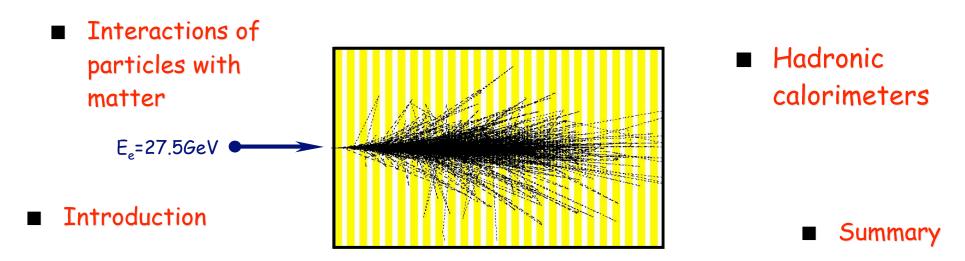
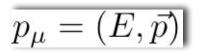
Calorimetry in High-Energy Nuclear and Particle Physics Experiments

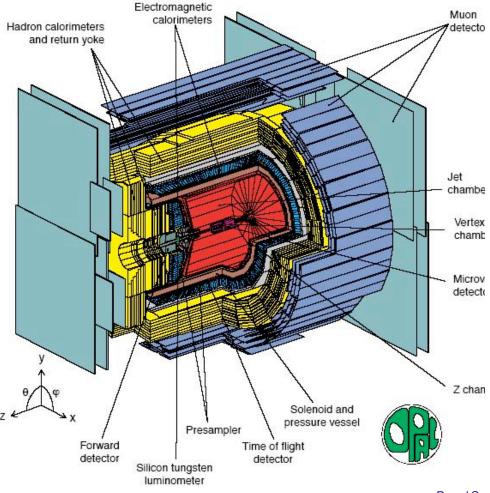

> Bernd Surrow MIT

Outline

- Hadronic showers
- Electromagnetic showers

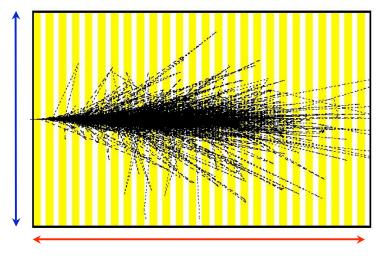
 Electromagnetic calorimeters




Introduction

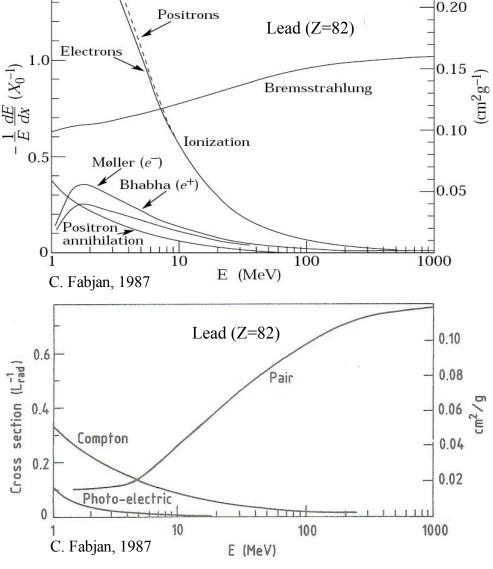
Definition and importance of calorimetry

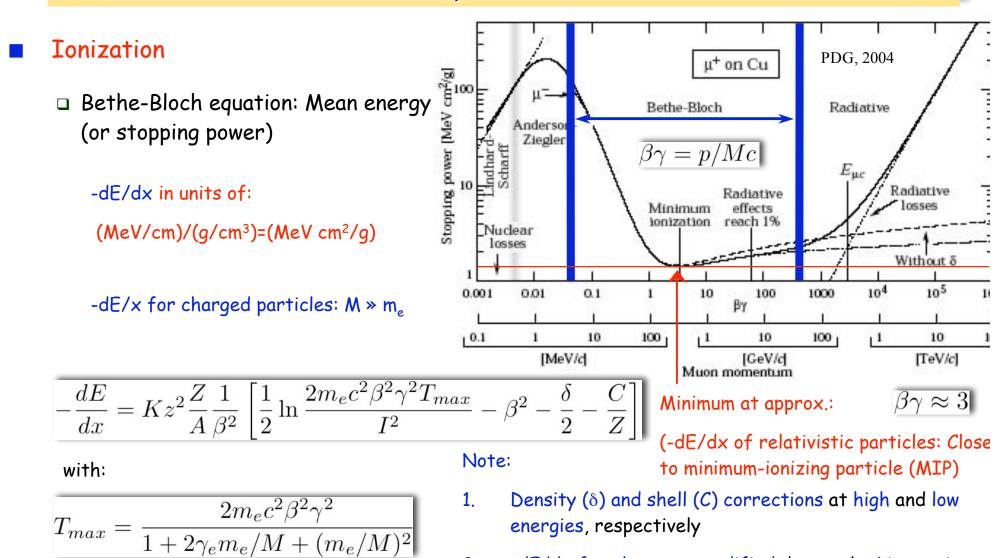
- $\hfill\square$ Measure p_{μ} of final-state particles in high-energy particle collisions
- Calorimeter: Prime device to measure energy (E) of high-energy particles through total absorption



