

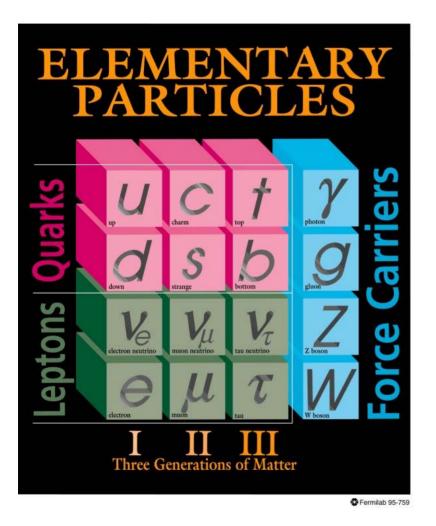
i

BATAVIA, ILL

POSTCARDS FROM

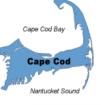
August 24, 2004

NEPPSR III - John M. Butler



Motivation

- The Standard Model of particle physics is a highly successful description of Nature
- Aesthetically appealing in its elegance and simplicity
- No measurement is in significant disagreement with the SM
- Nobody believes it is the whole story


"The analysis finally agrees with the SM, let's publish..."

- Not our job to validate the Standard Model (SM) but to find out how nature works. Much more fun to make the discovery that breaks the SM!
- The Tevatron confronts the SM with a rich* program of physics
- Measurements from a broad range of topics
 - Top quark properties
 - Strong interaction QCD
 - CKM or "Heavy Flavor" b and c quark studies
 - Electroweak (EW) physics
 - Searches for the Higgs boson
- Actively pursuing signs of new physics beyond the SM
 - Mechanism of EWSB SUSY or technicolor or little Higgs or …?
 - Large extra dimensions
 - Leptoquarks
 - ➤ Excited leptons, monopoles, …
 - "Who ordered that?"

*Beware! When physicists say "rich" they often mean "vastly complicated" or "really hard" or "impossible to get a sensible result"

Abundance of Physics at 2 TeV

Abstracts Submitted to ICHEP'04

B Phy	Abstract Title	Session	EB
Pub*	Measurement of B hadron lifetimes using final states containing J/w	CP violation and CKM	EB027
Pub	B hadron lifetime ratios in semileptonic mode	CP violation and CKM	EB006
	A study of Bd oscillations	CP violation and CKM	EB017
	Search for Bs oscillations	CP violation and CKM	EB017
Pub	X(3872) state	Hadron spectroscopy and exotics	EB007
	Upsilon (1S) bottomonium production	Heavy quark mesons and baryons	EB007
	Observation of L=1 B_J* states at the DØ experiment	Heavy quark mesons and baryons	EB028
	Observation of semileptonic B decays into orbitally excited D final states	Heavy quark mesons and baryons	EB023
	A study of the B_c meson	Heavy quark mesons and baryons	EB028
Pub*	A study of rare B meson decays using the DØ detector	Beyond standard model	EB023
Electro	weak (5)		
Pub	Measurement of the W and Z production cross sections times the leptonic branching ratios	Electroweak	EB003
	Measurement of the width of the W boson at the Fermilab Tevatron	Electroweak	EB026
	Measurement of the forward-backward charge asymmetry in Drell-Yan events	Electroweak	EB021
Pub*	Measurements of the production of photons in association with a W or a Z boson	Electroweak	EB016
Pub	Associated production of W and Z bosons	Electroweak	EB003
Hiqqs (9)		
Pub*	Measurement of the Wbb production cross section and search for the Higgs in WH	Electroweak	EB004
Pub	Search for Higgs decays to WW at DØ	Electroweak	EB005
	Measurement of the W-pair production cross section at DØ	Electroweak	EB005
	Search for technicolor particle at DØ	Beyond standard model	EB029
	Search for Fermiophobic and topcolor Higgs in the diphoton final states at DØ	Beyond standard model	EB013
Pub	Search for doubly charged Higgs pair production in the muon decay channel at DØ	Beyond standard model	EB005
Pub*	Z+j production cross section and cross section ratios of Z+b/Z+j at DØ	Electroweak	EB004/5
	Search for Z to bbar decay at DØ	Electroweak	EB018
	A search for neutral Higgs bosons at high tanβ with the DØ Detector	Beyond standard model	EB018
Now Pl	eenomena (10)		
Pub*	Searches for first and second generation leptoquarks	Beyond standard model	EB015
	Search for anomalous heavy-flavor jet production in association with W bosons	Bevond standard model	EB029
	Search for heavy stable charged particles	Beyond standard model	EB020
	Search for RPV SUSY in multilepton final states	Beyond standard model	EB014
	Search for the associated production of charginos/neutralinos in the final states with three leptons	Beyond standard model	EB014
Pub	Search for GMSB SUSY in diphoton events with large missing ET	Beyond standard model	EB013
	Search for heavy dilecton resonances with the DØ detector	Beyond standard model	EB012
	Search for leave extra spatial dimensions in jets + missing ET topologies	Beyond standard model	EB019
	Search for squarks and gluinos in the jets + missing ET topology	Beyond standard model	EB019
Pub	Search for extra dimensions in the dilepton and diphoton channels	Beyond standard model	EB012
1 010		boyona atanatan moder	20012

Last Updated on 5/28/2004

Jianming Qian

...and more and more...

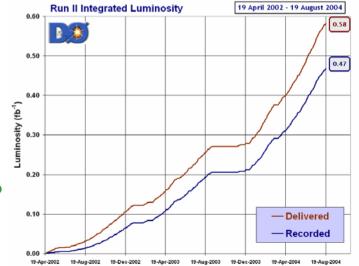
Abstracts Submitted to ICHEP'04

Pub	Measurement of dijet azimuthal decorrelations at central rapidities at DØ Run II	QCD hard interactions	EB002
	Measurement of the elastic slope with the DØ Detector in Run II	QCD soft interactions	EB001
	Diffractive Z measurement at DØ Run II	QCD soft interactions	EB001
	Forward proton detector status and diffractive jet production at DØ Run II	QCD soft interactions	EB001
ub	Measurement of the inclusive jet cross section by the DØ Collaboration in Run II	QCD hard interactions	EB002
ub	Measurement of the dijet cross section using the DØ detector in Run II	QCD hard interactions	EB002
	Measurement of the inclusive h ist areas section using the DØ detector in Run II	QCD hard interactions	EB025
	Measurement of the inclusive b-jet cross section using the DØ detector in Run II	QCD hard interactions	
Top Phy	Measurement of the dijet angular distribution using the DØ detector in Run II	QCD hard interactions	
Top Phy		-,	EB002
ub*	Measurement of the dijet angular distribution using the DØ detector in Run II vsics (7) Measurement of the top quark pair production cross section in I+jets and II+jets final state	QCD hard interactions QCD hard interactions	EB002 EB008/9
ub*	Measurement of the dijet angular distribution using the DØ detector in Run II vsics (7) Measurement of the top quark pair production cross section in I+jets and II+jets final state Measurement of the top quark pair production cross section with lifetime b tagging at DØ	QCD hard interactions	EB002
Pub*	Measurement of the dijet angular distribution using the DØ detector in Run II vsics (7) Measurement of the top quark pair production cross section in I+jets and II+jets final state	QCD hard interactions QCD hard interactions	EB002 EB008/9
ub*	Measurement of the dijet angular distribution using the DØ detector in Run II vsics (7) Measurement of the top quark pair production cross section in I+jets and II+jets final state Measurement of the top quark pair production cross section with lifetime b tagging at DØ	QCD hard interactions QCD hard interactions QCD hard interactions	EB002 EB008/9 EB030
ub*	Measurement of the dijet angular distribution using the DØ detector in Run II vsics (7) Measurement of the top quark pair production cross section in I+jets and II+jets final state Measurement of the top quark pair production cross section with lifetime b tagging at DØ Search for single top quark production at DØ	QCD hard interactions QCD hard interactions QCD hard interactions Electroweak	EB002 EB008/9 EB030 EB024
∑op Phj Pub* Pub	Measurement of the dijet angular distribution using the DØ detector in Run II vsics (7) Measurement of the top quark pair production cross section in I+jets and II+jets final state Measurement of the top quark pair production cross section with lifetime b tagging at DØ Search for single top quark production at DØ Measurement of the top quark mass in lepton+jets channel at DØ	QCD hard interactions QCD hard interactions QCD hard interactions Electroweak Electroweak	EB002 EB008/9 EB030 EB024 EB011

