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What Isthe Question?

Often in HEP, we make a series of measurements and wish to
deduce the value of a fundamental parameter.

For example, we may measurethe mass of many B ® J/y Kg
decays and then wish to get the best estimate of the B mass.

Or we might measur e the efficiency for detecting such events
as a function of momentum and then wish to derive a
functional form.

Thequestion is. What isthe best way to do this?
(And what does “best” mean?)



Likelihood Method

P(X|[a) ° Probability of measuring X on a given event.
a Isa parameter or set of parameterson which P depends.

Suppose we make a series of measurements, yielding a set of X;'s.
Thelikelihood function is defined as

L :_CN')P(Xi a)

Thevalue of a that maximizesL isknown asthe Maximum
Likelihood Estimator (MLE) of a, which we will denoteasa”.

Note that we often work with In(L). .



Example

Suppose we have N measurements of a variable x, which we
believe is Gaussian, and wish to get the best estimate of the mean
and width. [Notethat thisand other examples will

be doable analytically - usually we must use numerical methods|.

(- mp

1 >
P(x|ms)= e =
M= T
N N _ 2
InL=8 InP(x,)= - Nln( 2ps)- a (Xis Zm)
i=1 i=1
Maximizing with respect to mand s gives
m=3% =%
N
. :é(xi - m*)2 _02 o2
S X< - X

—>Discussed later. 4



Warning

Neither L(a) nor In(L) isa probability distribution for a.

A frequentist would say that such a statement isjust
nonsense, since parameters of nature have definite values.

A Bayesian would say that you can convert L(a) to a
“probability” distribution in a by applying Bayesthereom,
which includesa prior probability distribution for a.

Bayesian versus Freguentist statisticsisa can of wormsthat
| won’t open further in thistalk.



Bias, Consistency, and Efficiency
What does “ best” mean?
We want estimator to be closeto thetruevalue.
Unbiased b a” =a,

Consistent P Unbiased for large N

Efficient b (a* - a0)2 Isminimal for large N

Maximum Likelihood Estimatorsare NOT necessarily unbiased
but are consistent and efficient for large N.

Thismakes MLE’s powerful and popular (although we must

be awarethat we may not bein thelargeN limit). 6



Bias Example

Consider again, the mean and width of a Gaussian.

SOV Y
N & N & yam=m
N

*2

N

_a( m)2 150

Notethat the ML E of the mean isunbiased, but for the
width isnot (although it is consistent). However,

g2 &)

IS unbiased.
In this case, we could find the bias analytically - in most
cases we must look for it numerically.



Bias Example 2

Bias can depend upon choice of parameter. Consider an
exponential lifetime distribution. We can use either the
avergelifetimet or the decay width Gasthe parameter.

1 -t
P(t):t—et :C:‘e_G

 t
t == isunbiasad.
N
N
(o]
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1S blased.
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Uncertainty on Parameters

Just asimportant as getting an estimate of a parameter is
knowing the uncertainty of that estimate.

The maximum likelihood method also provides an estimate of
the uncertainty.

For one parameter, L becomes Gaussian for largeN. Thus,

InL @nL +1ﬂ InL (a—a*)2
2 fa’ '
b Da“®° (a a ) =
|n L Notethat thisisa
'ﬂa \ statement about the
., & probability of the
Weusually writethisasa =a *Da measur ements, not

the probability of

x « 1 thetruevalue.
If a=a +Da,InL=InL " 5 o



Uncertainty Example
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Asymmetric Uncertainties

Sometimes InL may not be parabolic and there may be
asymmetric uncertainties.

3

In(L")

Wewrite

In(L*) - 0.5
2_

x»+Da.

d =ad -pa.
In(L)

1_

a- a’ at

0

0 1 2 3 4 5 6
a

Note: theDInL = 1/2 interval doesNOT always give a 68%
confidence interval (see counterexample in handout). 11



Correations

|f there are multiple parameters, things are more complicated
dueto possible correlations.