Introduction

Basic properties of calorimeters


- Conceptual idea of calorimeter principle: Shower formation of decreasingly lower-energy particles
- Small fraction of deposited energy is converted into a measurable signal depending on the type of instrumented materials being used:
 - Scintillation light
 - Cherenkov light
 - Ionization charge
- Important: Calorimeter has to be large enough (long./trans. dimension) to contain the full shower
- Unique properties of calorimeters:
 - Energy resolution of well designed calorimeters improve with increasing energy: $\sigma_E/E \propto 1/\sqrt{E}$
 - Longitudinal dimension necessary to absorb energy E scales logarithmically with energy E: $\propto \ln E$

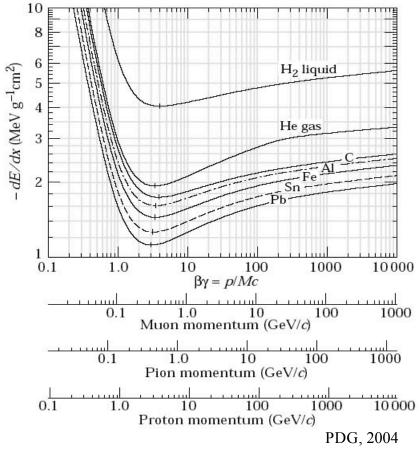

- Segmentation allows to measure impact position of incident particle
- Fast time response, depending on type of instrumented materials, allows to accept high event rate: Trigger input
- Response depends on particle type (trans./long. shower formation): Means of electron/hadron separation

Overview of interaction processes

- Particles created in the collision of highenergy particle beams experience electromagnetic and/or nuclear interactions in the detector material they pass through
- Understanding these processes are vital for the design of any detector system!
- Main processes for charged particles:
 - Ionization
 - Cherenkov radiation
 - Bremsstrahlung
- Main processes for photons:
 - Photoelectric effect
 - Compton scattering
 - Pair production

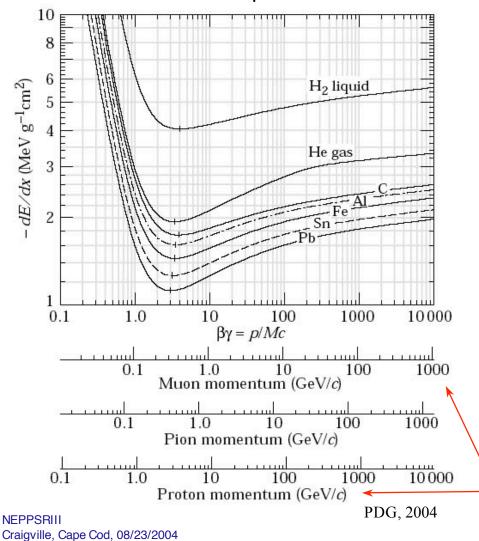
NEPPSRIII Craigville, Cape Cod, 08/23/2004

 -dE/dx for electrons modified due to the kinematics, spin and identity of the incident electron with the medium electrons