Note *: the abstract in question combines several analyses, aiming to publish a subset Yellow indicates the existence of preliminary results while blue is for those submitted for publication.

Approach for this talk

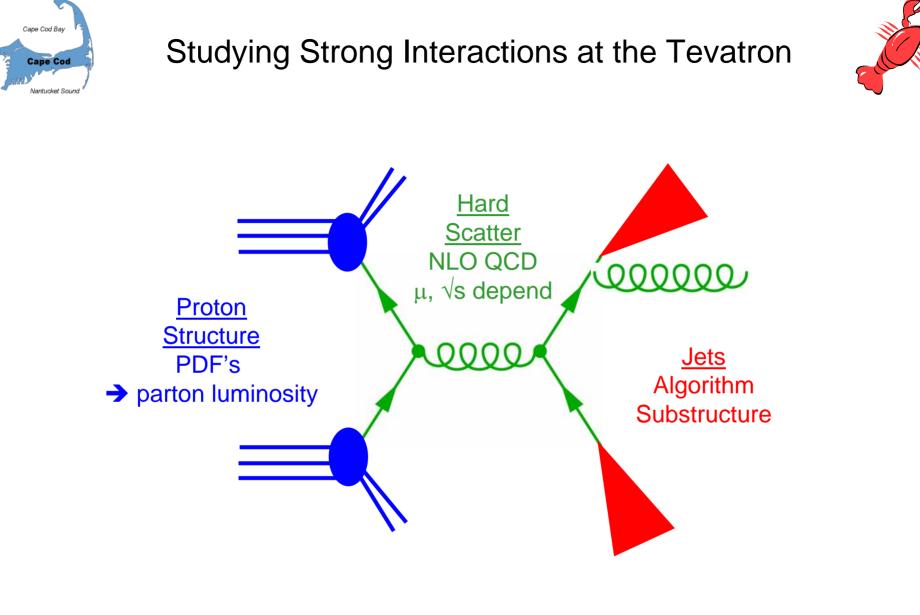
- No attempt to give a comprehensive review of latest results from CDF and DØ
- Rather, I'll present some representative measurements from the main physics areas studied at the Tevatron
 - > What the data looks like and what you can do with it
- Physics Topics my own idiosyncratic selections
 - Top quark properties see Darien Wood's talk from Monday
 - > QCD: inclusive jet cross section
 - > Heavy flavor: B_s and Λ_b
 - Electroweak: W mass
 - Searches for the Higgs boson
 - Searches for new physics
 - SUSY in trileptons
 - The virtues of recycling dileptons

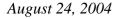


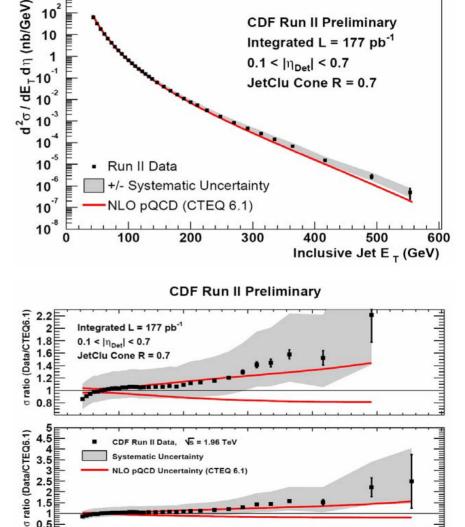
Some Obvious Observations

High energy and luminosity are good, higher is better

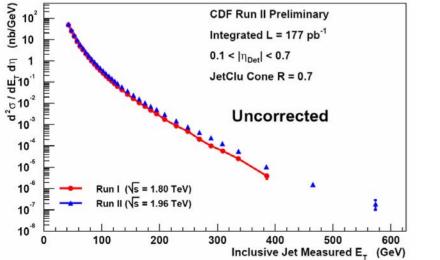
- Energy Frontier: high E allows to probe shortest distance scales and directly produce new heavy states of matter
- > High L allows to observe rare processes with small cross sections
- Corollary when LHC is running, the Tevatron is toast
- Corollary lots of data is good, more is better
 - Now measuring integrated L in fb⁻¹
- Hadron machines are quickest, path to high E and L
 - "Discovery Machines" that also can make precision measurements
 - Dirty environment or "rich" environment?







Inclusive Jets


- Inclusive jet production tests pQCD and structure of the proton through the Parton Distribution Functions (PDFs)
- Highest E_T = E sinθ jets probe distance scale of order 10⁻¹⁹ m
- Sensitive to new physics, e.g. quark compositeness

200

100

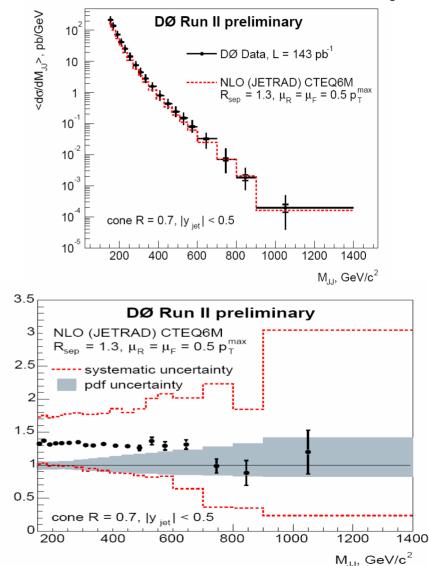
300

NEPPSR III - John M. Butler

500

Inclusive Jet E, (GeV)