3 For example, afit tothelinear
functiony =ax + b will have
correlations between parameters
aandb

25 1

05 | / Numerically, a* aregiven by
| . | | whereDIn(L) =1/2and In(L) is
o 1 2 = a2 s maximized wrt other parameters

Covariance matrix V isgiven byV; :(ai - gi)(aj § a_J)

TInL
ﬂaiﬂaj 12

V isequal to U, where u; =-



Nor malization

Sometimes, people will say they don’t need to normalize their
probability distributions. Thisis sometimestrue.

For the Gaussian example, if we omitted the normalization
factor of 1/+/2ps we get the mean correct but not thewidth. In
general, if the nor malization depends on any of the parameters
of interest, it must be included.

My adviceisalways normalize (and always check the
nor malization).

13



Extended Likelihood

Suppose we have a Gaussian mass distribution with a flat
background and wish to deter mine the number of eventsin the

Gaussian. . (- Mo F :
P=f e = +(1-fg)=—
°>V2ps (- fs) DM

wherefgisthefraction of signal eventsand DM isthe massrange
of thefit.

We can fit for fgand get Dfs. Nfgisa good estimate of the number
of eventsin the Gaussian, but NDf¢ isnot a good estimate of the
variation on the number of signal events.

We can fix this by adding a Poisson term in the total number of
events. Thisiscalled an Extended Likelihood fit.
We could also use DNZ = N°DfE +fZDN* = N°Df S + NfZ 14



Extended Likelihood 2

Instead of f¢, we use my and g, the expected number of signal
and background events. N isthe observed total number of events.

o (ms+m) N N :
| = (rr:5+rr]36) Og ng G(Mi‘MO,S )+ rnSG 1 E
N |:1err§+rrbe ms"'mse DMU
- (m+mpg ) -
e 1
TN OSmSG( M [Mo.s )+ me DM H

o & u
In(L)=-m,- m - IE&{)+ai‘lngngG+gbl\;H

|f you arenot interested in the uncertainty on Ng (for example,
your are measuring a lifetime and not a cross section),
| recommend not doing an extended likelihood fit.

15



Constrained Fits

Supposethereisaparameter in thelikelihood that is
somewhat known from elsewhere. Thisinformation can be
iIncor porated in thefit.

For example, we arefitting for the mass of a particle decay
with resolution s. Supposethe Particle Data Book liststhe
massasM,+s,,. We can incorporatethisintothe
likelihood function as

(M- Mo) é (m;- MY U
l=—L ¢ #h Q&L ¢ =
1/2ps,\,I i e@JZps H

Thisisknown as a constrained fit.

16



Constrained Fits 2

Let DM betheuncertainty on M that could be deter mined
by thefit alone.

If DM >>s,,, constraint will dominate, and you might as

well just fix M to M. For example, you never see a constrained
fitto # in an HEP experiment.

If DM <<s,,, constraint doesvery little. You have a better
measurement than the PDG. Y ou should do an unconstrained
fit and PUBLISH.

Constrained fit ismost useful if s, and DM are compar able.

17



Simple Monte Carlo Tests

It iIspossibleto write simple, short, fast Monte Carlo programs
that generate data for fitting. Can then look at fit values,
uncertainties, and pulls. These are often called “toy” Monte
Carlosto differentiate them from complicated event and detector
simulation programs.

% Testslikelihood function.
% Testsfor bias.
% Teststhat uncertainty from fit iscorrect.

ThisdoesNOT test the correctness of the model of thedata. For
example, If you think that some data is Gaussian distributed, but
It iIsreally Lorentzian, then the ssmple Monte Carlo test will not

reveal this.
18



Number

Simple Monte Carlo Tests 2

Generate exponential (t = 0.5 and N = 1000).

Fit.

Repeat many times (1000 times here).

Histrogramt, s, and pulls.

T, = 0.5
Average 1, = 0.4997 + 0.0005
Rms 1, = 0.0159 + 0.0004

Number

0.7

100
80—
[ Gy, = 0.01581

501" Ave o, = 0.01580 + 0.00002

40—

201

gl o B oo oo oo oo fgl o o M |

0.008 0.01 0.012 0.014 0.016 0.018

Ot
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Simple Monte Carlo Tests 3

Ave = -.048 + 0.032
Rms = 1.003 + 0.022

20



Goodness of Fit

Unfortunately, thelikelihood method does not, in general,
provide a measur e of the goodness of fit (asa c? fit does).

