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The Search for Hot Bulk QCD Matter

LHC

• Introduction to Rel. Heavy Ion Physics
• The Relativistic Heavy Ion Collider (RHIC)
• Creating Hot Bulk QCD Matter
• Using Hard Scattering to Probe the Matter
• Conclusions & Expectations
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Early 
Universe

National Geographic
(1994)

&
Michael Turner

quark-hadron
phase transition
2 x 1012 Kelvin

For more info see anything on 
Inflationary Universe by A. Linde



John Harris (Yale)                             NEPPSR, Craigville Beach MA, 25 August 2004

“In high-energy physics we have concentrated on 
experiments in which we distribute a higher and higher 
amount of energy into a region with smaller and smaller 
dimensions. 

In order to study the question of ‘vacuum’, we 
must turn to a different direction; we should investigate 
some ‘bulk’ phenomena by distributing high energy over 
a relatively large volume.”

T.D. Lee (Nobel Laureate)
Rev. Mod. Phys. 47 (1975) 267.
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Melt the QCD Vacuum!
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Lattice QCD at Finite Temperature

F. Karsch, et al.
Nucl. Phys. B605 (2001) 579

mu,d= ms

mu = md

ms > mu,d

TC ~ 175 ± 8 MeV → εC ~ 0.3 - 1 GeV/fm3

for Intro to LQCD
see R. Gupta hep-lat/9807028 
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Phase Diagram of QCD Matter
see: Alford, Rajagopal, Reddy, Wilczek

Phys. Rev. D64 (2001) 074017
LHC

RHIC
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Hot Bulk QCD Matter – Primordial Quark-Gluon Soup
• Standard Model → Lattice Gauge Calculations predict  

Deconfinement phase transition at high T and/or density in QCD
• Cosmology → Quark-hadron phase transition in early Universe

• Astrophysics → Cores of dense stars

• Establish properties of QCD at high T and density

• Can we make it in the lab?
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Relativistic Heavy Ion Collider (2000 → )

STAR
PHENIX

PHOBOS BRAHMS

RHIC

Design Performance Au + Au p + p
Max √snn 200 GeV 500 GeV
L [cm-2 s -1 ] 2 x 1026 1.4 x 1031

Interaction rates 1.4 x 103 s -1 3 x 105 s -1

Two Concentric 
Superconducting Rings

Ions:  A = 1 ~ 200, pp, pA, AA, AB
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Relativistic Heavy Ion Collider and Experiments

STARSTAR
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Space-time Evolution of RHIC Collisions
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Hard Scattering + Thermalization
(< 1 fm/c)

AuAu
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What Can We Learn from Collisions at RHIC?
• Early Stage of Collisions

– Parton (fast quark and gluon) scattering and propagation
– Pressure buildup from azimuthal asymmetries (elliptic flow)

• Phase Transitions?
– Deconfinement (s,⎯cc,⎯bb?)
– Chiral Restoration 

• Thermodynamic Properties
– Bjorken longitudinal expansion and energy density
– Baryo-chemical potential from baryon density/particle ratios
– Pressure from flow
– Entropy from particle production
– Temperature from chemical freezeout (particle ratios)
– Temperature from thermal freezeout (particle spectra)

• General - Collision Geometry, Space-time Evolution, Freezeout
– number of participants vs centrality
– stages of collisions (space-time diagram as function of geometry)
– short-lived resonances
– hadronization timescales

• Medium Effects?
– on masses and widths of resonances
– on parton propagation, other?
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Collisions at RHIC

Centrality → impact parameter (b) selection 
on collision geometry

“central”      =     head-on collision (b ~ 0)

“peripheral” =     collision (b ~ bmax)

x

z

y

participants:
nucleons in
nuclear overlap
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Au on Au Event at CM Energy ~ 130 A-GeV

Peripheral Event

color code ⇒ energy loss

beam
view

side view
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Au on Au Event at CM Energy ~ 130 A-GeV

Mid-central Event

color code ⇒ energy loss

beam
view

side view
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Au on Au Event at CM Energy ~ 130 A-GeV

Central Event

color code ⇒ energy loss

beam
view side view



John Harris (Yale)                             NEPPSR, Craigville Beach MA, 25 August 2004

θ

p
pT

Transverse Dynamics at RHIC



Definitions

• Relativistic treatment
Energy

where,

• Lorentz transforms

• Longitudinal and transverse kinematics

Transverse mass

Rapidity
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Useful relations
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What Can We Learn from Hadrons at RHIC?
• Can we learn about Hot Nuclear Matter?

– Equilibration? Thermodynamic properties?
– Equation of State?
– How to determine its properties?