 $K = 4\pi N_A r_e^2 m_e c^2$

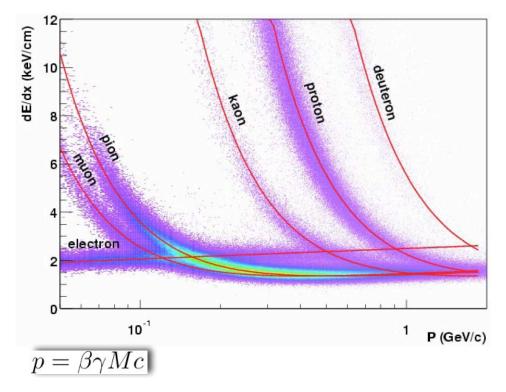
Ionization

Material	Z	A	Z/A	dE/dx min (MeVcm²/g)	Density (g/cm³)
H ₂ (liquid)	1	1.008	0.992	4.034	0.0708
He	2	4.002	0.500	1.937	0.125
С	6	12.01	0.500	1.745	2.27
Al	13	26.98	0.482	1.615	2.70
Cu	29	63.55	0.456	1.403	8.96
РЬ	82	207.2	0.396	1.123	11.4
W	74	183.8	0.403	1.145	19.3
U	92	238.0	0.387	1.082	19.0
Scint.			0.538	1.936	1.03
BGO			0.421	1.251	7.10
CsI			0.416	1.243	4.53
NaI			0.427	1.305	3.67


□ Medium dependence

• Weak dependence on the medium, since $Z/A \approx 0.5$:

- Scintillator: dE/dx|_{min} ≈ 2MeV/cm
- Tungsten: dE/d×|_{min} ≈ 22MeV/cm


Ionization

Particle mass dependence

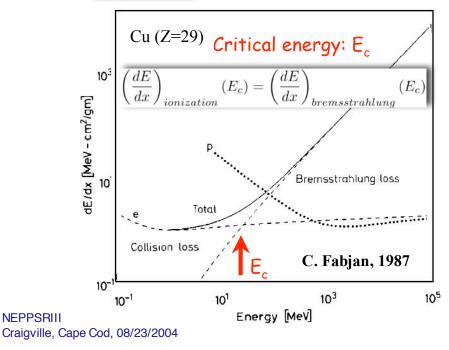
STAR Time-Projection Chamber (TPC):

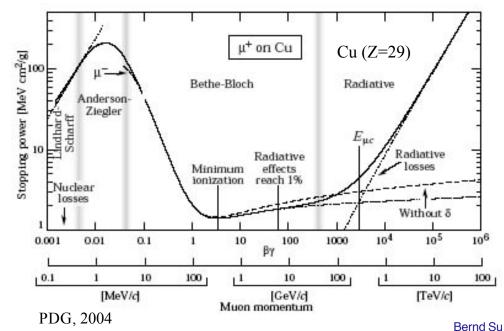
10% Methan / 90% Argon (2mbar above athm. pressure)

 Minimum in βγ ≈ 3 occurs for fixed momentum p at different locations depending on particle mass: Means of particle identification at low momentum p!

Example: $M_p/M_\mu \approx 10$

Bernd Su


Bremsstrahlung


 Radiation of real photons in the Coulomb field of the nuclei of the absorber: Mean energy loss due to Bremsstrahlung

 $\frac{dE}{dx} = -4\alpha \frac{\rho N_A}{A} Z(Z+1) r_e^2 \ln(183Z^{-1/3}) E \propto \frac{E}{m_e^2}$ Note: Effect plays only a role for e^{+/-} and ultra-relativistic muons (> 1 TeV) $((m_\mu/m_e)^2 \approx 4 \cdot 10^4)$

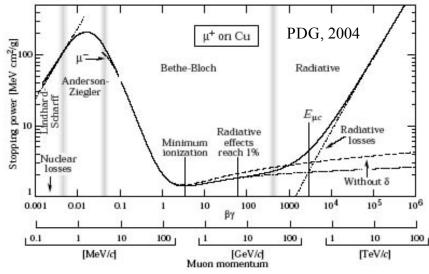
 \Box Definition of radiation length X₀:

$$\frac{dE}{dE} = \frac{dx}{X_0}$$

 $\frac{1}{X_0} = 4\alpha \frac{\rho N_A}{A} Z(Z+1) r_e^2 \ln(183Z^{-1/3})$

e

Bremsstrahlung


 \square Material dependence in radiation length X_0

□ Critical energy:

