New England Particle Physics Student Retreat, Cape Cod, Aug. 26, 2004

LHC Physics

Jim Rohlf Boston University

 $\mathcal{NEPPSR}III$ Rohlf – p.1/58

Outline

- Introduction
- Event Rates and Triggering
- Higgs
- Supersymmetry
- Z'
- Extra dimensions
- Techicolor
- Compositeness
- Outlook

LHC parameters

pp c.m. energy	14 TeV
luminosity	$10^{34} \mathrm{cm}^{-2}\mathrm{s}^{-1}$
collision rate	1 GHz
W/Z ⁰ rate	1 kHz
bunch spacing	25 ns
interactions per crossing	20
$rac{dN_{ m ch}}{d\eta}$ per crossing	$10^5 \mathrm{cm}^{-2}\mathrm{s}^{-1}$
track flux @ 1 m	$10^5 \mathrm{cm}^{-2}\mathrm{s}^{-1}$
<i>rad. dose</i> @1 m <i>for</i> $2500 ext{ fb}^{-1}$	1 kGy

First physics expected at "low luminosity": $2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$

 $\mathcal{NEPPSR}III$ Rohlf – p.3/58

CMS HCAL Data flow

Stored energy unprecedented

$E = 2E_{\rm p}N_{\rm b}N_{\rm p}$

$E = (2)(1.5 \times 10^{13} \text{ eV})(1.6 \times 10^{-19} \text{ J/eV})(2808)(1.1 \times 10^{11}) \simeq 1.5 \text{ GJ}$

The problem becomes even more severe for the next proton machine! \mathcal{NEPPSR} III Rohlf – p.6/58

Stored energy unprecedented

$E = 2E_{\rm p}N_{\rm b}N_{\rm p}$

$E = (2)(1.5 \times 10^{13} \text{ eV})(1.6 \times 10^{-19} \text{ J/eV})(2808)(1.1 \times 10^{11}) \simeq 1.5 \text{ GJ}$

Kuznetsov

m = 55,000 tons

same kinetic energy at 15 knots as the LHC beams!

The problem becomes even more severe for the next proton machine! \mathcal{NEPPSR} III Rohlf – p.6/58

Forces and Distance

 $\mathcal{NEPPSR}III$ Rohlf – p.7/58

LHC physics

Big Picture

FIRST look at the TeV/ c^2 mass scale to find a clue to the hierarchy problem... What lies between the weak scale and the Planck mass?

Medium Picture

EXPLORE the mechanism for electroweak symmetry breaking... How do the W/Z^0 interact at high energies?

Small Picture NAIL down the elusive Higgs boson...

 $\mathcal{NEPPSR}III$ Rohlf – p.8/58

http://cmsdoc.cern.ch/cms.html http://atlasinfo.cern.ch/

http://conferences.fnal.gov/lhc2003/index.html

- J. Rohlf, CMS: Physics reach at High and Very High Luminosities
- B. Zhou, ATLAS: Physics reach at High and Very High Luminosities

Documents

ATLAS DETECTOR AND PHYSICS PERFORMANCE

Technical Design Report

Issue: Revision: Reference: Created: Last modified: Prepared By:

1 0 ATLAS TDR 15, CERN/LHCC 99-15 25 May 1999 25 May 1999 ATLAS Collaboration

Volume II

LABORATOIRE EUROPÉEN POUR LA PHYSIQUE DES PARTICULES CERNAL CMS TD CERN EUROPEAN LABORATORY FOR PARTICLE PHYSICS 15 Decen

CERIVLHCC 2002-26 CMS TDR 62 15 December 2002

The Trigger and Data Acquisition project, Volume II Data Acquisition & High-Level Trigger Technical Design Report NEPPSR III Rohlf – p.10/58

Detectors overview

tracking in B field
EM calorimetery
had. calorimetry
muon detectors

A Toroidal Large hadron collider AparatuS (ATLAS) 7 kTons 0.5 T toroid, 2 T solenoid 25 m \times 46 m Compact Muon Solenoid (CMS) 14 kTons 4 T solenoid 15 m \times 22 m \mathcal{NEPPSR} III Rohlf – p.11/58

ATLAS and CMS zeroth-order difference

ATLAS

Large magnet cost (40%)
good stand-alone muon resolution (*BL*²)
less resources spent on ECAL and tracking

