VOscillation

Review of neutrino physics - historical trajectory

Quantum mechanics of neutrino oscillation

Positive results from four current experiments

What we know and what we don't know

Your neutrino future

ED KEARNS - BOSTON UNIVERSITY - NEPPSR 2005

Pauli's Desperate Remedy

$n \rightarrow p + e^{-}$

a two-body decay: should result in a single fixed momentum of the electron

Abschrift/15.12.5

Offener Brief an die Gruppe der Radioaktivan bei der Gauvereins-Tagung zu Tübingen.

Abschrift

Physikalisches Institut der Eidg. Technischen Hochschule Zürich

Zürich, 4. Des. 1930 Oloriastrasse

Liebe Radioaktive Damen und Herren,

$n \rightarrow p + e^- + v$

Pauli's lightweight neutrino can share energy with the electron and explain the continuous distribution.

Fermi Coupling Constant

 $G_F = 1.167 \times 10^{-5} \text{ GeV}^{-2}$

First Detection of Neutrinos

data recorded by oscilloscopes and counters

Fred Reines 1995 Nobel Prize in Physics

First Detection of Neutrinos (Proposed)

Reines & Cowen 1950

"Two Neutrino Experiment"

(mostly) muons detected in a beam of (mostly) muon neutrinos

beam: decay products of p, K (known to decay mostly to muons rather than electrons)

detected: 34 muons (p > 300 MeV/c) 6 EM showers (n, ne)

> Lederman, Schwartz, Steinberger 1988 Nobel Prize in Physics

Homestake Mine Solar Neutrino Experiment $v_e + {}^{37}\text{Cl} \rightarrow {}^{37}\text{Ar} + e^-$

note:

less than

615 tons of C₂Cl₄ (dry cleaning fluid)

1500 meters depth

Individual Ar atoms extracted and counted by radioactive decay ($\tau \sim 35$ days)

25 years ~ 800 solar neutrino events

Ray Davis Jr. 2002 Nobel Prize in Physics

Neutral Currents and Neutrinos

Neutrino Astronomy

Kamiokande Solar Neutrino Result

Result: 46% ± 15% of predicted flux

Masatoshi Koshiba 2002 Nobel Prize in Physics

Three Neutrinos

results from LEP experiments at CERN (1990's)

Neutrino Oscillations

First proposed by Bruno Pontecorvo in 1957 in analogy to K⁰-K⁰ mixing.

Recently the question was discussed whether there exist other mixed neutral particles beside the K⁰ mesons, i.e. particles that differ from the corresponding antiparticles, with the transitions between particle and antiparticle states not being strictly forbidden. It was noted that neutrino might be such a mixed particle, and consequently there exists the possibility of real neutrino-antineutrino transitions in vacuum, provided that lepton (neutrino) charge is not conserved.

- \bullet before the two-neutrino experiment, later extended to $v_{e}\text{-}v_{\mu}$
- a consequence of interference of the mass states of a propagating neutrino
- requires non-zero mass and finite mixing of neutrino flavors

Neutrino Mixing

Consider the neutrino as a two-state system (we will extend to 3-states shortly),

$$\begin{aligned} \begin{aligned} & flavor\\ \alpha = e, \mu, \tau \end{aligned} \qquad \begin{pmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \end{pmatrix} \qquad \begin{aligned} & mass\\ i = 1, 2, 3 \end{aligned}$$

$$\begin{aligned} & \mathbf{v}_{\mu} & \text{conveniently viewed}\\ & \text{in flavor basis for}\\ & \text{production and}\\ & \text{interaction...} \end{aligned}$$

$$\begin{aligned} & \mathbf{v}_{e} & \text{and in mass basis for}\\ & \text{propagation and evolution.} \end{aligned}$$

$$\begin{aligned} & \mathbf{v}_{e} & \text{schroedinger Equation:}\\ & \mathbf{v}_{f} & i\frac{\partial}{\partial t_{1}} | \mathbf{v}_{1} \rangle = m_{1} | \mathbf{v}_{1}(t_{1}) \rangle \end{aligned}$$

$$\begin{aligned} & \text{solved by:}\\ & | \mathbf{v}_{1}(t) \rangle = e^{-im_{1}t} | \mathbf{v}_{1}(0) \rangle \end{aligned}$$

