NEPPSR Analysis Project

Kevin Black (Harvard U.) Meenakshi Narain (Boston U.) Stéphane Willocq (UMass Amherst)

New England Particle Physics Student Retreat Craigville, 15-19 August 2005

Analysis Project

- Goals of the Project
 - Learn basic use of ROOT data analysis tool
 - \rightarrow Standard tool in particle physics
 - Apply statistical analysis to extract physical information (particle lifetime, mass, etc...)
 - For more info on ROOT, physics, and project instructions, see
 - http://www.hepl.harvard.edu/~kblack/neppsr.html

Three Analysis Projects

- 1. B lifetime measurement with likelihood method
- 2. 'Particle hunting' and mass measurement via muon final states
- 3. $Z \rightarrow \mu + \mu$ forward-backward asymmetry study

Project I: B Lifetime Analysis

<u>Sample</u>

- Simulation of the exponential proper time distribution of B mesons
 - → Effect of limited resolution in the measured proper time simulated by smearing the true proper time with a constant Gaussian resolution
 - → ROOT tuple contains: True time and measured time (in units of ps) for 2000 events

Lifetime used in the generation of the events was 1.532 ps

Project I: B Lifetime Analysis

- Project
 - Determine the B meson lifetime and its statistical uncertainty using each of the following methods:
 - 1) Least-squares fit to the true proper time histogram \rightarrow Need to provide function to fit the distribution with

 $f(t) = N \exp(-t / tau)$

Code provided \rightarrow Use ROOT built-in interface to do the chi-squared minimization

$$\chi^{2} = \sum_{i=1}^{nbins} \left(\frac{\left(f(t_{i}) - N_{i}\right)^{2}}{\sigma_{i}^{2}} \right)$$

- 2) 'Unbinned' Maximum Likelihood with true proper time
 - \rightarrow Compute and display -log(likelihood) as a function of lifetime
- 3) 'Unbinned' Maximum Likelihood with reconstructed proper time
 - \rightarrow Need to determine time resolution
 - \rightarrow Compute and display -log(likelihood) as a function of lifetime

(use ROOT's TMath::Erfc(x))

Colin Gay's lecture

BB

Project II: Muons as Discovery Tools

<u>Sample</u>

- Simulation of p p collisions at the LHC (using Pythia)
 - → ATLAS Experimental effects taken into account: detector acceptance, efficiency, resolution, etc.
- ROOT tuple:
 - → 34700 events
 - \rightarrow measured 4-momenta of electrons, muons and jets
 - + transverse missing energy
 - → sample contains mostly muons originating from the decay of known and yet-to-be discovered particles

ATLAS Muon Spectrometer

- <u>Trigger System</u>
 - Resistive Plate Chambers (**RPC**)
 - Thin Gap Chambers (**TGC**)
- Precision System
 - Monitored Drift Tubes (**MDT**)
 - Cathode Strip
 Chambers (CSC)
- <u>Magnet System</u>
 - Barrel Toroid (BT)
 - Endcap Toroids (ECT)

ATLAS Muon Spectrometer

Aim: • Muon Trigger & Identification with high-efficiency

 Precise measurement of muon 3-momentum
 σ(p_T)/p_T = 10% at p_T = 1 TeV/c for most η range
 → requires ~50 μm position precision

ATLAS Muon Spectrometer

Project II: Muons as Discovery Tools

- Project
 - 'Discover' all resonances/particles produced in the sample provided Note: All but one decay into muon-only final states
 - Measure their mass via a least-squares fit to a histogram with Breit-Wigner function (follow B lifetime ROOT fit example) or Gaussian function

NEPPSR 2005

mumu mass3

- <u>Sample</u>
 - Simulation of p p collisions at the LHC
 - + ATLAS Experimental effects

- ROOT tuple:
 - \rightarrow 10000 events
 - \rightarrow true 4-momenta of annihilating quark and antiquark
 - + Z-decay muons (provided in the sample analysis code)

Project (motivation)

 Study the forward-backward asymmetry as a sensitive probe of couplings btw Z boson and fermions

$$\frac{d\sigma(q\bar{q} \to \ell^+ \ell^-)}{d\cos\theta} = C \frac{\pi\alpha^2}{2s} [Q_\ell^2 Q_q^2 (1 + \cos^2\theta) + Q_\ell Q_q Re(\chi(s)) (2g_V^q g_V^\ell (1 + \cos^2\theta) + 4g_A^q g_A^\ell \cos\theta) + |\chi(s)|^2 \left((g_V^{q^2} + g_A^{q^2}) (g_V^{\ell^2} + g_A^{\ell^2}) (1 + \cos^2\theta) + 8g_V^q g_A^q g_V^\ell g_A^\ell \cos\theta \right)]$$

$$d\sigma / d\cos(\theta) = N \left[3/8(1 + \cos^2 \theta) + A_{FB} \cos \theta \right] \qquad Eq.(1)$$

→ Interference between vector and axial-vector Zff amplitudes and between virtual photon and Z amplitudes gives rise to a preferential emission of fermions in the direction of the incoming quark (i.e. a forward-backward asymmetry in the Z frame)

Project (motivation)

 A_{FB} sensitive to new heavy gauge bosons predicted in many extensions of the Standard Model

Project

 Plot distribution of cosine of helicity angle of the negative muon in the dimuon rest frame, i.e. cos(theta), + fit for A_{FB} using Eq.(1)

- Issue at the LHC: How does one find the initial quark direction?
 - \rightarrow approximate the initial quark direction with that of the Z boson
 - \rightarrow this works because (valence) quarks carry a much larger fraction (x)

Project

- Fit for A_{FB} using Eq.(1) for 2 cases:
 - 1) incoming quark direction approximated by the Z direction
 - 2) incoming quark direction used directly (can only do this with truth info...)

- Determine how often the Z direction approximation gives the correct "forward" tag
 - + plot this fraction as a function of the Z rapidity (y)

$$y = \frac{1}{2} \log \left(\frac{E + p_z}{E - p_z} \right)$$
 $E = Z$ energy; $p_z = Z$ momentum along beam

Fit for A_{FB} in several bins of dimuon mass
 + plot A_{FB} as a function of mass

<u>CONTEST</u>: Prize to be awarded to first who provides the name and mass of *all* resonances/particles in Project II May want to check Particle Data Group's listings at <u>http://pdg.lbl.gov/</u>

Let us know if you have questions/problems/etc.

Instructions, ntuple files, ROOT sample code available on web site

http://www.hepl.harvard.edu/~kblack/neppsr.html

→ Present and discuss results on Thursday evening