

Physics at the Tevatron Collider: Lecture #1

Darien Wood Northeastern University

New England Particle Physics Student Retreat Falmouth, MA 23 Aug, 2004

Lecture #1

- Quick tour of the Tevatron
- Basics of hadron collisions
 - Partons and parton distribution functions
 - Kinematic variables
 - Cross sections and rates of important processes
- Motivating example: top quark physics
- Generic measurement and identification of objects
 - Jets
 - electrons, photons, hadrons, muons, neutrinos
- CDF and DØ detectors
 - electrons and photons
 - muons
 - missing transverse energy
 - b-tagging
 - triggering

Tevatron Collider: Fermilab

Tevatron Collider

Darien Wood,NEPPSR 04 Collision energy = 1.8 TeV

Antiprotons

FERMILAB'S ACCELERATOR CHAIN

04

Antiprotons are created in collisions of the proton beam with a nickel target, then collected, cooled, and stored.

The Detectors

- Much more discussion later
- Important features to keep in mind for now
 - Collisions take place at the (approximate) center of the detectors
 - Detectors must have apertures in the forward and backward directions for the beams to enter and exit
 - Detectors try to measure momentum and or energy of particles produced in collison

Tevatron in #'s

Tevatron parameters (2003):

Proton Anti-proton 36x36 bunches

Protons/bunch1011Anti-protons/bunch1010

Beam Energy0.98 TeV/beamLuminosity~10^{32} cm^{-2} s^{-1}bunch crossing time396 nsCollision Rate2.5 MHz

Brief History of the Tevatron Collider

- 1983: Tevatron accelerator began operations
- 1985: First collisions of the Tevatron Collider
- 1986-1989: "Run 0" of the collider
 - Center-of-mass energy: 1.8 TeV
 - Integrated luminosity ~4.5 pb⁻¹
 - CDF detector only
- 1992-1996: "Run I" of the collider
 - 1.8 TeV
 - Integrated luminosity ~100 pb⁻¹
 - Both CDF and DØ detectors
 - Top quark discovery
- 2001-present: "Run II"
 - 1.96 TeV
 - Upgraded CDF and DØ detectors
 - Integrated luminosity ~500 pb⁻¹ so far...
 - Anticipate 4-8 fb⁻¹ by the end of Run II (~2009)

Hadron collisions

(too) Simple minded calculation: deBroglie wavelength of proton

$$\bigwedge \bigwedge \qquad \lambda = \frac{hc}{pc} = \frac{1.2 \text{GeV} \cdot \text{fm}}{980 \text{GeV}} \approx 10^{-18} \text{ m}$$

Much smaller than the size of a (anti)proton ($\sim 10^{-15}$ m) \Rightarrow hard scatter involves only one parton (q,g) from each

Parton distribution functions

• Probability of finding a parton (quark or gluon) with a fraction *x* of the (anti)proton's momentum is given by the pdf, $f(x,Q^2)$ for a momentum scale Q

From website zebu.oregon.edu/~parton/partongraph.html

Hadron collisions: experimental consequences

- Energy involved in "hard scatter" is less (typically <10%) than the full proton-antiproton center-of-mass energy
- "hard scatter" system is generally
 - Not at rest along the beam direction $\sum p_z \neq 0$
 - Nearly at rest transverse to the beam direction $\sum \vec{p}_T \approx 0$
- Additional particles & energy are present from the "underlying event"

11

Most common high-pt process: jet production

Quarks are not free, so what emerges is a collimated jet of hadrons along the original quark or gluon direction

As seen by the calorimeter:

An event observed in the detector:

Coordinate system

Darien Wood,NEPPSR 04

Phase space variables: eta, phi, and p_{T}

- Recall that the hard scatter system is generally in motion in \bullet the z-direction with respect to the laboratory frame
- Under a boost in the z-direction:
 - p_T is invariant
 - $-\phi$ is invariant