Mixing with Three Flavors

$$\begin{pmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 1} & U_{\tau 1} \end{pmatrix} \begin{pmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \end{pmatrix}$$

three angles plus one complex phase

Pontecorvo-Maki-Nakagawa-Sakata Matrix (PMNS or MNS)

$$W \longrightarrow U_{\alpha i}^{*} \vee \alpha \qquad | \mathbf{v}_{\alpha} \rangle = \sum_{i} U_{\alpha i}^{*} | \mathbf{v}_{i} \rangle$$

$$\left|\left\langle \mathbf{v}_{\alpha} \left| \mathbf{v}_{i} \right\rangle \right|^{2} = \left| U_{\alpha i} \right|^{2}$$

flavor fraction of α in of mass state *i*

Propagation in the Mass Basis

Amplitude for evolving for proper time τ :

 $\langle \mathbf{v}_i(0) | \mathbf{v}_i(\mathbf{\tau}_i) \rangle = e^{im_i \mathbf{\tau}_i}$

In laboratory frame variables, requiring Lorentz invariance, and v~c:

For components with common energy E that coherently interfere:

$$m_i \tau_i \approx E(t-L) + \frac{m_i^2}{2E}L$$

$$\langle \mathbf{v}_i(0) | \mathbf{v}_i(\mathbf{\tau}_i) \rangle = e^{-im_i^2 \frac{L}{2E}}$$

...ignoring common phase E(t-L)

Putting it all together...

$$\Delta m_{ij}^2 \equiv m_i^2 - m_j^2 \qquad \Delta m_{ij}^2 \frac{L}{4E} = 1.27 \Delta m_{ij}^2 (\text{eV}^2) \frac{L(\text{km})}{E(\text{GeV})}$$

with $\hbar, c \neq 1$

Back to Two Neutrinos

• often the case: one of the oscillatory terms remains zero under the experimental conditions (i.e. *L* too short, *E* to large etc.)

$$P(\mathbf{v}_{\alpha} \rightarrow \mathbf{v}_{\beta}) = \sin^{2} 2\Theta \sin^{2} \left(1.27\Delta m_{ij}^{2} \frac{L}{E}\right)$$
oscillation
probability
 $n_{\alpha\beta}^{0.6}$
 $n_{\alpha\beta}^{0.6}$

Appearance and Disappearance

Reaction Threshold

 $\begin{array}{ll} {\cal C} & E_{\rm V} > 1.5 \; {\rm MeV} \\ {\cal \mu} & E_{\rm V} > 110 \; {\rm MeV} \\ {\cal \tau} & E_{\rm V} > 3500 \; {\rm MeV} \end{array}$

often, an experiment produces the beam neutrino below the threshold of for the production of a new flavor lepton

Neutral currents don't really oscillate!

Matter Effects

due to coherent forward scattering

extra interaction potential $V = \sqrt{2}G_F N_e$ (- sign for anti-v_e)

if $m_2^2 - m_1^2 < 0$ then *V* also changes sign

Matter Effects (continued)

$$\Delta m_M^2 = \Delta m^2 \sqrt{\sin^2 2\theta} + (\cos 2\theta - x)^2$$
$$\sin^2 2\theta_M = \frac{\sin^2 2\theta}{\sin^2 2\theta + (\cos 2\theta - x)^2}$$
$$x = \frac{V/2}{\Delta m^2/4E} = \frac{2\sqrt{2}G_F N_e E}{\Delta m^2} \sim \frac{E}{12GeV} \text{ (in earth's mantle)}$$

Mikheyev-Smirnov-Wolfenstein (MSW effect)

neutrinos produced in Sun's center would encounter critical density at some point on the way out regardless of how small the mixing angle *if sin*²2θ *is small it can become large in matter under the right energy and density conditions*