 $E_c \approx \frac{800 MeV}{Z+1.2}$

 $E_c(e^- \text{ for Cu } Z = 29) \approx 20 MeV$

 $E_c(\mu^-$ for Cu $Z=29)\approx 800 GeV$

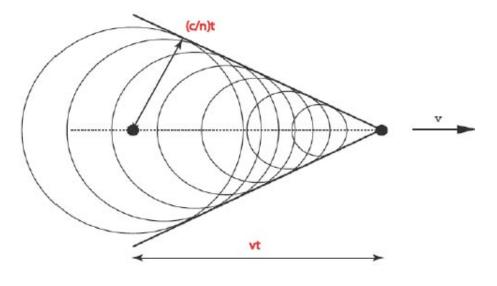
Material	Z	A	Z/A	X ₀ (cm)	Density (g/cm³)
H ₂ (liquid)	1	1.008	0.992	866	0.0708
He	2	4.002	0.500	756	0.125
С	6	12.01	0.500	18.8	2.27
Al	13	26.98	0.482	8.9	2.70
Си	29	63.55	0.456	1.43	8.96
РЬ	82	207.2	0.396	0.56	11.4
W	74	183.8	0.403	0.35	19.3
U	92	238.0	0.387	0.32	19.0
Scint.			0.538	42.4	1.03
BGO			0.421	1.12	7.10
CsI			0.416	1.85	4.53
NaI			0.427	2.59	3.67

NEPPSRIII Craigville, Cape Cod, 08/23/2004

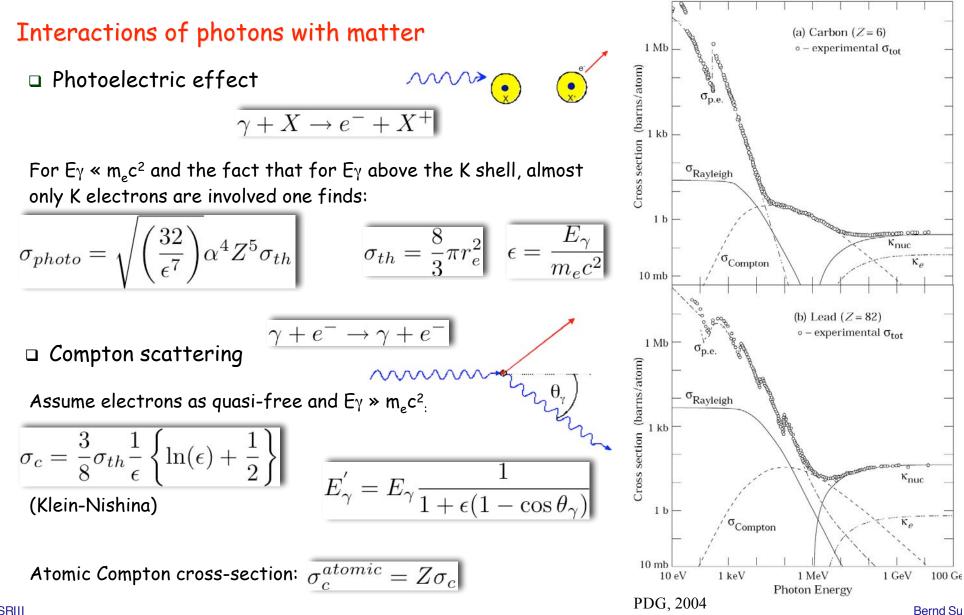
Cherenkov radiation

 Definition: Cherenkov radiation arises when a charged particle in a material moves faster than the speed of light in that same medium:

$$\beta c = v = c/n$$


Condition for Cherenkov radiation to occur:

$$\cos\theta_c = \frac{1}{\beta n}$$


 $v_{particle} > c/n$

□ Energy emitted per unit path length:

$$\frac{dE}{dx} = 4\pi^2 e^2 \int_{\beta n > 1} \frac{1}{\lambda^3} \left(1 - \frac{1}{\beta^2 n^2} \right) d\lambda$$

- Example: Lead-glass (Passive absorber material = Active detector material) calorimeter (Type SF5):
 Density: ρ = 4.08g/cm³
 - Radiation length: $X_0 = 2.54$ cm
 - Index of refraction: n = 1.67

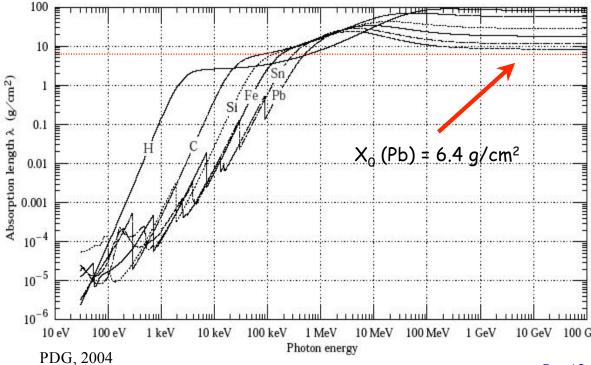
NEPPSRIII Craigville, Cape Cod, 08/23/2004