04

- Rapidity itself is not invariant, but all differences in rapidity are invariant $y \rightarrow y - \tanh^{-1} \beta$

$$y_1 - y_2 \rightarrow y_1 - y_2$$

- At a given p_T , the expected density of particles is (approximately) uniform in eta and phi.
 - In contrast to $e+e^{-}$, where $\cos\theta$ is flat

Typical production rates for p-pbar at 2 TeV

Final state	Cross section (pb)	Rate at L= 10^{32} cm ⁻² s ⁻¹
"minimum bias"	4x10 ¹⁰	4 MHz
2 jets	4x10 ⁶	400 Hz
4 jets	1.6x10 ⁵	16 Hz
6 jets	6000	0.6 Hz
W	30000	3 Hz
Ζ	9000	0.9 Hz
WZ	3.5	3.5x10 ⁻⁴ Hz (1.3/hour)
t tbar	7.5	7.5x10 ⁻⁴ Hz (3/hour)

Top quark production and decay

 in proton anti-proton collisions at Tevatron energies, top quarks are primarly produced in pairs (Strong interactions)

Single top production (Electroweak interactions): not yet observed

Darien Wood,NEPPSR 04

 ➢ lifetime very short (≈10⁻²⁴s), Br(t→Wb)=100%
 Both W's decay via W→Iv (I=e or µ; 5%) dilepton
 One W decays via W→Iv (I=e or µ; 30%) lepton+jets
 Both W's decay via W→qq (44%) all hadronic

Hadron collider detector principles

- Strong interaction dominates
 - Typically ~20 charged tracks per event, mostly pions
 - Not easy to distinguish among various light hadrons (pions, kaons, ...) but often you don't care
 - Isolated leptons are a signature of something interesting and or unusual
 - EM or weak interaction
 - Decay of heavy object
- Basic distinguishable objects: jets, photons, electrons, muons, (taus), neutrinos
- Often useful to be able to separate jets from heavy quarks (b-jets, c-jets) from those from light quarks and gluons

Tracking chambers \Rightarrow trajectory of charged particlesCalorimeters \Rightarrow measure energyElectromagnetic: e, photonHadronic: pion, K, proton, neutrons...Muon Chambers \Rightarrow measure muon trajectoryMagnets \Rightarrow charged particles bend in
magnetic fields. Bend depends
on charge and momentumDarien Wood, NEPPSR

04

what's missing?

Calorimeter Wish list

An ideal calorimeter should:

- measure the **energy** of each particle coming into it (except muons and neutrinos) with good **resolution**
- measure the **position** of the energy deposition, so that it can be associated with a momentum vector
- be able to **distinguish** different types of particle from each other by the way they "shower" inside the calorimeter
 - electrons & photons
 - hadrons (protons, pions, kaons, etc.) or jets of hadrons
 - muons
 - neutrinos

Wish list continued

- completely **contain** all particles (except muons and neutrinos) ["hermeticity"]
- have a constant, stable energy calibration
- have the **same** energy response for hadrons and electrons
- have a fine **segmentation** to be able to distinguish nearby particles (also important in being able to examine the transverse size of a shower)

DØ detector

DØ detector, before the closing of the collision hall Darien Wood,NEPPSR

CDF Detector

Darien Wood, NEPPSR detector, with the plug calorimeter retracted

CDF and DØ

- Common to both detectors
 - Silicon microstrip detector (tracking, vertex)
 - Magnetic tracker
 - Central solenoid magnet
 - Preshower detectors
 - Electromagnetic calorimeter
 - Hadronic calorimeter
 - Iron absorber
 - Muon detectors

- CDF highlights
 - Large radius (1.5m) tracker: good momentum resolution
 - Time-of-flight system
- DØ highlights
 - Hermetic, dense calorimeter
 - More complete muon coverage with magnetized iron toroids

Electrons and photons

- In the calorimeter
 - Narrow cluster of energy in EM (front) section
 - Little or no energy in Had (back) section
- In the tracker
 - **Photon**: no track (no hits)
 - Electron: track with momentum matching energy of calorimeter cluster
- Fake backgrounds
 - Jets with most of their energy in $\pi^0(s)$
 - Photon: electron with missing track
 - **Electron:** photon conversion

Identifying Muons

$$p_{in} \approx p_{out} + E_{loss}$$
 (muon ID tool)

Better resolution comes from tracker; p_{out} dominated by multiple scattering (or showering)

Muon background 1: punchthrough/decay

$$p_{in} >> p_{out} + E_{loss}$$

Outer decay/p.t. track points back to parent hadron, but momenta do not match.

