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What is the Question?

Often in HEP, we make a series of measurements and wish to 
deduce the value of a fundamental parameter.

For example, we may measure the mass of many B → J/ψ KS
decays and then wish to get the best estimate of the B mass.

Or we might measure the efficiency for detecting such events 
as a function of momentum and then wish to derive a
functional form.

The question is:  What is the best way to do this?
(And what does “best” mean?)
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Likelihood Method
P(X|α) ≡ Probability of measuring X on a given event.
α is a parameter or set of parameters on which P depends.

Suppose we make a series of measurements, yielding a set of Xi’s.  
The likelihood function is defined as

L = P X i | α( )
i=1

N

∏

The value of α that maximizes L is known as the Maximum 
Likelihood Estimator (MLE) of α, which we will denote as α*.

Note that we often work with ln(L).
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Example
Suppose we have N measurements of a variable x, which we 
believe is Gaussian, and wish to get the best estimate of the mean 
and width.  [Note that this and other examples will
be doable analytically - usually we must use numerical methods].
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Maximizing with respect to µ and σ gives

µ* =
x i∑

N
= x 

σ*2
=

x i − µ*( )2
∑

N
= x2 − x 2

Discussed later.



5

Warning

Neither L(α) nor ln(L) is a probability distribution for α.

A frequentist would say that such a statement is just
nonsense, since parameters of nature have definite values.

A Bayesian would say that you can convert L(α) to a 
“probability” distribution in α by applying Bayes thereom, 
which includes a prior probability distribution for α.

Bayesian versus Frequentist statistics is a can of worms that
I won’t open further in this talk.
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Bias, Consistency, and Efficiency
What does “best” mean?

We want estimator to be close to the true value.

Unbiased ⇒

Consistent ⇒ Unbiased for large N

Efficient ⇒ is minimal for large N     

Maximum Likelihood Estimators are NOT necessarily unbiased 
but are consistent and efficient for large N.
This makes MLE’s powerful and popular (although we must
be aware that we may not be in the large N limit).

α* = α0

α* − α0( )2
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Bias Example
Consider again, the mean and width of a Gaussian.
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Note that the MLE of the mean is unbiased, but for the 
width is not (although it is consistent). However,

is unbiased.
In this case, we could find the bias analytically - in most
cases we must look for it numerically.

˜ σ 2 =
x i − µ*( )2

∑
N − 1
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Bias Example 2
Bias can depend upon choice of parameter.  Consider an
exponential lifetime distribution.  We can use either the
averge lifetime τ or the decay width Γ as the parameter.
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Uncertainty on Parameters
Just as important as getting an estimate of a parameter is 
knowing the uncertainty of that estimate.
The maximum likelihood method also provides an estimate of 
the uncertainty.
For one parameter, L becomes Gaussian for large N.  Thus,

ln L ≅ ln L* + 1
2

∂2 ln L
∂α2

α=α*

α − α*( )2

⇒ ∆α2 ≡ α* − α0( )2
= − 1

∂2 ln L
∂α2

α =α*

We usually write this as                      

If 

α = α* ± ∆α

α = α* ± ∆α, ln L = ln L* −
1
2

Note that this is a 
statement about the 
probability of the 
measurements, not 
the probability of 
the true value. 
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Uncertainty Example
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Asymmetric Uncertainties
Sometimes lnL may not be parabolic and there may be 
asymmetric uncertainties.

We write
+

−

∆+
∆−=

α
ααα *

Note:  the ∆lnL = 1/2 interval does NOT always give a 68% 
confidence interval (see counterexample in handout).

α- α* α+

ln(L*)

ln(L*) - 0.5
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Correlations
If there are multiple parameters, things are more complicated 
due to possible correlations.

Covariance matrix V is given byVij = α i − α i( ) α j − α j( )
V is equal to U-1, where U ij = −

∂2 ln L
∂α i ∂α j
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Numerically, α± are given by
where ∆ln(L) = 1/2 and ln(L) is
maximized wrt other parameters

For example, a fit to the linear
function y = a x + b will have
correlations between parameters
a and b
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Normalization

Sometimes, people will say they don’t need to normalize their 
probability distributions.  This is sometimes true.

For the Gaussian example, if we omitted the normalization 
factor of                 we get the mean correct but not the width. In 
general, if the normalization depends on any of the parameters 
of interest, it must be included.

My advice is always normalize (and always check the
normalization).

1/ 2πσ
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Extended Likelihood
Suppose we have a Gaussian mass distribution with a flat 
background and wish to determine the number of events in the 
Gaussian.

P = fS
1

2πσ
e

−
M−M0( )2

2σ2
+ 1 − fS( ) 1

∆M

where fS is the fraction of signal events and ∆M is the mass range 
of the fit.

We can fit for fS and get ∆fS.  NfS is a good estimate of the number 
of events in the Gaussian, but N∆fS is not a good estimate of the 
variation on the number of signal events.