CMS Lower magnet cost (25%) high-resolution tracker high-performance ECAL

 $\mathcal{NEPPSR}III$ Rohlf – p.12/58

CMS magnet

$\mathcal{NEPPSR}III$ Rohlf – p.13/58

ATLAS magnet

 $\mathcal{NEPPSR}III$ Rohlf – p.14/58

Detector technology

		CMS	ATLAS
Tracking	: inner	pixels	pixels
	barrel	silicon strips	silicon strips / straw tubes
	endcap	silicon strips	silicon strips / straw tubes
ECAL:	barrel	crystals $(PbWO_4)$	liquid argon / Pb
	end cap	crystals $(PbWO_4)$	liquid argon / Pb
HCAL:	barrel	scintillator / brass	scintillator / Fe
	end cap	scintillator / brass	liquid argon / Cu
	forward	quartz / Fe	liquid argon / Cu-W
Muon:	barrel	drift chambers	drift tubes
		+resistive plate	+resistive plate
	end cap	cathode strip	cathode strip
		+ resistive plate	+ thin gap

8

 $\underline{\mathcal{NEPPSR}\ III}$ Rohlf – p.16/58

Standard-Model Higgs

 \mathcal{NEPPSR} III Rohlf – p.17/58

SM: H^o Branching Ratio and Width

J. Rohlf, LHC IV p. 7

 $\mathcal{NEPPSR}III$ Rohlf – p.18/58

event selection: lepton, 4 *b*-tag jets, 2 non-*b* jets, *W* mass, *t* mass (2) main backgrounds: $t\bar{t}b\bar{b}, t\bar{t}Z$

 $\mathcal{NEPPSR}III$ Rohlf – p.19/58

 $\mathcal{NEPPSR}III$ Rohlf – p.21/58

 $\mathcal{NEPPSR}III$ Rohlf – p.22/58

Higgs reach ATLAS

 $\mathcal{NEPPSR}III$ Rohlf – p.23/58

MSSM Higgs

Minimal Supersymmetric Standard Model ... a 3-ring circus of Higgs bosons

- Two parameters: $\tan \beta = \frac{v_u}{v_d}$ (where $v_u = \sqrt{2} \langle \Phi_u^0 \rangle$, $v_d = \sqrt{2} \langle \Phi_d^0 \rangle$) and m_{A^0}
- LEP limits are substantial!
 - \Rightarrow stay alive with maximal top-squark mixing
- h^0 behaves like SM-Higgs and is light
 - \Rightarrow low-mass *SM* channels are important

$\mathcal{NEPPSR}III$ Rohlf – p.24/58

couplings: $b\bar{b}H^0, b\bar{b}A^0 \sim \tan\beta$ $\tau^+\tau^-H^0, \tau^+\tau^-A^0 \sim \tan\beta$

 $\mathcal{NEPPSR}III$ Rohlf – p.25/58

 $\mathcal{NEPPSR}[III]$ Rohlf – p.26/58

 $\mathcal{NEPPSR}[III$ Rohlf – p.27/58

 $\mathcal{NEPPSR}\,III$ Rohlf – p.28/58

\mathcal{NEPPSR} III Rohlf – p.29/58

J. Rohlf, LHC IV p. 20

 $\mathcal{NEPPSR}\,III$ Rohlf – p.30/58

 $t\bar{t}$ background reduced with central jet veto

J. Rohlf, LHC IV p. 21

 \mathcal{NEPPSR} III Rohlf – p.31/58

 $\mathcal{NEPPSR}III$ Rohlf – p.32/58

ATLAS+CMS 10 fb⁻¹

 $\mathcal{NEPPSR}III$ Rohlf – p.33/58

J. Rohlf, LHC IV p. 23

 $\mathcal{NEPPSR}III$ Rohlf – p.34/58

 \mathcal{NEPPSR} III Rohlf – p.35/58

mSUGRA Minimal Supergravity

 $\mathcal{NEPPSR}III$ Rohlf – p.36/58

J. Rohlf, LHC IV p. 25

 $\mathcal{NEPPSR}III$ Rohlf – p.37/58

ATLAS extra dimensions

 $\mathcal{NEPPSR}III$ Rohlf – p.38/58

Corrected for:

- acceptance
- reconstruction efficiency
- resolution
- crystal saturation
- pileup at 10³⁵ cm⁻²s⁻¹