• Hadron Spectrum

reflect bulk properties →Soft Physics
(pT < 2 GeV/c)               (99% of hadrons)

Hard Scattering & Heavy Quarks
→ probe the medium
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What Have We Learned at RHIC So Far?

Large energy densities (dn/dη, dET/dη) → ε  ≥ 5 GeV/fm3

30  − 100  x  nuclear densityCollective phenomena:
Large elliptic flow → Extreme early pressure gradients & energy densities

→ Hydrodynamic & requires quark-gluon equation of state!

Global observations:
Large produced particle multiplicities → dnch/dη |η=0 = 670, Ntotal ~ 7500

> 15,000 q +⎯q in final state, > 92% are produced quarks

Quark coalescence / recombination & flow 
→ constituent quark degrees of freedom
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Elliptic Flow →
Early Pressure in System
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Hydrodynamic Calculation of Elliptic Flow

P. Kolb, J. Sollfrank, and U. Heinz

Contours of equal 
energy density

Au+Au at b=7 fm

τ1 τ2 τ3 τ4

τ = 3.2 fm/c τ = 8 fm/c

y 
(fm

)

x (fm)

Early thermalization

Collective hydrodynamic 
behavior

Partonic? Energy density?
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Large Elliptic Flow Observed

• Azimuthal asymmetry of charged 
particles: 

dn/dφ ~ 1 + 2 v2(pT) cos (2 φ) + ...
x

z

y

Particle mass dependence of v2

Requires -

• Early thermalization

• Ideal hydrodynamics 

• ε ~ 25 GeV/fm3

• Quark-gluon Equation of State
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What Have We Learned at RHIC So Far?

Large energy densities (dn/dη, dET/dη) → ε  ≥ 5 GeV/fm3

30  − 100  x  nuclear densityCollective phenomena:
Large elliptic flow → Extreme early pressure gradients & gluon densities

→ quark-gluon equation of state!

Global observations:
Large produced particle multiplicities → dnch/dη |η=0 = 670, Ntotal ~ 7500

> 15,000 quarks in final state, > 92% are produced quarks

“Chemical” equilibration (particle yields & ratios):
Particles yields represent equilibrium abundances

→ universal hadronization temperature

Quark coalescence / recombination & flow 
→ constituent quark degrees of freedom
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Particle Ratios → Chemical Equilibrium → Temperature 
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Soft Sector (Bulk Dynamics) -What We Have Learned at RHIC!

Large energy densities (dn/dη, dET/dη) → ε  ≥ 5 GeV/fm3

30  − 100  x  nuclear densityCollective phenomena:
Large elliptic flow → Extreme early pressure gradients & gluon densities

→ quark-gluon equation of state!

Global observations:
Large produced particle multiplicities → dnch/dη |η=0 = 670, Ntotal ~ 7500

> 15,000 quarks in final state, > 92% are produced quarks

“Chemical” equilibration (particle yields & ratios):
Particles yields represent equilibrium abundances

→ universal hadronization temperature

Quark coalescence / recombination & flow 
→ constituent quark degrees of freedom

Small net baryon density (K+/K-,⎯B/B ratios)  → µB ~ 25 - 40 MeV
Chemical Freezeout Conditions → T = 177 MeV, µB = 29 MeV → T ~ Tcritical (QCD)
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QCD Phase Diagram

At RHIC:
T = 177 MeV
T ~ Tcritical (QCD)
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Hard Scattering to Probe the Hot Bulk QCD Medium

hadrons

leading particle

hadrons

leading particle
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Inclusive Hadron pt-spectra: √s = 200 GeV AuAu

power law:
σpp = d2N/dpt

2 = A (p0+pt)-n

PreliminarySTAR
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Hadron Spectra:  Comparison of AA to NN

Nuclear Modification Factor RAA:
AA = Nucleus-Nucleus
NN = Nucleon-Nucleon

ησ
η
ddpdT

ddpNdpR
T

NN
AA

T
AA

TAA /
/)( 2

2

=

Nuclear overlap integral:
# binary NN collisions / 
inelastic NN cross section

NN cross section

AA cross section

AA

(pQCD)

Parton energy loss 
→ R < 1    at large Pt
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Suppression of High Transverse Momentum Hadrons at RHIC

• Large transverse momentum hadrons are suppressed in
central collisions at RHIC

√snn = 17.3 GeV

√snn = 63 GeV

√snn = 130 GeV

by factor ~ 4 - 5 
in central collisions
at RHIC
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Centrality Dependence of Suppression at RHIC
Au+Au
130 GeV

Phys. Rev. Lett. 89, 202301 (2002)STAR
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Is Origin of Suppression Initial or Final State?

Final state
parton energy 

loss?