400



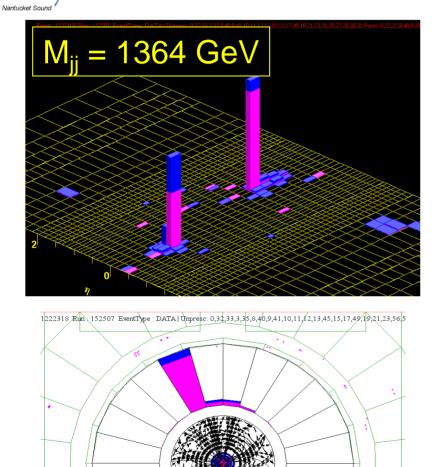
600

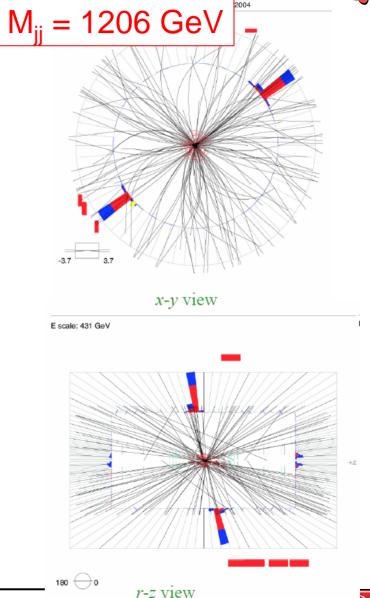
Inclusive Dijets

- ✤ Again sensitive probe of PDFs
- Look for excess or "bump hunting" at high M_{jj}
 - > Very hard to see W,Z \rightarrow jj
- Energy scale systematic uncertainty dominates the experimental error
 - Careful! A case where the errors are nearly 100% correlated point-to-point
 - Requires a detailed understanding of your detector

Cape Cod Bay

Cape Cod


Nantucket Soun


NEPPSR III - John M. Butler

data / theory

Highest ET Events

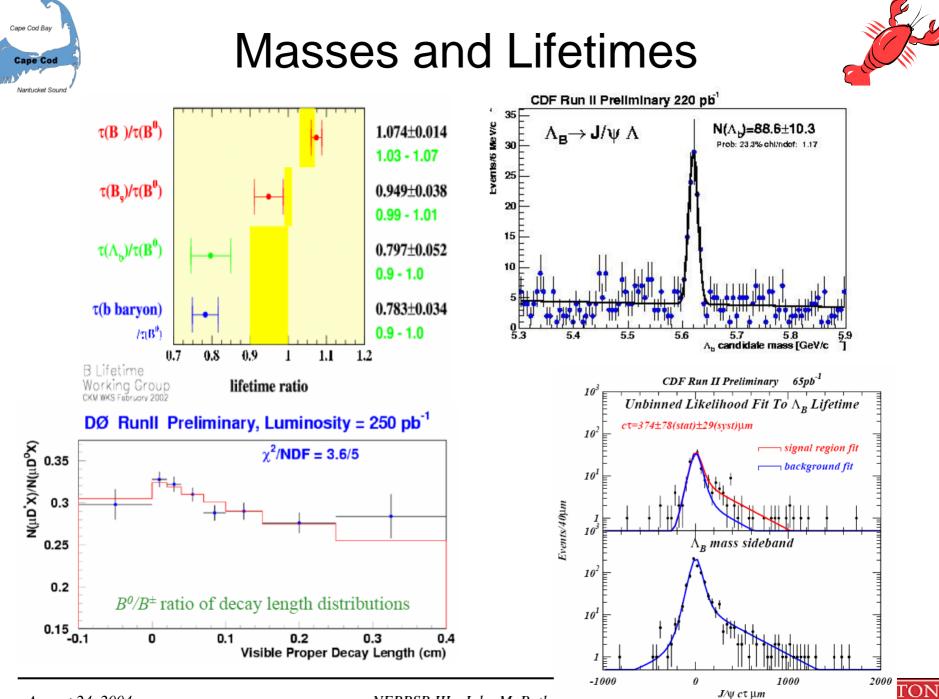
Cape Cod Bay

Cape Cod

NEPPSR III - John M. Butler

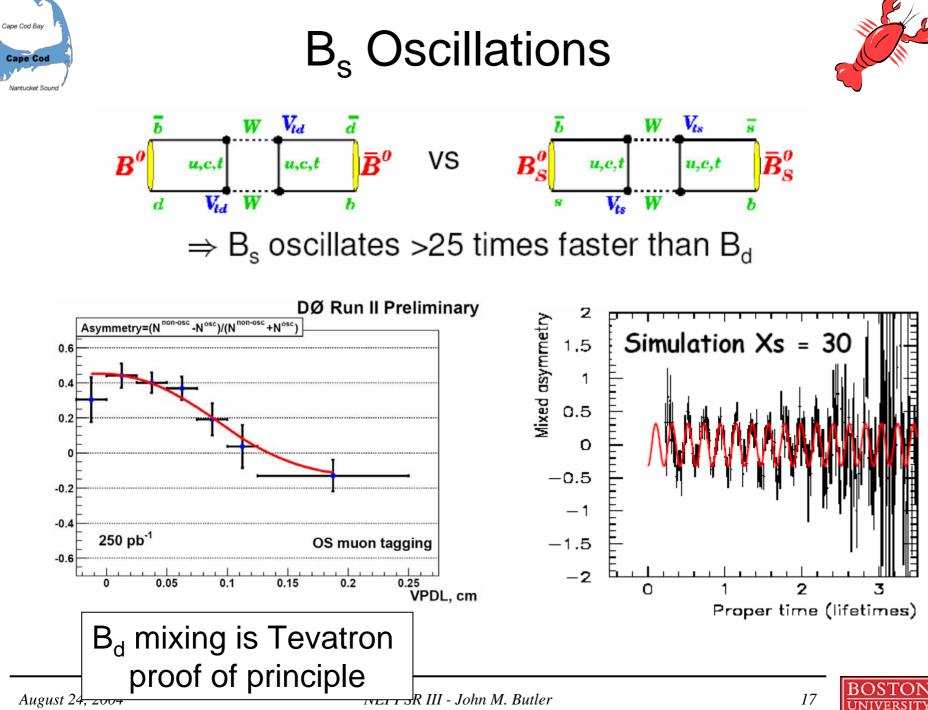
Heavy Flavor

B Physics at the Tevatron



- Complementary to the *e*⁺*e*⁻ B Factories (Dallapiccola & Morii – Friday)
- Hadron colliders have some advantages...
 - > <u>Lots</u> of b quarks produced $\sigma(b\vec{b}) \sim 100 \ \mu b$
 - 10,000 Hz @ L = 10³²
 - More b's than tape
 - > All species produced $B_u, B_d, B_s, B_c, \Lambda_b, \dots$