Neutrino Oscillation Experiments

solar neutrinos

$$\begin{split} & \mathsf{L} = 10^{11} \mathsf{m} \\ & \mathsf{E} = 0.1 \text{ to } 15 \text{ MeV} \\ & \Delta \mathsf{m}^2 \sim 10^{-10} \text{ to } 10^{-12} \text{ eV}^2 \text{ (vacuum)} \\ & \Delta \mathsf{m}^2 \sim 10^{-4} \text{ to } 10^{-10} \text{ eV}^2 \text{ (matter effects)} \end{split}$$

atmospheric neutrinos

 $\label{eq:L} \begin{array}{l} {\sf L} = 10 \mbox{ to } 10000 \mbox{ km} \\ {\sf E} = 0.1 \mbox{ to } 10 \mbox{ GeV} \\ \Delta m^2 \sim 10^{-1} \mbox{ to } 10^{-5} \mbox{ eV}^2 \end{array}$

reactor neutrinos

L = 100 to 10000 m E = 3 MeV $\Delta m^2 \sim 10^{-2}$ to 10^{-5} eV^2

Atmospheric Neutrinos

Atmospheric Neutrino Oscillation

Super-Kamiokande Experiment

Inner detector

22.5 kton fiducial mass
11134 50cm photomultiplier tubes
40% photocathode coverage
~2 ns PMT timing resolution
~85 m water attenuation length

Outer detector

optically isolated veto and shield 1800 20cm pmts recovered from IMB

Location

Kamioka zinc mine, Japan 1 km under mountain (2700 m.w.e.)

How to distinguish muon neutrinos from electron neutrinos

MUON NEUTRINO

ELECTRON NEUTRINO electron shower

muon

Super-K Atmospheric Neutrino Data

Zenith Angle Distributions

How is this Neutrino Oscillation?

Long Baseline Neutrino Oscillation Experiments

Atmospheric Neutrinos

Long Baseline Neutrinos

mixed beam of $\nu_{\mu}\,\overline{\nu_{\mu}}\,\nu_{e}\,\overline{\nu_{e}}$

wide energy band 200 MeV - 1 TeV

continuous flux - free

multiple baselines 10 km - 13000 km

muon

θμ

^{roton}

 p_{μ}

neutrino direction unknown

unobserved

nearly pure beam of ν_{μ}

narrow energy band, adjustable

pulsed flux - expensive

fixed baseline 250 / 750 km so far

neutrino direction known

neutrino direction (known) $E_{\nu} = \frac{M_n E_{\mu} - m_{\mu}^2/2}{M_n - E_{\mu} + p_{\mu} \cos \theta_{\mu}}$

useful for quasi-elastic events (prevalent at low energies ~1 GeV)

Principle of Long Baseline Experiments

K2K results

MINOS expectation

confirmed by K2K

Beryllium-7

Solar Neutrinos

SNO: Sudbury Neutrino Observatory

- 2073 m underground (~70 cosmic rays/day)
- 1 kton heavy water (D₂O)
- 9500 20-cm photomultiplier tubes
- separately measure v_e from $\neq v_e$

Angle between v and sun

x = e or mu or tau

Solar Result

Where's the Smoking MSW Gun?

no seasonal variation except 1/r²

KamLAND Reactor Experiment

E ~ 3.7 MeV

KamLAND Detector

1000 ton liquid scintillator in plastic balloon surrounded by mineral oil viewed by 1879 PMTs in stainless steel sphere shielded by active water Cherenkov

$$\overline{\mathbf{v}}_e + p \longrightarrow e^+ + n \longrightarrow E_{thresh} = 1.8 \text{ MeV}$$

$$-n + p \rightarrow d + \gamma(2.2 \text{ MeV})$$

 $\tau \sim 210 \; \mu sec$

~1000 events/yr

KamLAND Results

KamLAND compared with Solar

KamLAND measurement is based on vacuum oscillation; solar survival probability relies on matter effect. Important comparison!