Backgrounds: Drell-Yan 2% $t\bar{t} < 1\%$

J. Rohlf, LHC IV p. 27

$\mathcal{NEPPSR}III$ Rohlf – p.39/58

Technicolor ATLAS

 $\mathcal{NEPPSR}III$ Rohlf – p.40/58

J. Rohlf, LHC IV p. 28

 $\mathcal{NEPPSR}III$ Rohlf – p.41/58

 $\mathcal{NEPPSR}[III$ Rohlf – p.42/58

 \mathcal{NEPPSR} III Rohlf – p.43/58

Asymptotic freedom CERN jet events 1982

 $\mathcal{NEPPSR}III$ Rohlf – p.44/58

Scattering quarks 1986

demonstrating:
1/r² strong force
spin 1 gluon
pointlike quarks

 $\mathcal{NEPPSR}III$ Rohlf – p.45/58

Scattering quarks 1986

demonstrating:
1/r² strong force
spin 1 gluon
pointlike quarks

 $\mathcal{NEPPSR}III$ Rohlf – p.45/58

Tracker

ATLAS: silicon + straws

CMS: silicon

	pixels	strips	trt straws
ATLAS	80M ch, 2 m 2	6M ch, 60 m 2	420k ch.
CMS	50M ch, 1 m 2	10M ch, 220 m 2	

 $\mathcal{NEPPSR}III$ Rohlf – p.46/58

ATLAS: liquid argon / Pb

CMS: crystal (PbWO₄)

	res. @ 50 GeV	material in front	thickness	$\Delta\eta\times\Delta\phi$
ATLAS	1.5%	2-4 χ ₀	21-36 χ ₀	front $0.003 imes 0.1$
				middle $0.025 imes 0.025$
				$_{ m back}~0.05 imes 0.025$
CMS	0.8%	0.4-1.3 χ ₀	25-27 χ_0	0.0174 imes 0.0174

 $\mathcal{NEPPSR}III$ Rohlf – p.47/58

ATLAS: scintillator / Fe

	coverage	res. @ 100 GeV	thickness	$\Delta\eta \times \Delta\phi$
ATLAS	$ \eta < 1.0$	8%	8-10 λ	front $0.1 imes 0.1$
extended barrel	$0.8 < \eta < 1.7$			_{back} $0.2 imes 0.1$
CMS	$ \eta < 1.4$	10%	11-15 λ	0.087 × 0.087

$\mathcal{NEPPSR}III$ Rohlf – p.48/58

HCAL end cap ATLAS: liq. argon / Cu

CMS: scintillator / brass

	coverage	res. @ 100 GeV	thickness	$\Delta\eta \times \Delta\phi$
ATLAS	$1.5 < \eta < 3.2$	8%	9λ	$1.5 < \eta < 2.5 \ 0.1 \ imes \ 0.1$
				$2.5 < \eta < 3.2 \ 0.2 \times 0.1$
CMS	$1.4 < \eta < 3.0$	10%	11 λ	$1.4 < \eta < 1.7 \ 0.087 \times 0.087$
				$1.7 < \eta < 3.0 \ 0.087 \times 0.17$

 \mathcal{NEPPSR} III Rohlf – p.49/58

CMS endcap contribution of Russian Navy

Artillery shells at Russian Nevy yard in Murmansk

After removing the business end'.

Muon Barrel drift tubes

CMS

30 mm diameter $\sigma = 100 \ \mu \mathrm{m}$

 $\begin{array}{l} \textbf{42 mm} \times \textbf{13 mm} \\ \sigma = 300 \ \mu\text{m} \end{array}$

 $\mathcal{NEPPSR}III$ Rohlf – p.51/58

Muon End cap cathode strip chambers

ATLAS

	coverage	space res.	time res.
ATLAS	$1 < \eta < 2.7$, 4 disks	60 μ m	7 ns
CMS	$1 < \eta < 2.4$, 4 disks	75-150 μm	4.5

 $\mathcal{NEPPSR}III$ Rohlf – p.52/58

11th Annual Joe Cronin Memorial Bluefish Tournament

Experimental high-energy physics is not unlike fi shing... to be successful you gotta know where (and how!) to fi sh! *NEPPSR III* Rohlf - p.53/58

Feynman x

"I am more sure of the conclusions than of any single argument which suggested them to me for they have an internal consistency which surprises me and exceeds the consistency of my deductive arguments which hinted at their existence."