- …and some disadvantages

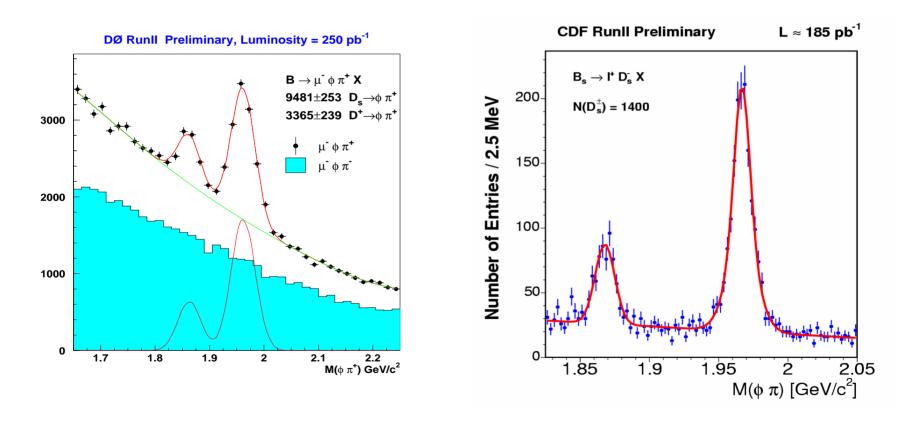

 - "Rich" environment
 - Limits the final states that are accessible for study
- Topics include
 - Masses
 - Lifetimes
 - Oscillations
 - CP violation
 - Rare decays

August 24, 2004

NEPPSR III - John M. Butle

August 24, 200-

TVET I SR III - John M. Butler

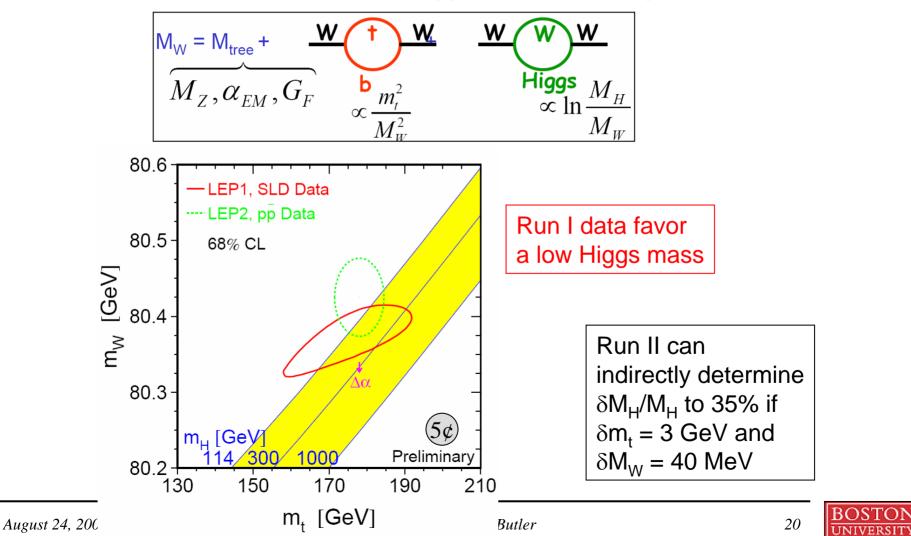

17

 $B_s \rightarrow \mu \nu D_s (\rightarrow \phi \pi)$

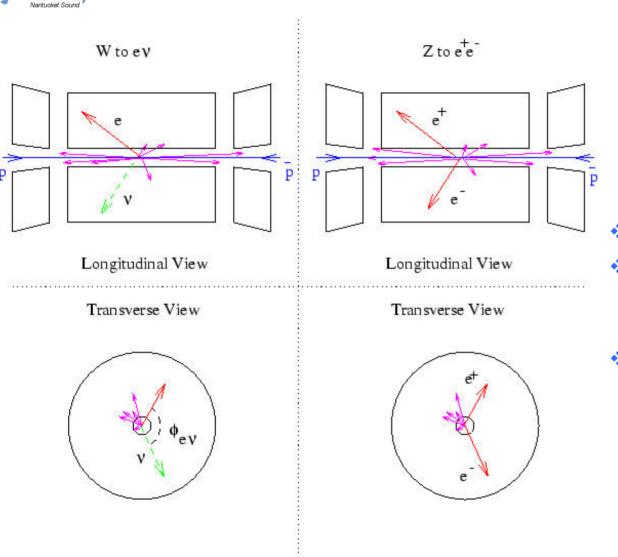
Pro: easy to trigger on Con: neutrino in final state Nice illustration of different detector strengths

BOSTON

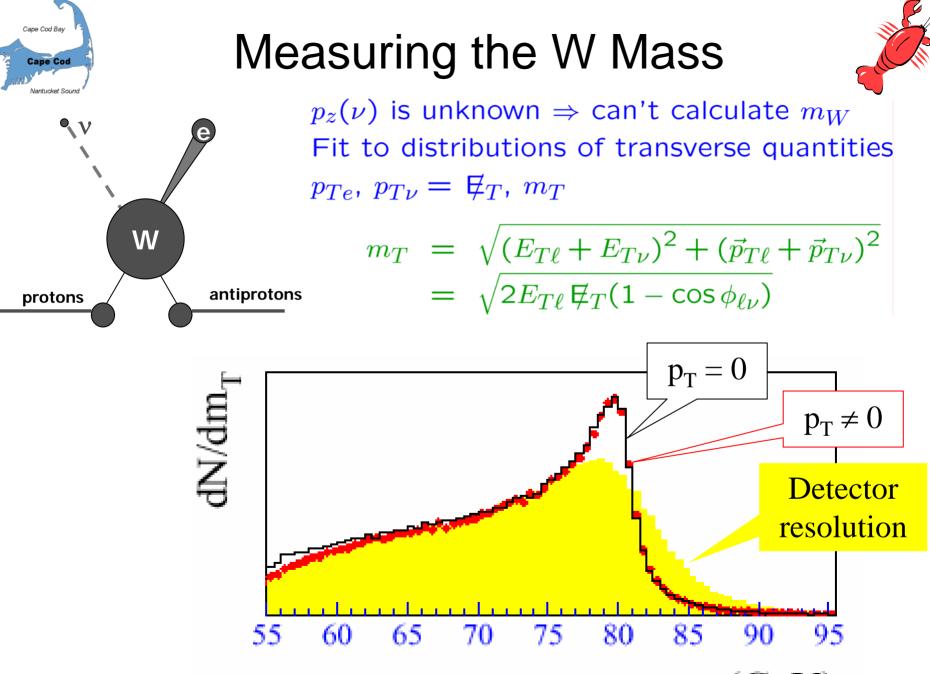
Electroweak



Measuring the W Mass



M_w is a fundamental parameter of the standard model
 Depends on the top quark and Higgs masses through loop effects



- Need to use leptonic decays
- Complicated by neutrino
 can't compute invariant mass
- Z sample is used extensively for controlling measurement

