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Lecture #1

• Quick tour of the Tevatron
• Basics of hadron collisions

– Partons and parton distribution functions
– Kinematic variables
– Cross sections and rates of important processes

• Motivating example: top quark physics
• Generic measurement and identification of objects

– Jets
– electrons, photons, hadrons, muons, neutrinos

• CDF and DØ detectors
– electrons and photons
– muons
– missing transverse energy
– b-tagging
– triggering
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Tevatron Collider: Fermilab

DØ
CDF
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Tevatron

2 km

Batavia, Illinois

Main
Injector 
& Recyler



Tevatron Collider

Beam:
900 GeV
protons

“Target”:
900 GeV
antiprotons
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Antiprotons

~2x1012 antiprotons 
stored

Antiprotons are created 
in collisions of the 
proton beam with
a nickel target, then 
collected, 
cooled, and stored.



The Detectors

• Much more discussion later
• Important features to keep in 

mind for now
– Collisions take place at the 

(approximate) center of the 
detectors

– Detectors must have apertures 
in the forward and backward 
directions for the beams to 
enter and exit

– Detectors try to measure 
momentum and or energy of 
particles produced in collison

CDF

DØ
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Tevatron in #’s
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Anti-Proton

Tevatron parameters (2003):

Proton Anti-proton  36x36 bunches

Protons/bunch 1011

Anti-protons/bunch 1010

Beam Energy                   0.98 TeV/beam

Luminosity                       ~1032 cm-2 s-1

bunch crossing time       396 ns

Collision Rate 2.5 MHz



Brief History of the Tevatron Collider
• 1983: Tevatron accelerator began operations
• 1985: First collisions of the Tevatron Collider
• 1986-1989: “Run 0” of the collider

– Center-of-mass energy: 1.8 TeV
– Integrated luminosity ~4.5 pb-1

– CDF detector only
• 1992-1996: “Run I” of the collider

– 1.8 TeV
– Integrated luminosity ~100 pb-1

– Both CDF and DØ detectors
– Top quark discovery

• 2001-present: “Run II”
– 1.96 TeV
– Upgraded CDF and DØ detectors
– Integrated luminosity ~500 pb-1 so far…
– Anticipate 4-8 fb-1 by the end of Run II (~2009)
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Hadron collisions

(too) Simple minded calculation: deBroglie wavelength of proton

m10
GeV980

fmGeV2.1 18−≈
⋅

==
pc
hcλ

Much smaller than the size of a (anti)proton (~10-15m)
⇒hard scatter involves only one parton (q,g) from each 
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Parton distribution functions

• Probability of finding a parton (quark or gluon) with a fraction x of the 
(anti)proton’s momentum is given by the pdf, f(x,Q2) for a momentum 
scale Q

gluon
up

down
(on a log 
scale area 
under x2*pdf
shows 
momentum 
fraction )

Log scale
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Hadron collisions: experimental consequences

• Energy involved in “hard scatter” is less (typically <10%) than the full 
proton-antiproton center-of-mass energy

• “hard scatter” system is generally
– Not at rest along the beam direction 
– Nearly at rest transverse to the beam direction

• Additional particles & energy are present from the “underlying event”

0≠∑ zp
0≈∑ Tpr
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Most common high-pt process: jet production

Quarks are not free, so what emerges is a 
collimated jet of hadrons along the original 
quark or gluon direction
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As seen by the calorimeter:
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A single 
calorimeter cell

DØ: Uranium plates,
with liquid Argon
in the gaps

CDF: Iron plates with 
plastic scintillator in 
the gaps



An event observed in the detector:

Colors correspond to energy
deposited in a “cell” of the 
calorimeter

(2-dimensional slice)

Point of collision

Charged tracks

Note that energy is concentrated
in two narrow cones, or jets.  
“Simple cone algorithm”: sum all 
energy in a cone around jet axis 
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Coordinate system

Beam axis : z

Azimuth: φ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+

=
z

z

pE
pEy ln

2
1

( )( ) y≈−= 2/tanln θη

Rapidity:

pseudorapidity:

22sin yxT pppp +== θ

Transverse momentum:
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Phase space variables: eta, phi, and pT

• Recall that the hard scatter system is generally in motion in 
the z-direction with respect to the laboratory frame

• Under a boost in the z-direction:
– pT is invariant
– φ is invariant
– Rapidity itself is not invariant, but all differences in rapidity are 

invariant

• At a given pT, the expected density of particles is 
(approximately) uniform in eta and phi.
– In contrast to e+e-, where cosθ is flat

2121

1tanh
yyyy

yy
−→−

−→ − β

η0
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Typical production rates for p-pbar at 2 TeV