A + A collisions in medium:

gluon 
saturation?

nuclear effects in initial state

Initial state                            or

no parton
energy loss

nuclear effects in initial state

gluon 
saturation?p,d + A collisions -

no medium

Distinguish effects -
initial state
final state
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Final State Suppression / Initial State Enhancement!
• The hadron spectra at RHIC from p-p, Au-Au 

and d-Au collisions establish existence of a new 
final-state effect - early parton energy loss –
from strongly interacting, dense matter in 
central Au-Au collisions

Au + Au Experiment d + Au Control Experiment

Preliminary DataFinal Data
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Extreme Energy Densities!
– Au-Au suppression 

(I. Vitev and M. Gyulassy, hep-ph/0208108)
– d-Au enhancement (I. Vitev, nucl-th/0302002 )

understood in an approach that combines multiple 
scattering with absorption in a dense partonic medium

high pT probes
require

dNg/dy ~ 1100

ε > 100 ε0 Au-Au

d-Au

Au + Au
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Hard Scattering (Jets & Leading Particles)
as a Probe of Dense Matter

Jet event in e+e− collisionSTAR p + p → jet event

Can we see jets in high energy Au+Au?

STAR Au+Au (jet?) event
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In QCD Medium
Additional kT

Significant energy loss? 
⇒high pT suppression

Sensitive to color Sensitive to color 
properties of mediumproperties of medium

coneR

Studying Jets and High Pt Particles in Detail at RHIC

Hard probes ⇒ early times
Calculable: pQCD
Abundant at RHIC, LHC

kT“radiative corrections”
pre- and post-scattering
di-jet: ∆φ≠π

Fragmentation:

z hadron

parton

p
p

≡
Fragmentation:

p(hadron)
p (parton)z = Induced Gluon Radiation

~collinear ⇒gluons in cone
“Softened” fragmentation

in je

i j t

t

n e

:  increases

z :  decreases
chn

Gyulassy et al., nucl-th/0302077
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Au+Au Leading Particle (Jet) Azimuthal Correlations

Assume:
Au+Au event with high pT particle 
is a superposition of 

pp event w. high pT particle + 
AuAu event w. elliptic flow
– v2 from reaction plane 

analysis
– A from fit in non-jet 

region (0.75 < |∆φ| < 2.24)

C2(Au+ Au) =C2(p+ p)+ A*(1+2v2
2 cos(2∆φ))

Peripheral Au + Au

Away-side jet

STAR 200 GeV/c
peripheral & central Au+Au

p+p minimum bias
4 < pT(trig) < 6 GeV/c

2 < pT(assoc.) < pT (trig)
Central Au + Au

disappears
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Hammering the Nail in the Coffin

Pedestal&flow subtracted

no jet quenching!

d + Au 
“di-jet” correlations
similar to p + p

Au + Au 
away-side correlation
quenched!

Quenching of Away-side “jet” is final state effect
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Hard Scattering Comments

High Pt hadrons 
suppressed in central Au + Au
enhanced in d + Au

Back-to-back Jets
Di-jets in p + p, d + Au 

(all centralities)
Away-side jets quenched 

in central Au + Au
→ emission from surface
→ strongly interacting medium

x
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Summary - What Have We Learned at RHIC So Far?

Quark coalescence /flow 
→ constituent quark 
degrees of freedom

Extreme initial densities –
ε  ≥ 5 GeV/fm3

 ~ 30  - 100 x nuclear density

> 15,000 q +⎯q in final state

Equilibrium abundances –
Universal hadronization T ~ Tcrit
Rapid u, d, s equilibration near Tcrit

parton E loss –
large gluon densities 
→ opaque!

Ideal hydro - Early 
thermalization & 
quark-gluon EOS

Pedestal&flo
w subtracted

parton E loss –
large gluon densities 
→ opaque!

Indicates strongly 
interacting, bulk QCD-matter 
formed in RHIC collisions

PRL 91 072305 (2003)Initial state gluon saturation 
(color glass condensate?) -

forward rapidities → low-x
d+Au is suppressed
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Still to do!

RAA ≡
d2NAA dydpT

d 2Npp dydpT ⋅ Ncoll
AA

Deconfined QGP?
⎯cc, ⎯bb suppression & melting sequence
Strangeness enhancement?

Thermalized? 
Open charm, beauty, multiply-strange baryon production & flow

Establish properties of the QCD medium
Probe parton E-loss with higher pT triggers, jets, γ-jet
Flavor dependence of suppression & propagation
Light vector mesons (mass and width modifications)

Direct Photon Radiation?
New phenomena…….
LHC!
RHIC II!

“the adventure continues!”
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Still the beginning

RHIC → LHC ions → RHIC II