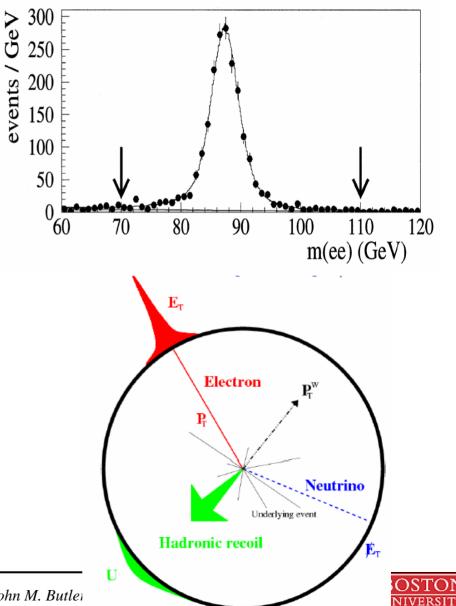
Cape Cod Bay

Cape Cod

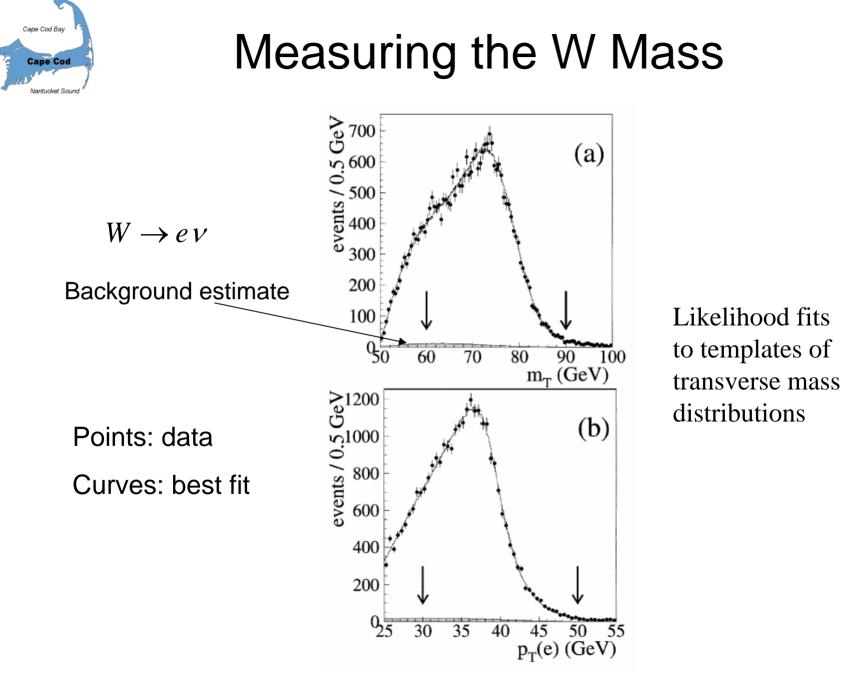
August 24, 2004

V) BOSTO

т_т (

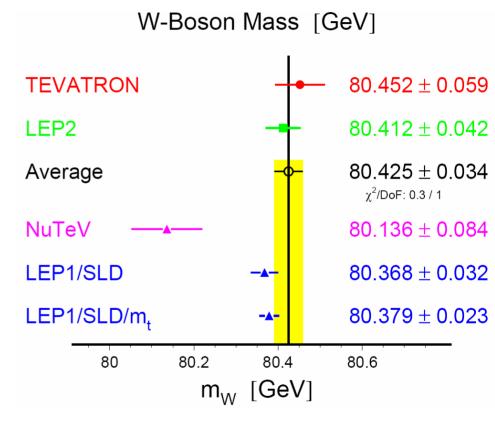


Calibration with the Z Boson


events

- Must use the data to determine calibration, corrections, and systematics
 - Monte Carlo and theory not good enough
- Use the decay modes
 - \succ Z \rightarrow ee and $\mu\mu$
- Clear, low-background signal
- Used as the basis for energy calibrations
- \bullet p_T balance in Z events is used to understand the detector response to the hadronic recoil and underlying event

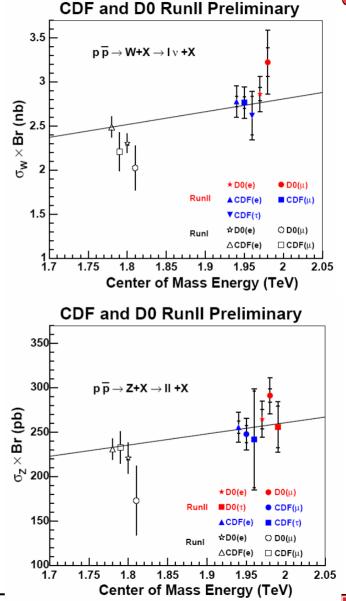
NEPPSR III - John M. Butley


Uncertainties on W mass

Precision measurement

- Effects of a few MeV are important on measuring an 80,000 MeV quantity in 2,000,000 MeV collisions
- ✤ Most systematic effects are studied using the W and Z samples
 ➔ scale with luminosity
- ✤ Goal for Run II: δM_W ~25 MeV per channel per experiment

Source	$\delta M_W~({ m MeV})$	
	M_T fit, EC	M_T fit, CC+EC
CC-EC Z mass stat.	37	16
EC-EC Z mass stat.	107	21
EC W mass stat.	179	34
CC-EC Z width stat.	47	14
EC-EC Z width stat.	56	4
Hadronic Energy Resolution	45	21
P_T^W	22	9
PDF	35	15
Hadronic Energy Scale	16	10
Electron Angle Calibration	28	7
Backgrounds	21	4
W Width	10	6
Radiative Decays	4	1

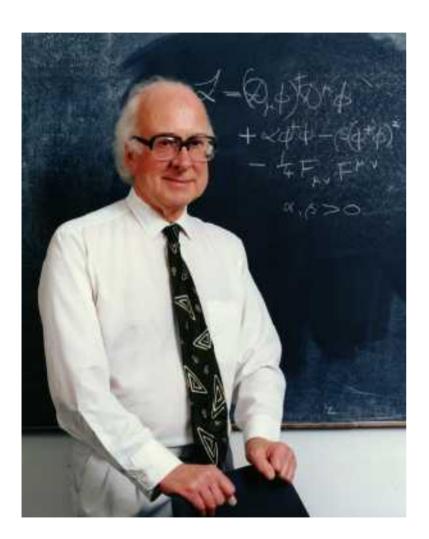


W and Z Cross Sections

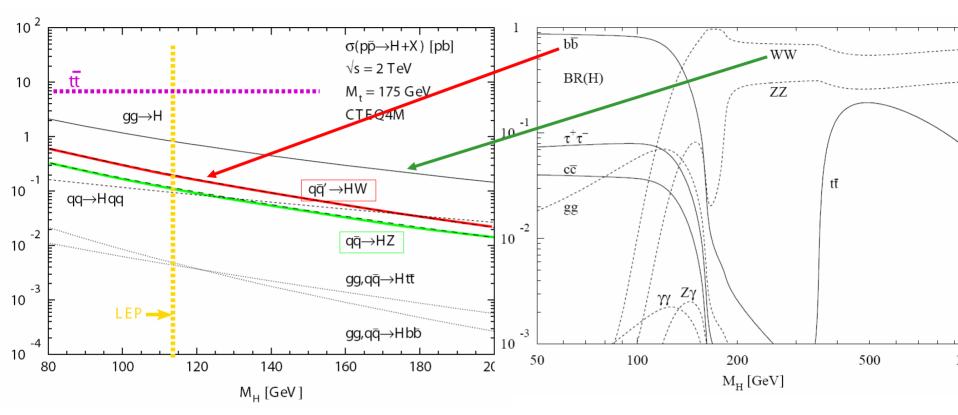
- Test SM predictions for W and Z production
- Ratio of σ*B can be used to determine the W width
- Leptonic decays of the W and Z are standard candles of hadron collider physics
 - Detector calibration
 - Understanding precision measurements
 - Measure luminosity!