IF YOU CAN UNDERSTAND THIS PLOT YOU ARE **STANDING** T00 CLOSE

Current Picture of Neutrino Mass and Mixing

B. Kayser hep-ph/0506165

A Useful Parametrization of the PMNS Matrix

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \times \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \times \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$\theta_{23} \sim \theta_{atm.} \approx 45^{\circ} \qquad \theta_{13} < 12^{\circ} \qquad \theta_{12} \sim \theta_{solar} \approx 32^{\circ}$$
$$\delta \text{ is totally unknown}$$

why is it like this ???

$$U_{CKM} = \begin{pmatrix} 1 & 0.2 & 0.005 \\ 0.2 & 1 & 0.04 \\ 0.005 & 0.04 & 1 \end{pmatrix} \qquad U_{PMNS} = \begin{pmatrix} 0.8 & 0.5 & ? \\ 0.4 & 0.6 & 0.7 \\ 0.4 & 0.6 & 0.7 \\ 0.4 & 0.6 & 0.7 \\ neutrinos \end{pmatrix}$$

What We Do Not Yet Know

- Are there only three neutrino states? (LSND)
- Can we really make an appearance experiment?
- What is the absolute mass scale?
- Are neutrinos their own antiparticle? (Majorana)
- What is the sign of the large Δm^2 ? (heirarchy _____ or ____)
- What is the value of θ_{23} ? Is it truly maximal?
- What is the value of θ_{13} ? Is it really zero?
- What is the value of δ ?

What We Do Not Yet Know

- Are there only three neutrino states? (LSND)
- Can we really make an appearance experiment?
- What is the absolute mass scale?
- Are neutrinos their own antiparticle? (Majorana)
- What is the sign of the large Δm^2 ? (heirarchy _____ or _____)
- GUTs want to know!
 - What is the value of θ_{23} ? Is it truly maximal?
 - What is the value of θ_{13} ? Is it really zero? must be > 0 to see CP violation
 - What is the value of δ ? **CP violation**!

 $P(v_{\mu} \rightarrow v_{e}) \neq P(\overline{v_{\mu}} \rightarrow \overline{v_{e}})$

GUTs like

this!

 $0\nu\beta\beta$ expts wish for this.

LSND Experiment

fast response from Cherenkov light from e+ slower response from scintillation light from e+ delayed capture of neutron gives 2.2 MeV gamma

 $\overline{v}_e + p \rightarrow e^+ + n$

 $n + p \rightarrow d + \gamma (2.2 \text{ MeV})$

LSND Result

a fourth oscillation signature (with active neutrinos!) is a problem

will be tested by mini-BooNE this year

Beam Excess

Tau Appearance

Tau appearance is special emphasis for CNGS (CERN-Gran Sasso) experiment OPERA ~ only a handful of events events, but with emulsion tracdker to identify kink of tau decay

Off-Axis Experiments

Let's build a new detector off-axis from the existing NuMI beam! NOVA

Let's build a new beam off-axis to the existing Super-K detector!

Off-axis kinematics

Angle chooses peak energy

Electron Neutrino Appearance and Muon Neutrino Disappearance

NOVA has comparable goals

Background is Single Pizero Events

Two Detector Reactor Experiment

requires very careful control of systematic effects

Best case scenario: small wiggles assume θ_{13} as large as allowed by CHOOZ limit

 $\begin{array}{l} \mbox{smaller values } \theta_{13:} \\ \mbox{P}_{surv} \mbox{ recedes to} \\ \mbox{the faint blue curve} \end{array}$

must believably measure small difference in event rates

Several sites being considered:

Braidwood (IL) Daya Bay (HK) Chooz (France)

How We Might Know What We Do Not Yet Know

- Are there only three neutrino states? (LSND)
 - mini-BooNE (2005)
- Can we really make an appearance experiment?
 - CNGS, SK? (τ); T2K, NOvA (*e*)
- What is the absolute mass scale?
 - KATRIN, $0\nu\beta\beta$, precision cosmology?
- Are neutrinos their own antiparticle? (Majorana)
 - Numerous $0\nu\beta\beta$ experiments being proposed
- What is the sign of the large Δm^2 ? (heirarchy _____ or ____)
 - NOvA + T2K
- What is the value of θ_{23} ? Is it truly maximal?
 - NOvA, T2K
- What is the value of θ_{13} ? Is it really zero?
 - NOvA, T2K, new reactor experiment
- What is the value of δ ?
 - upgraded off-axis experiments (eg. Hyper-K+4MW beam)

plus challenging proposed accelerators like β -beams and muon storage rings