Final state Cross section (pb) Rate at L=1032 cm-2s-1

“minimum bias” 4x1010 4 MHz

2 jets 4x106 400 Hz

4 jets 1.6x105 16 Hz

6 jets 6000 0.6 Hz

W 30000 3 Hz

Z 9000 0.9 Hz

WZ 3.5 3.5x10-4 Hz (1.3/hour)

t tbar 7.5 7.5x10-4 Hz (3/hour)
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Top quark production and decay
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e-e(1/81)

mu-mu (1/81)

tau-tau (1/81)

e -mu (2/81)

e -tau(2/81)

mu-tau (2/81)

e+jets (12/81)

mu+jets(12/81)

tau+jets(12/81)

jets (36/81)

in proton anti-proton collisions
at Tevatron energies, top quarks
are primarly produced in pairs
(Strong interactions)

lifetime very short (≈10-24s), Br(t→Wb)=100%
Both W’s decay via W→lν (l=e or µ; 5%)

dilepton
One W decays via W→lν (l=e or µ; 30%)

lepton+jets
Both W’s decay via W→qq (44%)

all hadronic

Single top production
(Electroweak interactions):
not yet observed



Top quark

t
-

b jet
-

q jet-

t
L L’

ν

ν

b jet L

lepton+jets dilepton

-ν

q jetb jet

t

t
-

b jet
Uses all parts of the 
detector

Muon from 
W decay
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Muon from 
b-quark decay

Missing momentum
from neutrinos

jets



Hadron collider detector principles

• Strong interaction dominates
– Typically ~20  charged tracks per event, mostly pions
– Not easy to distinguish among various light hadrons (pions, kaons, 

…) but often you don’t care
– Isolated leptons are a signature of something interesting and or

unusual
• EM or weak interaction
• Decay of heavy object

• Basic distinguishable objects: jets, photons, electrons, 
muons, (taus), neutrinos

• Often useful to be able to separate jets from heavy quarks 
(b-jets, c-jets) from those from light quarks and gluons
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Tracking chambers ⇒ trajectory of charged particles
Calorimeters           ⇒ measure energy

Electromagnetic: e, photon
Hadronic: pion, K, proton,neutrons…

Muon Chambers     ⇒ measure muon trajectory
Magnets                  ⇒ charged particles bend in 

magnetic fields. Bend depends 
on charge and momentum what’s missing?

A Generic Detector System



Calorimeter Wish list

An ideal calorimeter should:
• measure the energy of each particle coming into it (except 

muons and neutrinos) with good resolution 
• measure the position of the energy deposition, so that it 

can be associated with a momentum vector
• be able to distinguish different types of particle from each 

other by the way they “shower” inside the calorimeter
– electrons & photons
– hadrons (protons, pions, kaons, etc.) or jets of hadrons
– muons
– neutrinos

Darien Wood,NEPPSR 
04

22



Wish list continued

• completely contain all particles (except muons and 
neutrinos) [“hermeticity”]

• have a constant, stable energy calibration
• have the same energy response for hadrons and electrons
• have a fine segmentation to be able to distinguish nearby 

particles (also important in being able to examine the 
transverse size of a shower)
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DØ detector
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D0 Detector

Charged particle tracking

Uranium/Liquid Argon
Calorimeter

Muon Spectrometer

Solenoid magnet

Toroid magnets



Darien Wood,NEPPSR 
04

25
DØ detector, before the closing of the collision hall



CDF Detector
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EM

Hadronic
CDF

Muon system

Tracker

Solenoid 
magnet
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CDF and DØ

• Common to both detectors
– Silicon microstrip detector 

(tracking, vertex)
– Magnetic tracker
– Central solenoid magnet
– Preshower detectors
– Electromagnetic calorimeter
– Hadronic calorimeter
– Iron absorber
– Muon detectors

• CDF highlights
– Large radius (1.5m) tracker: 

good momentum resolution
– Time-of-flight system

• DØ highlights
– Hermetic, dense calorimeter
– More complete muon coverage 

with magnetized iron toroids
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Electrons and photons

• In the calorimeter
– Narrow cluster of energy in EM 

(front) section
– Little or no energy in Had (back) 

section
• In the tracker

– Photon: no track (no hits)
– Electron: track with momentum 

matching energy of calorimeter 
cluster

• Fake backgrounds
– Jets with most of their energy in 

π0(‘s)
– Photon: electron with missing 

track
– Electron: photon conversion 
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Identifying Muons
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Muon Signal

tracker
calorimeter Muon 

magnet

pout

pin Real muon

(muon ID tool)pin≈pout+Eloss

Better resolution comes from tracker; pout dominated 
by multiple scattering (or showering)
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Muon background 1: punchthrough/decay

tracker
calorimeter Muon 

magnet

pout

pin hadron

pin>>pout+Eloss

Outer decay/p.t. track points back to parent hadron, 
but momenta do not match.
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Muon background 2: halo/backscatter

tracker
calorimeter Muon 

magnet

pout

pin

pin ? pout+Eloss

Good timing (scintillator) can get rid of most of these
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µ -