Muon background 2: halo/backscatter

 $p_{in} ? p_{out} + E_{loss}$

Good timing (scintillator) can get rid of most of these

DØ top to μ +jets Candidate Event

Missing Transverse Energy $(\not \! E_T)$

Example: top quark candidate (ttbar $\rightarrow \mu \nu j j j j$)

[transverse view]

$$\left| \vec{E}_T = -\sum \vec{E}_T(cal) - \sum p_T(muons) \right|$$

b-quark jets

• Recall the steps between production of a quark and detection of a jet:

Identifying the b quark

1 Semileptonic decays of the b-quark example: B(b $\rightarrow \mu$ + X) \approx 20% \Rightarrow detect muons in jets

Soft lepton tag

 These leptons have a softer p_T spectrum than leptons from W/Z
 are not isolated

• $b \to c \to \ell \nu s \; (BR \sim 20\%)$

Comparison of PtRel

Top Event with b-jet (D0)

Identifying the b quark

2 life time \approx 1.5 ps \Rightarrow c $\tau \approx$ 0.5 mm (short, but not too short)

precise tracking close to primary collision point ⇒silicon microstrip detectors

Darien Wood, NEPPSR

04

Decaying particles: examples

Particles	Lifetime	ст	Lifetime signature
W,Z,top	<10 ⁻²³ s	~0	Decay immediately
$\pi^0(\rightarrow\gamma\gamma)$	8x10 ⁻¹⁶ s	25 nm	Decay length undetectable
τ	2.9x10 ⁻¹³ s	87 µm	Inside beam pipe; hard even with SMT
D ⁰ /D [±] /D _s	0.4-1.0x10 ⁻¹² s	150- 350 μm	Inside beam pipe; possible w/ SMT
B ⁰ /B [±] /B _s /b- baryon	~1.5x10 ⁻¹² s	450 µm	Inside beam pipe; possible w/ SMT
$\mathrm{K}^{0}_{s}(\rightarrow\pi\pi)$	0.8x10 ⁻¹⁰ s	2.7 cm	decays in outer tracking chamber
K [±] , π^{\pm} , μ^{\pm}	>10 ⁻⁸ s	>3 m	reach cal without decaying

Darien Wood,NEPPSI 04 HDI (flex circuit readout)

Lifetime signature for b-jets

- Long lifetime of B hadrons
 - $c\tau \sim 450 \mu m + boost$
 - Travel ~3 mm before decay with large charged track multiplicity
- Two ways of looking for lacksquarelifetime tags
 - A reconstructed vertex, displaced from the primary vertex
 - Presence of track(s) with large impact parameter, d_0

Darien Wood, NEPPSR

Background to b-tagging

- soft lepton tag
 - fake leptons (in light-quark/gluon jets)
 - c-quark jets
 - K^{\pm}, π^{\pm} decays in flight (in light-quark/gluon jets)
 - chance overlap of light-quark/gluon jet and lepton
- lifetime tag
 - mismeasured tracks in light-quark/gluon jet
 - c-quark jets
 - K_s , Λ decays in light-quark/gluon jets

Top signal and background (Run II)

Triggering

- A few relevant numbers:
 - Bunch collision rate: 2.5 MHz
 - Inelastic interaction rate at L=10³²: 4 MHz
 - Data size of each event: ~0.5 Megabytes
 - Rate at which data can be recorded: ~50 Hz
- Clearly, most of the events have to be discarded before they are recorded (record 1 crossing in 50,000)
- Events that are discarded are real physics (jet production, low p_T b-quarks, low-mass lepton pairs...)
 - Need to make choices about physics
 - Different from e⁺e⁻ colliders, where generally all real interactions can be recorded
- Triggers have a big, important job at hadron colliders