NEPPSR III - John M. Butler

Higgs Search



The Standard Model Higgs



- Bathroom scale should be sufficient to determine the mass
- Last particle of the SM to be observed
- "Why is everybody looking for the SM Higgs? Everybody knows the SM is not the right theory!" – lunchtime conversation at BU
- Many extensions of the SM have particles that look
 ~identical to the SM Higgs
 - Lightest MSSM higgs h
 - > Technipion π_{T}

Higgs Production and Decay

Higgs search strategy at the Tevatron

- \succ Low mass Higgs, use Higgs-strahlung $q\bar{q} \rightarrow$ HW or HZ followed by H \rightarrow $b\bar{b}$
- > High mass Higgs, use gg → H → WW or ZZ

Cape Cod Bay

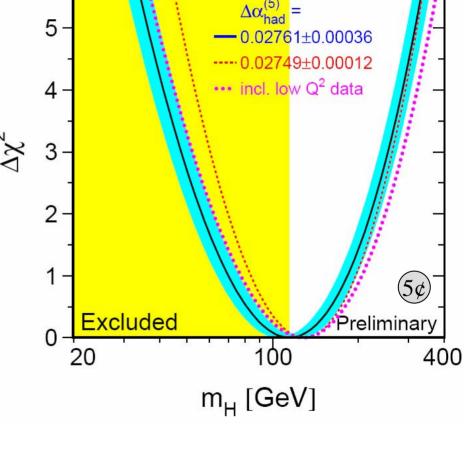
Cape Cod

Nantucket Soun

Cape Cod Bay

Cape Cod

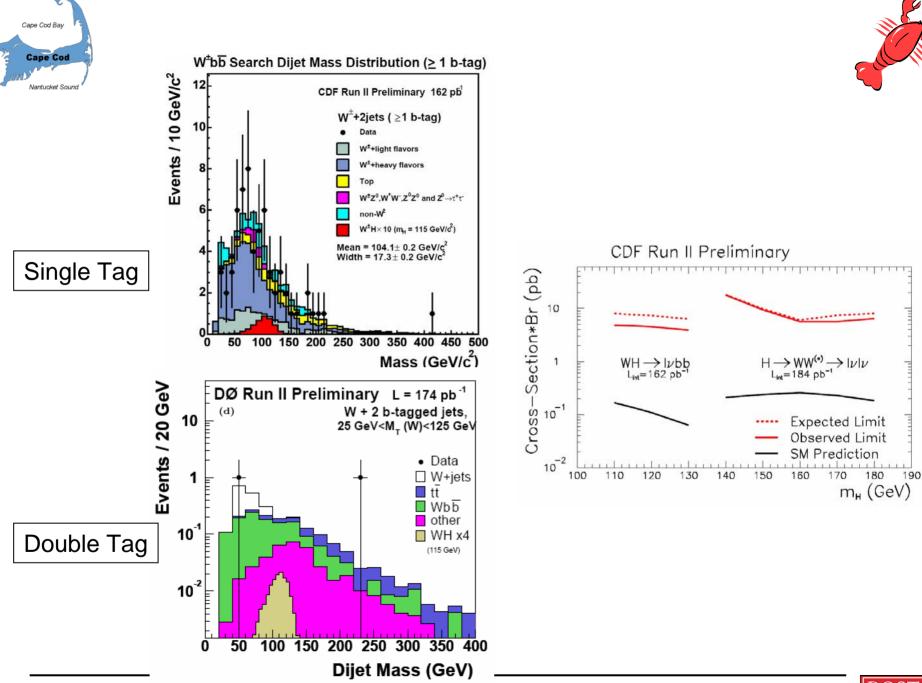
Where do we expect the Higgs?

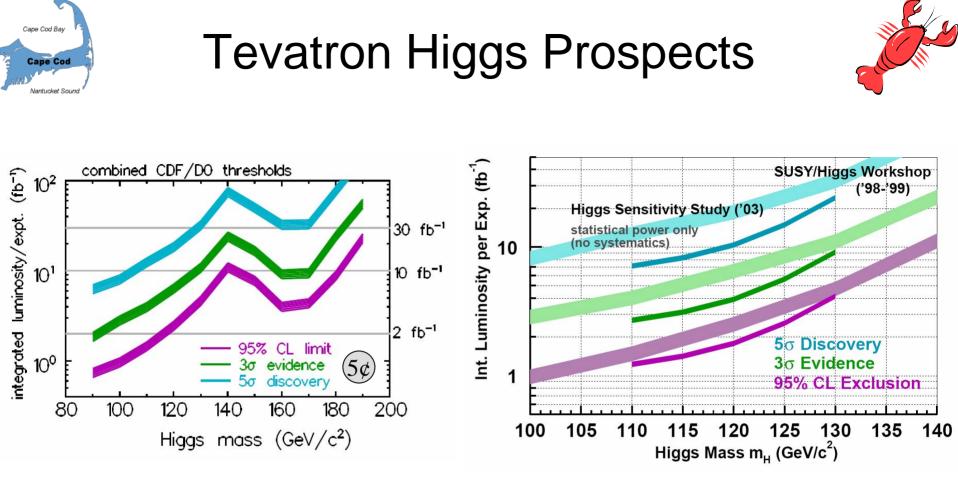

6

- ✤ As seen from M_W, SM parameters depend on M_H → use precision EW measurements to limit allowed Higgs mass
- Result is the "blue band" plot
 - > M_{H} > 114 GeV ruled out by LEP
 - \succ M_H < 260 GeV from fit
- ✤ MSSM lightest Higgs < 135 GeV</p>

LEP Electroweak Working Group: lepewwg.web.cern.ch/LEPEWWG/

UNIVERSIT


Theory uncertainty


NEPPSR III - John M. Butler

NEPPSR III - John M. Butler

It's going to be tough! May have to wait for the LHC

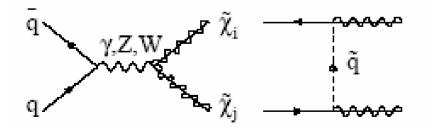
Will definitively rule out the hints for a 116 GeV Higgs seen at LEP (unless, of course, the hints were right!)

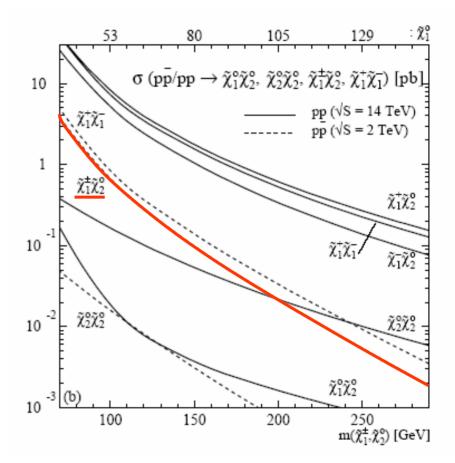
Searches for Physics Beyond the SM

Searches for Supersymmetry

- SUSY is the current favorite idea for • extending the SM
- SUSY is a postulated symmetry between bosons and fermions
 - All observed particles would have superpartners
 - Clearly, SUSY is broken
- Why people like SUSY
 - Additional particles cancel divergences in the Higgs mass
 - Allows unification of forces at higher energies
 - Lightest neutralino is a good explanation for cosmic dark matter
 - Plays well with string theory