Richard Feynman, "Very High Energy Collisions of Hadrons," *Phys. Rev. Lett.* **24**, 1415 (1969)

Feynman x

"I am more sure of the conclusions than of any single argument which suggested them to me for they have an internal consistency which surprises me and exceeds the consistency of my deductive arguments which hinted at their existence."

Richard Feynman, "Very High Energy Collisions of Hadrons," *Phys. Rev. Lett.* **24**, 1415 (1969)

Sound confusing? Things were a mess!

Predicting R London conference (July 1974)

$$R=\frac{\sigma_{\rm e^+e^-\rightarrow hadrons}}{\sigma_{\rm e^+e^-\rightarrow\mu^+\mu^-}}=\Sigma q_i^2$$

$$e^ \bar{q}$$
 q e^+ q

6	Han-Nambu with charm
6.69 - 7.77	Broken scale invariance
8	Tati quarks
8	trace anomaly II
9	gravitational cut-off
9	broken scale invariance
16	$SU_{12} imes SU_2$
35 1/3	rm SU $_{16} imes$ SU $_{1}6$
5000	high-Z quarks
70,383	Schwinger's quarks
∞	∞ partons

0.36	Bethe-Salpeter bound quarks
2/3	Gell-Mann Zweig quarks
0.69	vector meson dominance I
1	composite quarks
10/9	Gell-Mann Zweig with charm
2	colored quarks
2.5-3	vector meson dominance II
2-5	vector meson dominance III
3 1/3	colored charmed quarks
4	Han-Nambu quarks
5.7	trace anomaly

Reported by John Ellis

 $\mathcal{NEPPSR}III$ Rohlf – p.55/58

November Revolution 1974

Charmonium: Quantum mechanics of two spin 1/2 particles.

 $\mathcal{NEPPSR}III$ Rohlf – p.56/58

The next step

"An even more fundamental set of questions which I find more interesting than the number of quarks... have to do with the possiblility of a unified picture of forces in nature... Weinberg and Salam have made the first models of a unified weak and electromagnetic interaction theory... The experimental information required to establish these unified pictures will almost certainly require still higher energies: several hundred GeV in the center-of-mass and again, I believe, in the e⁺e⁻ system." Burt Richter, Nobel Lecture (1976).

 $\mathcal{NEPPSR}III$ Rohlf – p.57/58

The next step

"An even more fundamental set of questions which I find more interesting than the number of quarks... have to do with the possiblility of a unified picture of forces in nature... Weinberg and Salam have made the first models of a unified weak and electromagnetic interaction theory... The experimental information required to establish these unified pictures will almost certainly require still higher energies: several hundred GeV in the center-of-mass and again, I believe, in the e⁺e⁻ system." Burt Richter, Nobel Lecture (1976).

Letter from Richter to Carlo Rubbia on pp: Z⁰ maybe (IF machine works), W never!

 $\mathcal{NEPPSR}III$ Rohlf – p.57/58

Tracking the W boson UA1

 $\mathcal{NEPPSR}III$ Rohlf – p.58/58

Readout 10-100 million channels

The readout is made possible by two important developments in the last 5-10 years:

availability of millions of logic gates in a single package at low cost (< $$10^{-4}$ per "transistor")

availability of radiation hard electronics cold war dividend

Moore's Law prediciting the trend

Events at the LHC!

 $10^{33} \text{ cm}^{-2} \text{s}^{-1}$

 $10^{34} \ {\rm cm}^{-2} {\rm s}^{-1}$

 $\mathcal{NEPPSR}III$ Rohlf – p.61/58

LHC 26 km of superconducting magnets

 $\mathcal{NEPPSR}III$ Rohlf – p.62/58

LHC Dashboard dipole cold masses

Updated 31 Jul 2004

Data provided by P. Lienard AT-MAS

 $\overline{NEPPSRIII}$ Rohlf – p.63/58

LHC Dashboard dipole cold masses

Updated 31 Jul 2004

Data provided by P. Lienard AT-MAS

 $\overline{\mathcal{NEPPSR}III}$ Rohlf – p.63/58

Physics will not go as planned...

LHC physics is almost here (!)

- Higgs is the planned discovery, but the excitement is the UNKNOWN
- How could anyone not want to participate?