We can fix this by adding a Poisson term in the total number of 
events.  This is called an Extended Likelihood fit.
We could also use 2

S
2
S

222
S

2
S

22
S NffNNffNN +∆=∆+∆=∆



15

Extended Likelihood 2
Instead of fS, we use µS and µBG, the expected number of signal 
and background events.  N is the observed total number of events.
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If you are not interested in the uncertainty on NS (for example,
your are measuring a lifetime and not a cross section),
I recommend not doing an extended likelihood fit.
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Constrained Fits
Suppose there is a parameter in the likelihood that is 
somewhat known from elsewhere.  This information can be 
incorporated in the fit.

For example, we are fitting for the mass of a particle decay 
with resolution σ.   Suppose the Particle Data Book lists the 
mass as M0 ± σΜ.  We can incorporate this into the
likelihood function as

L =
1

2πσ M

e
−

M−M0( )2

2σM
2 1

2πσ
e

−
mi −M( )2

2σ2
 

 

 
 

 

 

 
 i

N

∏

This is known as a constrained fit.
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Constrained Fits 2
Let ∆M be the uncertainty on M that could be determined
by the fit alone.

If ∆M >> σM, constraint will dominate, and you might as
well just fix M to M0.  For example, you never see a constrained 
fit to       in an HEP experiment.

If ∆M << σM, constraint does very little.  You have a better
measurement than the PDG.  You should do an unconstrained
fit and PUBLISH.

Constrained fit is most useful if σM and ∆Μ are comparable.

h
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Simple Monte Carlo Tests
It is possible to write simple, short, fast Monte Carlo programs
that generate data for fitting.   Can then look at fit values, 
uncertainties, and pulls.  These are often called “toy” Monte 
Carlos to differentiate them from complicated event and detector
simulation programs.

H Tests likelihood function.
H Tests for bias.
H Tests that uncertainty from fit is correct.

This does NOT test the correctness of the model of the data.  For 
example, if you think that some data is Gaussian distributed, but 
it is really Lorentzian, then the simple Monte Carlo test will not 
reveal this.
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Simple Monte Carlo Tests 2
Generate exponential (τ = 0.5 and N = 1000).
Fit.
Repeat many times (1000 times here).
Histrogram τ, στ, and pulls.
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Simple Monte Carlo Tests 3
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Goodness of Fit
Unfortunately, the likelihood method does not, in general, 
provide a measure of the goodness of fit (as a χ2 fit does).

For example, consider fitting lifetime data to an exponential.
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Thus the value of L at the maximum
depends only on the number of events
and average value of the data. 
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Goodness of Fit 2
Fit to exponential
Plot log(L*) for

(1) exponential Monte Carlo and 
(2) Gaussian data
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Goodness of Fit 3
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Other Types of Fits

Chi-square:
If data is binned and uncertainties are Gaussian, then
maximum likelihood is equivalent to a χ2 fit.

Binned Likelihood:
If data is binned and not Gaussian, can still do a binned
likelihood fit.  Common case is when data are Poisson 
distributed.
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Comparison of Fits
Chi-square:

Goodness of fit.
Can plot function with binned data.
Data should be Gaussian, in particular, χ2 doesn’t work well 

with bins with a small number of events.
Binned likelihood:

Goodness of fit
Can plot function with binned data.
Still need to be careful of bins with small number of events

(don’t add in too many zero bins).
Unbinned likelihood:

Usually most powerful.
Don’t need to bin data.
Works well for multi-dimensional data.
No goodness of fit estimate.
Can’t plot fit with data (unless you bin data).
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Comparison of Fits 2
Generate 100 values for Gaussian with µ = 0, σ = 1.
Fit unbinned likelihood and χ2 to SAME data.
Repeat 10,000 times.

Both are unbiased.

Unbinned likelihood
is more efficient.
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Comparison of Fits 3

Fit values are correlated,
but not completely.

Difference is of the order
of half of the uncertainty.
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Comparison of Fits 4

Fit to width is biased
for both.

But, unbinned likelihood widths
tend to true value for large N.
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Numerical Methods

Even slight complications to the probability make analytic 
methods intractable.

Also, likelihood fits often have many parameters (perhaps 
scores) and can’t be done analytically.

However, numerical methods are still very effective.

MINUIT is a powerful program from CERN for doing 
maximum likelihood fits (see references in handout).
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Systematic Uncertainties

When fitting for one parameter, there often are other 
parameters that are imperfectly known.

It is tempting to estimate the systematic uncertainty due to these 
parameters by varying them and redoing the fit.

Because of statistical variations, this overestimates the systematic 
uncertainty (often called double counting).

Best way to estimate such systematics is probably with a high 
statistics Monte Carlo program.



31

Potentially Interesting
Web Sites

CDF Statistics Committee page:
www-cdf.fnal.gov/physics/statistics/statistics_home.html

Lectures by Louis Lyons:
www-ppd.fnal.gov/EPPOffice-w/Academic_Lectures
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Summary

Maximum Likelihood methods are a powerful tool for extracting 
measured parameters from data.

However, it is important to understand their proper use and 
avoid potential problems.