- Predicts multiple Higgs bosons, strongly interacting squarks and gluinos, and electroweakly interacting sleptons, charginos and neutralinos
 - Masses are unknown but expected to be in range 100 GeV - 1 TeV → accessible at the Tevatron
- R parity = $(-1)^{3(B-L)+2S}$
 - ightarrow R = +1 for SM particles
 - R = -1 for superpartners
 - Conservation implies
 - Pair production
 - LSP is stable
- Gold plated channels
 - Jets + missing ET
 - > Trileptons

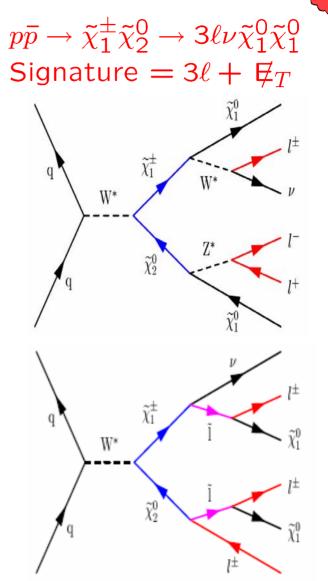




Hadroproduction of Charginos & Neutralinos

- In R parity conserving SUSY, $\tilde{\chi}_i^{\pm}$ and $\tilde{\chi}_j^0$ are produced and decay into fermions and 2 LSP's W^* exchange in s-channel Squark exchange in t-channel
- $\sigma(p\bar{p} \to \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0)$ accessible to the Tevatron experiments

W. Beenakker et al., PRL 83, 3780 (1999)



Trilepton Final State

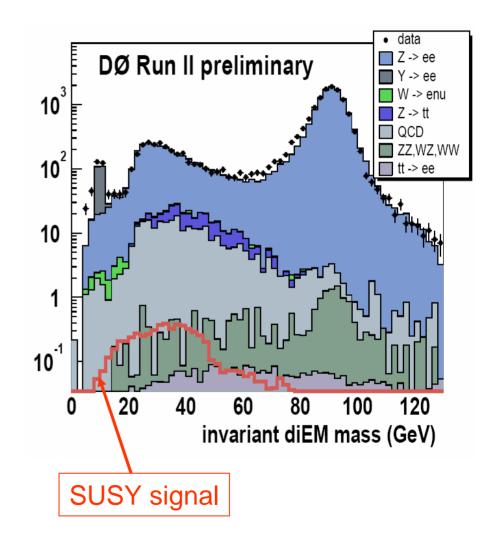
- "Gold plated" channel Low standard model and instrumental backgrounds
- In the mSUGRA model
 $$\begin{split} m_{\tilde{\chi}_1^\pm} &\approx m_{\tilde{\chi}_2^0} \approx 2 m_{\tilde{\chi}_1^0} \\ \tilde{\chi}_1^0 \text{ is the LSP} \end{split}$$
- SUSY parameters

$$\begin{aligned} &\tan\beta=3,\ \mu>0,\ A_0=0\\ &m_0=[72,88]\ {\rm GeV}\\ &m_{1/2}=[165,185]\ {\rm GeV}\\ &m_{\tilde{\chi}_1^\pm}=[97,114]\ {\rm GeV}\\ &m_{\tilde{\ell}}\approx m_{\tilde{\chi}^\pm}\Rightarrow {\rm enchanced\ leptonic\ BR}\\ &\sigma\times BR\approx 0.2-0.4\ {\rm pb} \end{aligned}$$

Search Strategies

- Observe all 3 leptons plus missing E_{T}
 - Tevatron Run I approach DØ: PRL <u>80</u> (1998) 8; CDF: PRL <u>80</u> (1998) 5275
- Clean but limited lepton acceptance and ID efficiency, 3rd lepton can be soft, miss hadronic τ's
- Can increase search sensitivity by alternate strategies
 - Observe 2 leptons plus an isolated track
 - Gain $\boldsymbol{\epsilon}$ by relaxing the particle ID requirement
 - Observe only 2 out of 3 leptons
 - Leptons from different generations
 - Leptons are like-sign*
- Present 3 analyses that exploit these alternate approaches
 - 1. $e + e + \ell$, where ℓ = isolated charged track
 - 2. $e + \mu$ and $e + \mu + \ell$
 - 3. $\mu^{\pm} + \mu^{\pm}$
- Combine the results to maximize the sensitivity

*Nachtman, Saltzberg, Worcester, Int. J. Mod. Phys., <u>A16S1B</u>, 797 (2001)

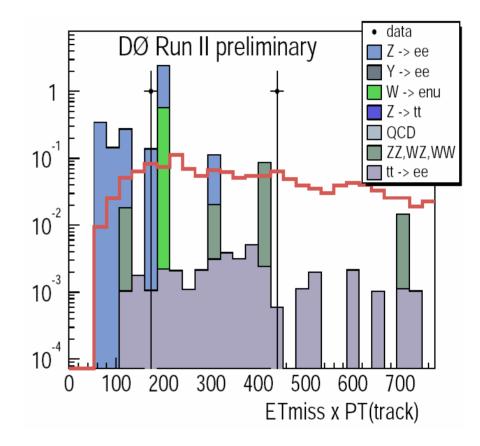


Cape Cod Bay Cape Cod Nantucket Sour

$e + e + \ell$ Search

• $\int \mathcal{L}dt = 175 \pm 11 \text{ pb}^{-1}$

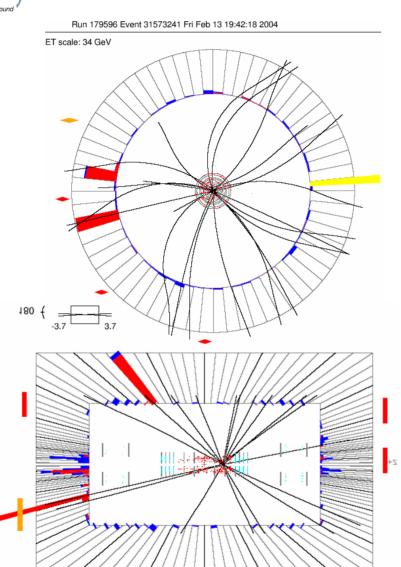
- Event selection 2 good *e*, $p_T > 12,8$ GeV $\geq 1e$ with $|\eta| < 1.1$ 16,200 events
- Reject backgrounds $Z \rightarrow ee, W \rightarrow e\nu\gamma, t\bar{t}, DY$ Cut $15 < m_{ee} < 60$ GeV $\Delta \phi(e,e) < 2.8$ \geq 1 SMT or tight *e* likelihood Jet $E_T < 80 \text{ GeV}$ $M_T(e + \not \models_T) > 15 \text{ GeV}$ $\Delta \phi(e, \not\models_T) > 0.4$