MTC

Jet 3

Jet 1

Jet 2
Jet 4

Jet 5

DØ top to µ+jets Candidate Event
Darien Wood,NEPPSR 
04

34



Missing Transverse Energy (ET)

Example: top quark candidate (ttbar →µνjjjj)
[transverse view] ( ) ( )muonspcalEE TTT ∑∑ −−=/

rr
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Muon from 
W decay

Muon from 
b-quark decay

Missing momentum
from neutrinos

jets



b-quark jets

• Recall the steps between production of a quark and 
detection of a jet:

b

B

fragmentation

tracking calorimetry

jet findingparton production decays
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Identifying the b quark
1 Semileptonic decays of the b-quark

example: B(b →µ + X) ≈ 20% ⇒ detect muons in jets

µ+b

s

c

ν µ

X

b

c

µ −

ν µ

OR

2 b-quarks in each tt event
Tag with soft µ
b→ cµν, b → c → sµν
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Soft lepton tag

These leptons have a softer pT
spectrum than leptons from W/Z 
are not isolated
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Top Event with b-jet (D0)
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Identifying the b quark

life time ≈ 1.5 ps ⇒ cτ ≈ 0.5 mm (short, but not too short)2

Flight Length ~ few mm

Collision

Impact Parameter

Decay Vertex

B Decay Products
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precise tracking close to primary collision point
⇒silicon microstrip detectors



Decaying particles: examples

Particles Lifetime cτ Lifetime signature

W,Z,top <10-23 s ~0 Decay immediately

π0(→γγ) 8x10-16 s 25 nm Decay length undetectable

τ 2.9x10-13 s 87 µm Inside beam pipe; hard even 
with SMT

D0/D±/Ds 0.4-1.0x10-12 s 150-
350 µm

Inside beam pipe; possible w/ 
SMT

B0/B±/Bs/b-
baryon

~1.5x10-12 s 450 µm Inside beam pipe; possible w/ 
SMT

K0
s(→ππ) 0.8x10-10 s 2.7 cm decays in outer tracking 

chamber
K±, π±, µ± >10-8 s >3 m reach cal without decaying
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Silicon sensor

Silicon sensor

SVX2e readout chips

HDI (flex circuit
readout)

Wire bonds



Lifetime signature for b-jets

• Long lifetime of B hadrons
– cτ~450µm + boost
– Travel ~3 mm before decay 

with large charged track 
multiplicity

• Two ways of looking for 
lifetime tags
– A reconstructed vertex, 

displaced from the primary 
vertex

– Presence of track(s) with large 
impact parameter, d0
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do

Secondary vtx

Lxy
displaced tracks

prompt tracks

jet

Primary 
vtx
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Interaction point
(“primary vertex”)

Beampipe

Silicon detector

B decay 
(“secondary 
vertex”)

This green track clearly does 
not originate at the primary 
vertex1 inch
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µ -

Jet 1

IP

SV

Jet 1

IP

SV

Jet 2

l b

b
ν
p p

jet

jet

jet

jet

t(→W±b) t(→W±b)
µ±ν qq

Other processes will also mimic this topology⇒ backgrounds

t-tbar candidate event with b-tags



Background to b-tagging

• soft lepton tag
– fake leptons (in light-quark/gluon jets)
– c-quark jets
– K± ,π± decays in flight (in light-quark/gluon jets)
– chance overlap of light-quark/gluon jet and lepton

• lifetime tag
– mismeasured tracks in light-quark/gluon jet
– c-quark jets
– Ks, Λ decays in light-quark/gluon jets
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Top signal and background (Run II)

jet multiplicity
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Top signal region Top signal region
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“lepton+jets” w/ b-tag

One of the best for mass 
determination

qqbbltt ν→



Triggering

• A few relevant numbers:
– Bunch collision rate: 2.5 MHz
– Inelastic interaction rate at L=1032: 4 MHz
– Data size of each event: ~0.5 Megabytes
– Rate at which data can be recorded: ~50 Hz

• Clearly, most of the events have to be discarded before 
they are recorded (record 1 crossing in 50,000) 

• Events that are discarded are real physics (jet production, 
low pT b-quarks, low-mass lepton pairs…)
– Need to make choices about physics
– Different from e+e- colliders, where generally all real interactions 

can be recorded
• Triggers have a big, important job at hadron colliders
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Typical production rates for p-pbar at 2 TeV