Typical production rates for p-pbar at 2 TeV

Final state	Cross section (pb)	Rate at L= 10^{32} cm ⁻² s ⁻¹
"minimum bias"	4x10 ¹⁰	4 MHz
2 jets	4x10 ⁶	400 Hz
4 jets	1.6x10 ⁵	16 Hz
6 jets	6000	0.6 Hz
W	30000	3 Hz
Ζ	9000	0.9 Hz
WZ	3.5	3.5x10 ⁻⁴ Hz (1.3/hour)
t tbar	7.5	7.5x10 ⁻⁴ Hz (3/hour)

Spectrum of jet transverse energy

The DØ Trigger System (current)

Example of a trigger condition

- Name: MUJ1_JT15HA_TK10 (one of 378 triggers)
- Purpose: trigger on top→muon+jets (among others)
- Level 1
 - 2-layer coincidence of muon scintillator and of muon wire chambers
 - At least two "towers" (0.2 eta X 0.2 phi) with E_T above 3 GeV
 - Rate: 70 Hz
- Level 2:
 - Fast reconstruction muon track (no momentum cut)
 - Fast jet cluster with E_T above 8 GeV
 - Rate: 55 Hz
- Level 3:
 - Reconstructed jet above 15 GeV, and sum of missing $\rm E_{T}$ and scalar $\rm E_{T} > 50~GeV$
 - Charged track with $p_T > 10 \text{ GeV}$
 - Rate: ~1 Hz

Top quark mass measurement

advantages advantages - 2nd largest branching low background ratio – better energy – only one neutrino resolution for leptons than for jets lepton+jets dilepton b jet q jð b jet **q** jet Wins: **b** jet **b** jet

Darien Wood,NEPPSR 04

Technique #1: one mass per event

- Lepton+4jets channel: all final state variables (18) are measured except for p_z(v)
- Three additional constraints:
 - $m(qq) = m_W$
 - $m(lv) = m_W$
 - m(bqq) = m(blv)
- Twice over-constrained fit: (17+3-18)
- For each event, select jet permuation with best fit (lowest chisquared)
- Make distribution of masses, and fit to singnal(m_t) + bkg

55

Darien Wood, NEP**PR** = $173.3 \pm 5.6(\text{stat}) \pm 5.5(\text{sys})\text{GeV}$

DØ top to μ +jets Candidate Event

Technique #2: optimized matrix element weighting

LO ME used, 4 jets required exclusively, additional cut on background probability (to improve purity) \rightarrow 22 events

$$-\ln L(\alpha) = -\sum_{i=1}^{N} \left\{ \ln \left[c_1 P_{t\bar{t}}(x_i;\alpha) + c_2 P_{bkg}(x_i) \right] \right\} + N \int A(x) \left[c_1 P_{t\bar{t}}(x;\alpha) + c_2 P_{bkg}(x) \right] dx$$

$$\uparrow Acceptance$$

Likelihood definition: estimate signal and background fractions and m_{top}

Darien Wood,NEPPSR 04

Results of matrix element weighting

Virtual Effects on W mass

One piece of evidence missing: the Higgs particle responsible for the mass of all known particles
Finding the Higgs (or not): verify a prediction or declare clear evidence for new physics

Darien Wood,NEPPSR 04

Interesting features of top mass analysis

- small number of events
 - fitting techniques refined to make maximum use of limited statistics
- substantial background
 - fitting has to be robust in the presence of background
- complicated event topology
 - kinematic fitting
 - consideration of multiple permutations of object assignments

Jet energy calibration

A small shift in energy scale calibration gives a large shift in cross section

Jet energy calibrated in situ with photon+jet events Darien Wood,NEPPSR 04