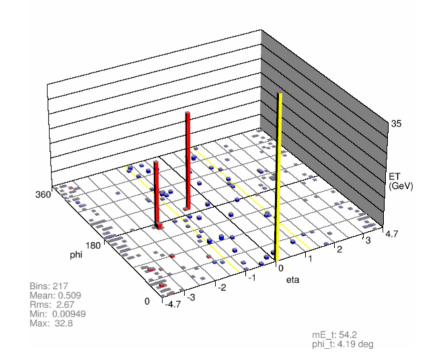

$e + e + \ell$ Search

- \bullet Isolated track, $p_T>3~{\rm GeV}$

• Expect

0.27 background events 0.8-1.6 events from SUSY




$e + e + \ell$ Candidate Event

	E_T (GeV/c)	η	ϕ
e_1	33.2	-0.97	3.37
e_2	25.7	-2.19	2.97
ℓ	8.6	0.67	5.87
$\not \not \in_T$	52.1		0.12
$m(e_1e_2) = 39.5 \text{ GeV}$			

Run 179596 Event 31573241 Fri Feb 13 19:42:23 2004

NEPPSR III - John M. Butler

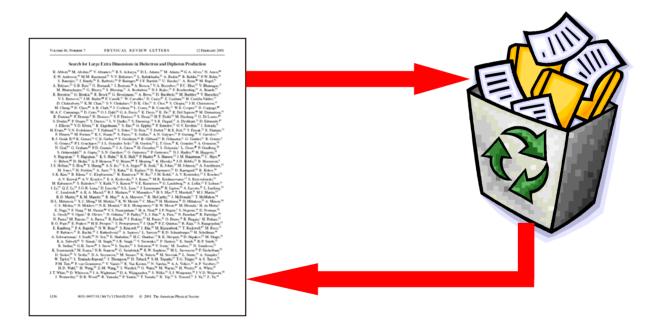


Combined Limit

- See 3 events from data, expect 3.4 from SM sources
- Set a 95% CL limit on $\sigma(\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0) \times BR(3\ell)$ using the CL_S method*
- Significant improvement over Run I results
- Can not rule out the mSUGRA prediction (yet!)
- Can use these results to constrain other SUSY models with a similar mass hierarchy

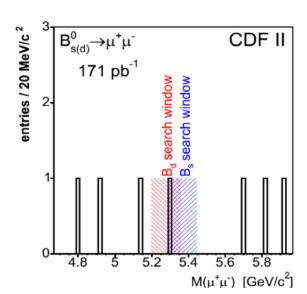
Channel	Data	Background
$e + e + \ell$	1	$0.27 \pm 0.42 \pm 0.02$
$e + \mu$	1	$2.49 \pm 0.37 \pm 0.18$
$e + \mu + \ell$	0	$0.54 \pm 0.24 \pm 0.04$
$\mu^{\pm} + \mu^{\pm}$	1	$0.13 \pm 0.06 \pm 0.02$

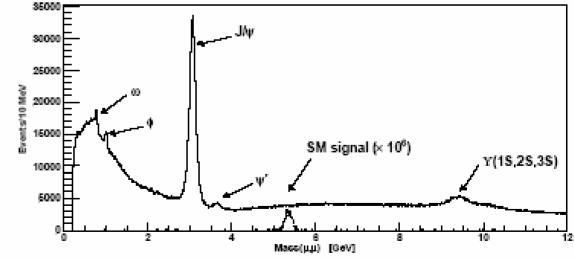
*T. Junk, NIM <u>A434</u>, 435 (1999).



Recycling is good!

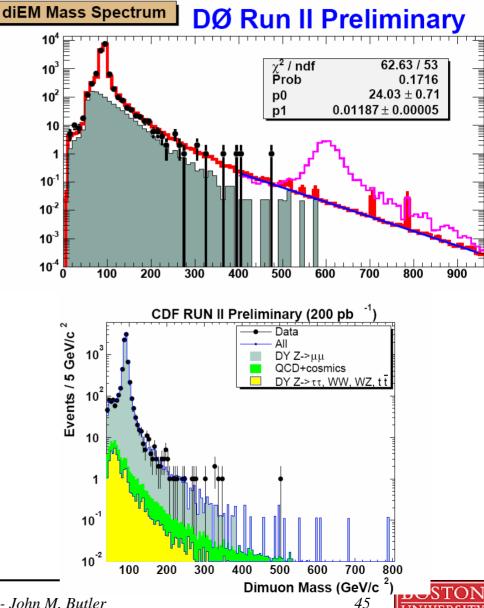
- Signature for new physics often contain common objects
 - High pT leptons
 - Large missing ET
- Certain final states can be used to place limits on a wide variety of extensions to the SM





Recycling example – dileptons

- Historically, a discovery channel
- Can use e⁺e⁻ and μ⁺μ⁻ events to study many SM processes
 - b/c physics:
 - ➢ EW: e.g. Z cross section
 - \succ top \rightarrow dileptons
- Look for rare decays
 - > SM B(Bs $\rightarrow \mu^+\mu^-$) ~ 3×10⁻⁹
 - In SUSY, can get enhancements (~tan⁴β-tan⁶β) up to factor of 1000
 - \succ B(Bs → μ⁺μ⁻) < 5×10⁻⁷
 - Example of analysis where SM is out of reach, any excess is new physics

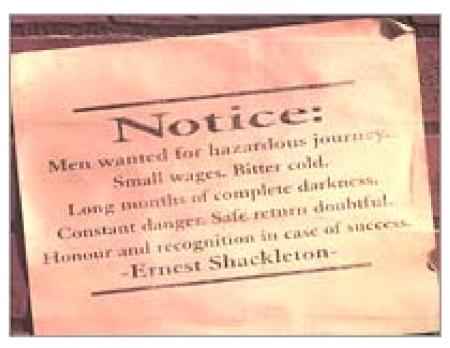


- In a wide variety of theories/models, new physics can show up as a resonance or excess of events at high dilepton mass
- Dilepton mass distributions have been used to place limits on
 - Extra dimensions
 (Greg Landsberg on Friday)
 - New gauge bosons: Z'
 - > Technicolor: ρ_T and ω_T
 - RS Gravitons
 - RPV sneutrino
 - Little Higgs

Cape Cod Bay

Cape Cod

Nantucket Sou


NEPPSR III - John M. Butler

Summary

- I hope I've convinced you there is a "rich" (in the good way!) ongoing program of physics at the Tevatron
- Only in Illinois (for now)
 - Top quark
 - ➤ W mass
 - $\succ \mathsf{B}_{\mathsf{s}}, \Lambda_{\mathsf{b}}, \dots$
 - Search for the SM Higgs and new phenomena
 - Plus lots of other stuff I didn't have time to talk about
- Will LHC do better?
 - > You bet!
 - But not yet!

Graduate student life hasn't changed much over the years!

Roll the credits

- "Borrowed" lots of slides from the excellent talks by my DØ and CDF colleagues, many thanks to them
- The talks from NEPPSR I and II are very good!

Web sites

- Fermilab: <u>http://www.fnal.gov/</u>
- DØ: <u>http://www-d0.fnal.gov/</u>
- CDF: <u>http://www-cdf.fnal.gov/</u>
- LEP EWWG: <u>http://lepewwg.web.cern.ch/LEPEWWG/</u>
- Tevatron EWWG: <u>http://tevewwg.fnal.gov/</u>
- LEP SUSY: <u>http://lepsusy.web.cern.ch/lepsusy/</u>

