation of ZEUS NLO DGLAP fit towards low Q2

- Measurement of α_s
 - □ The success of perturbative QCD lies on the precise determination of α_{s} from diverse phenomena
 - There is a wealth of determinations of α_{e} at HERA from a variety of observables (jets, structure functions, ...)
 - Good agreement with current world average:

0.1182 ± 0.0027

S Bethke, hep-ex/0407021

HERA jet measurements are by now as

precise as more inclusive measurements such

as those from τ decays

Bernd Surrow

- Measurement of α_s
 - □ The HERA determinations are consistent with the running of α_s over a large range in E_T
 - Dominant uncertainties are:
 - Experimental (jet energy scale): ~0.9%
 - Theoretical uncertainties (parton distribution functions, hadronization corrections, terms beyoind NLO): ~4%

- Jet production: Jet reconstruction
 - Traditional choice at hadron colliders: cone algorithm

Sum up energy inside cone

 Traditional choice in e+e-: successive recombination algorithms (k_T algorithm)

Sum of particles/cells close in relative $k_{\scriptscriptstyle T}$

Jet production: Inclusive jet cross-section

Inclusive jet cross section @ Tevatron

- Stringent test of pQCD
- Tail sensitive to new physics
- PDFs at high Q² & high
- Direct comparison with NLO

 QCD Hadronization / Underlying Event corrections small

- Good data-theory agreement
 - Experimental uncertainty dominated
 by jet energy scale
 - Largest theoretical error from PDFs (gluon at high x)

- Jet production: Jet shapes
 - Jet shapes governed by multi-gluon emission from primary parton
 - Test of parton shower models
 - Sensitive to underlying event structure
 - Sensitive to quark and gluon mixture in the final state

Ψ(r)

R

Helicity average and helicity difference parton distribution functions

 Unpolarized proton structure:

$$f(x) =$$

 $f^{+}(x) \qquad f^{-}(x)$ $F_{2} = \sum_{q} x e_{q}^{2} q$

Quark (q) distribution and Gluon (g) distributions: Well known experimentally!

Quarks and Gluons carry 50% of the proton momentum, respectively!

long-range short-range long-range

$$A_{LL} = \frac{d\Delta\sigma_{pp\to\pi+X}}{d\sigma_{pp\to\pi+X}} \qquad \hat{a}_{LL} = \frac{d\Delta\hat{\sigma}}{d\hat{\sigma}} \\ = \frac{\sum_{f_1,f_2} \Delta f_1 \otimes \Delta f_2 \otimes d\hat{\sigma}^{f_1f_2 \to fX} \cdot \hat{a}_{LL}^{f_1f_2 \to fX} \otimes D}{\sum_{f_1,f_2} f_1 \otimes f_2 \otimes d\hat{\sigma}^{f_1f_2 \to fX} \otimes D_f^{\pi}}$$

Polarized proton structure:

 $\Delta f(x) =$

$$f^{+}(x) \qquad f^{-}(x)$$
$$g_{1} = \frac{1}{2} \sum_{q} e_{q}^{2} \Delta q$$

Quark (Δq) distributions: Known only at high x. Gluon (Δg) distributions: Poorly constrained!

How do quarks and gluons make up the proton spin?

Bernd Surrow

Motion

- RHIC SPIN program (e.g. ΔG)
- Fundamental question: How is the proton spin oroton made up (helicity)? san Gluon Spi,

$$J = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_z^q + L_z^g$$

EMC/SMC result: Fraction of proton spin carried by guarks is small:

 $\Delta \Sigma_{(AB)} = 0.38 + 0.03_{-0.03}$ at $Q_i^2 = 1 \text{GeV}^2$

- \Box Where is the spin of the proton? ΔG and $(L_z^q + L_z^g)$
- □ SMC QCD-analysis:

 At present: ∆G is only poorly constrained from scaling violations in fixed target DIS experiments $\Delta G_{(AB)}(Q^2 = 1 GeV^2) = 0.99 + \frac{1.17}{-0.31}$ at $Q_i^2 = 1 GeV^2$

B. Adeva et al., SMC Collaboration, Phys. Rev. D58 (1998) 112002.

Need: New generation of experiments to explore the spin structure of the proton: polarized proton-proton collisions at RHIC

RHIC spin program:

- Unique multi-year program which has just started..!
- Explore various aspects on the spin structure and dynamics of the proton in a new domain:
- □ Spin structure of the proton (Transverse spin dynamics and transversity, Gluon polarization and Flavor decomposition of guark/anti-guark polarization)
- Spin dependence of fundamental interactions
- □ Spin dependence of fragmentation
- Spin dependence in elastic polarized pp collisions

45

Bernd Surrow

- Access helicity difference distribution functions (gluon and quark/anti-quark)
- At RHIC, any combination of beam polarization (longitudinal (+/-) /transverse (↑/↓)) is possible, which allows to access different aspects of the proton spin structure

Dedicated high-energy QCD physics program at Brookhaven National Laboratory

Experiments: D PHENIX □ STAR BRAHMS □ PHOBOS

- RHIC facility: Unique collider facility which allows to collide different species (Au-Au and d-Au as well as polarized p-p) at variable beam energy
 - Explore the nature of matter under extreme conditions (Relativistic-heavy ion program)
 - Explore the nature of the proton spin (High energy spin physics program)

NEPPSR IV Craigville, Cape Cod, 08/18/2005 Bernd Surrow

Unique

QCD lab!

Summary and Outlook

Summary

- Wealth of QCD data from high-energy QCD collider experiments
- Parton distributions functions are known over a large range in Bjorken-x with large uncertainties at high-x
- LEP/HERA/Tevatron will provide critical input for LHC QCD background studies
- After 2010, RHIC and LHC will be the only high-energy hadron collider facilities for the foreseeable future

Outlook

- $\hfill \label{eq:LHC}$ will allow to probe distance scales (high E_T) beyond the current reach
- Explore new QCD regime in eAu (high parton density) and polarized ep scattering (complement ongoing RHIC physics activities)
- □ Unique opportunity to establish such a QCD facility (eRHIC) at BNL ⇒ Continuation of collider based DIS program beyond HERA
 NEPPSR IV Craigville, Cape Cod, 08/18/2005

Fun with SPIN in the Past and the Future

Wolfgang Pauli

Having fun with a spinning top!

Niels Bohr

NEPPSR IV Craigville, Cape Cod, 08/18/2005 Bernd Surrow

Backup

70

60

50

Polarization

- Machine performance overview (FY02-FY05)
- Overview of performance parameters

N		and the second sec		
X	√s [GeV]	Lpeak [10 ³⁰] cm ⁻² s ⁻¹	L [pb ⁻¹]	Polarization [%]
FY02	200	2	0.35	15
FY03	200	6	1	30
FY04	200	6	0.4	40
FY05	200 (410)	9	9	50

- Status
- ☑ Siberian snake and spin rotator magnets
- ✓ Fast polarimeters in AGS/RHIC
- ☑ Local polarimeters at STAR/PHENIX
- ☑ Spin transfer AGS to RHIC
- ☑ Polarized gas-jet target
- ☑ Warm AGS Siberian snake
- ☑ Installation of cold AGS Siberian snake magnet and commissioning started
- ☑ Commissioning towards 250GeV ramp started (At 205GeV)

Yellow Beam FY05

Blue and Yellow Beam polarization

Backup

PDF uncertainty (Ratio to CTEQ6)

□ RHIC can reduce errors of valence PDFs at

large x!

Backup

Comparison of kinematic coverage

NEPPSR IV Craigville, Cape Cod, 08/18/2005

Bernd Surrow