For example, consider fitting lifetime data to an exponential.

Thusthevalue of L at the maximum

depends only on the number of events
and aver age value of the data. 21



Goodness of Fit 2

Fit to exponential

Plot log(L*) for
(1) exponential Monte Carlo and
(2) Gaussian data

90 = Data
80
70

60—

50—

Number

40
o Monte Carlo

N
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L L L I L L L I L L L L | L
1600 -1550 1500 -1450 -1400
In(L)




Goodness of Fit 3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
t
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Other Typesof Fits

Chi-square:
If data isbinned and uncertainties are Gaussian, then
maximum likelihood is equivalent to a c? fit.

Binned Likelihood:
|f data isbinned and not Gaussian, can still do a binned
likelihood fit. Common case iswhen data ar e Poisson

distributed. i
o)

n!

InL:éInPi

bins

24



Comparison of Fits
Chi-sguare:

Goodness of fit.
Can plot function with binned data.
Data should be Gaussian, in particular, c? doesn’t work well
with binswith a small number of events.
Binned likelihood:
Goodness of fit
Can plot function with binned data.
Still need to be careful of binswith small number of events
(don’t add in too many zero bins).
Unbinned likelihood:
Usually most powerful.
Don’t need to bin data.
Workswell for multi-dimensional data.
No goodness of fit estimate.
Can’t plot fit with data (unlessyou bin data). 25



Comparison of Fits 2

Generate 100 valuesfor Gaussian with m=0, s = 1.
Fit unbinned likelihood and c2to SAME data.
Repeat 10,000 times.

1000 Unbinned Likelihood »?
- %-=0.0003+0.0010 X-=-0.0004 + 0.0011 .
- x,:,,a =10.0991+ 0.0007 x,,t,,a - 0.1102+0.0009 | Both are unbiased.
800}—
S eoo Unbinned likelihood
E ismor e efficient.
< 400~
200]—
ol 1 | . |

06 .04 02 0 o0z 04 o8

26



Xjikelihood

Comparison of Fits 3

Differenceisof the order
of half of the uncertainty.

Number

400

350

300

250

200

150

100

50

Fit valuesare corrdated,
but not completely.

-1.5 -1 -0.5 0 0.5 1 1.5 2

(Xjikelinood = X;22)/C



Number

BOO

700
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But, unbinned likelihood widths

Comparison of Fits4

:p. IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|III

Unbinned Likelihood
G, =0.99211 0.0007

2
x

G5;=1.0079 £ 0.0008

96 08

2 (O

tend totruevaluefor large N.

0.06

0.04

0.02

-0.02

-0.04

-0.06L

Fit towidth is biased
for both.

Uncertainty onc

Unbinned Likelihood

10° 10°
data




Numerical M ethods

Even dlight complicationsto the probability make analytic
methods intractable.

Also, likelihood fits often have many parameter s (per haps
scores) and can’t be done analytically.

However, numerical methods are still very effective.

MINUIT isa powerful program from CERN for doing
maximum likelihood fits (see references in handout).

29



Systematic Uncertainties

When fitting for one parameter, there often are other
parametersthat are imperfectly known.

It Istempting to estimate the systematic uncertainty dueto these
parameters by varying them and redoing thefit.

Because of statistical variations, this over estimatesthe systematic
uncertainty (often called double counting).

Best way to estimate such systematicsis probably with a high
statistics Monte Carlo program.

30



Potentially Interesting
Web Sites

CDF Statistics Committee page:
www-cdf.fnal.gov/physics/statistics/statistics home.html

L ectures by LouisLyons:
www-ppd.fnal.gov/EPPOffice-w/Academic_L ectures

31



Summary

Maximum Likelihood methods are a powerful tool for extracting
measured parameters from data.

However, it isimportant to under stand their proper use and
avoid potential problems.
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