Final state Cross section (pb) Rate at L=1032 cm-2s-1

“minimum bias” 4x1010 4 MHz

2 jets 4x106 400 Hz

4 jets 1.6x105 16 Hz

6 jets 6000 0.6 Hz

W 30000 3 Hz

Z 9000 0.9 Hz

WZ 3.5 3.5x10-4 Hz (1.3/hour)

t tbar 7.5 7.5x10-4 Hz (3/hour)
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Spectrum of jet transverse energy

Hard collision:

ET (GeV)

1/
(∆

η∆
E

T
)∫∫

d2 σ/
(d

E
T
dη

)d
E

T
dη

  (
fb

/G
eV

)

DØ Data |ηjet| < 0.5

JETRAD

CTEQ3M, µ = 0.5 ET
    max

1

10

10 2

10 3

10 4

10 5

10 6

10 7

50 100 150 200 250 300 350 400 450 500

pin

pout ET DØ run1

soft collision:

ET

Darien Wood,NEPPSR 
04

51



The DØ Trigger System (current)

CAL L1Cal

L1PS

L1CTT

L1Mu

L1FPD

L2Cal

L2PS

L2CTT

L2STT

L2Mu
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c/f PS

CFT

SMT

MU

FPD

Detector Level 1 Level 22.5  MHz 2  kHz 1  kHz

DSP’s and
SBC’s

Global L2Framework

MU-TRK

Lumi

L3/DAQ

Level 3

Fast hardware
Linux
“farm”

50 Hz



Example of a trigger condition

• Name: MUJ1_JT15HA_TK10 (one of 378 triggers)
• Purpose: trigger on top→muon+jets (among others)
• Level 1

– 2-layer coincidence of muon scintillator and of muon wire chambers
– At least two “towers” (0.2 eta X 0.2 phi) with ET above 3 GeV
– Rate: 70 Hz

• Level 2:
– Fast reconstruction muon track (no momentum cut)
– Fast jet cluster with ET above 8 GeV
– Rate: 55 Hz

• Level 3:
– Reconstructed jet above 15 GeV, and sum of missing ET and scalar ET > 

50 GeV
– Charged track with pT>10 GeV
– Rate: ~1 Hz
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Top quark mass measurement
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t
-

b jet
-

q jet-

t
L L’

ν

ν

b jet L

lepton+jets dilepton

-ν

q jetb jet

t

t
-

b jet

• advantages
– 2nd largest branching 

ratio
– only one neutrino

• advantages
– low background
– better energy 

resolution for leptons 
than for jets

Wins:



Technique #1: one mass per event

• Lepton+4jets channel:  all final 
state variables (18) are 
measured except for pz(ν)

• Three additional constraints:
– m(qq) = mW

– m(lν) = mW

– m(bqq) = m(blν)
• Twice over-constrained fit: 

(17+3-18)
• For each event, select jet 

permuation with best fit (lowest 
chisquared)

• Make distribution of masses, 
and fit to singnal(mt) + bkg
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µ -

MTC

Jet 3

Jet 1

Jet 2
Jet 4

Jet 5

DØ top to µ+jets Candidate Event
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Technique #2: optimized matrix element weighting

Likelihood method using most available information

),()()();(1);( 2121 yxWqfqfdqdqydxP n∫= ασ
σ

α

resolutions, 
reconstruction effects

Matrix Element

to be estimated
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PDF’s

Acceptance

Measured

LO ME used, 4 jets required exclusively, additional cut on background
probability (to improve purity) → 22 events

[ ]{ }

[ ]∫

∑
+α+

+α−=α−
=

dx)x(Pc);x(Pc)x(AN

)x(Pc);x(Pcln)(Lln

bkg2tt1

N

1i
ibkg2itt1

Likelihood definition:
estimate signal and
background fractions
and mtop



Results of matrix element weighting

2
top GeV/c 3.9(sys)(stat) 3.6180.1m ±±=

large improvement on the statistical uncertainty (~2.4× stats)
2

top GeV/c 4.3178.0m ±=NEW  World average:
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Run 2 mass analyses under way.
With 2 fb-1 data: δmtop≈ 1-2GeV

Largest systematic error: Jet 
energy calibration: 3.3 GeV
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Virtual Effects on W mass
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80GeVmW ≈ 5GeVmb ≈
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•One piece of evidence missing:
the Higgs particle responsible for
the mass of all known particles

•Finding the Higgs (or not): verify a  
prediction or declare clear evidence 
for new physics 
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Mass shift from 
virtual Higgs 
effects (?)



Interesting features of top mass analysis

• small number of events
– fitting techniques refined to make maximum use of limited 

statistics

• substantial background
– fitting has to be robust in the presence of background

• complicated event topology
– kinematic fitting
– consideration of multiple permutations of object assignments
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Jet energy calibration
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A small shift in energy scale
calibration gives a large shift in cross section

Jet energy calibrated in situ with photon+jet events
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