Interactions of photons with matter

□ Pair production

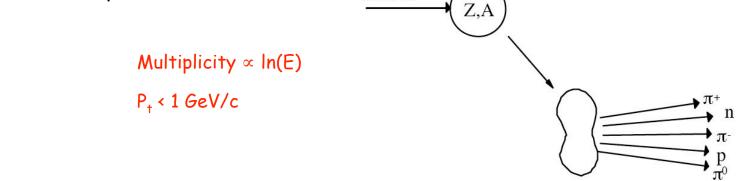
$$\sigma_{pair} = 4\alpha Z(Z+1)r_e^2 \left[\frac{7}{9}\ln(183Z^{-1/3}) - \frac{1}{54}\right]$$

$$\frac{1}{\lambda_{pair}} = \frac{N_A \rho}{A} \sigma_{pair} \approx \frac{7}{9} 4\alpha \frac{\rho N_A}{A} Z(Z+1) r_e^2 \ln(183Z^{-1/3}) = \frac{7}{9} \frac{1}{X_0} \qquad \frac{1}{\lambda_{pair}} \approx \frac{7}{9} \frac{1}{X_0}$$


Absorption coefficient

Total probability for $\boldsymbol{\gamma}$ interaction in matter:

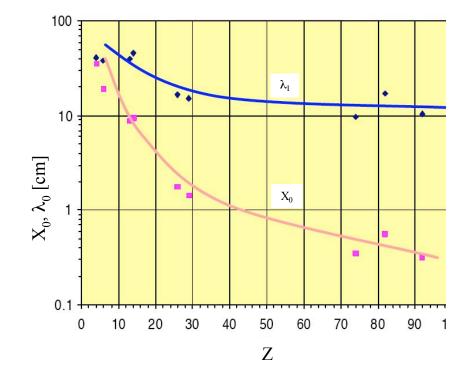
$$\sigma = \sigma_{photo} + Z\sigma_c + \sigma_{pair}$$


Probability per unit length or total absorption coefficient (Inverse of absorption length λ of γ):

$$\mu = \sigma \left(\frac{N_A \rho}{A} \right) \quad I = I_0 e^{-\mu x}$$

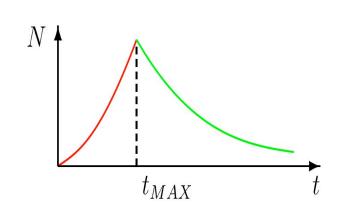
Nuclear interactions

The interaction of energetic hadrons (charged or neutral) is determined by various nuclear processes:
hadron



- Excitation and finally breakup of nucleus: nuclear fragments and production of secondary particles
- □ For high energies (> 1GeV) the cross-sections depend only little on the energy and on the type of the incident particle (p, π , K, ...)
- \square Define in analogy to X_0 a hadronic interaction length λ_{I} :

$$\lambda_I = \frac{A}{N_A \sigma_{total}} \propto A^{\frac{1}{3}}$$


Comparison of nuclear interaction length (in cm) and radiation length (in cm)

Material	Z	A	Z/A	X ₀ (cm)	λ _I (cm)	Density (g/cm³)
H ₂ (liquid)	1	1.008	0.992	866	718	0.0708
He	2	4.002	0.500	756	520	0.125
С	6	12.01	0.500	18.8	38.1	2.27
Al	13	26.98	0.482	8.9	39.4	2.70
Cu	29	63.55	0.456	1.43	15.1	8.96
Pb	82	207.2	0.396	0.56	17.1	11.4
W	74	183.8	0.403	0.35	9.58	19.3
U	92	238.0	0.387	0.32	10.5	19.0
Scint.			0.538	42.4	81.5	1.03
BGO			0.421	1.12	22.1	7.10
CsI			0.416	1.85	36.9	4.53
NaI			0.427	2.59	41.1	3.67

Electromagnetic shower development

- □ Simple qualitative model for shower development (Heitler)
 - Consider only: bremsstrahlung and pair production
 - Each electron with $E > E_c$ travels $1X_0$ and then gives up half of its energy to a bremsstrahlung photon
 - Each photon with $E > E_c$ travel $1X_0$ and then undergoes pair production with each created particle receiving half of the energy of the photon
 - Electrons with E < ${\rm E_c}$ cease to radiate and lose remaining energy through ionization
 - Neglect ionization losses for E > E_c

Total number of particles after $t X_0$:

$$N(t) = 2^t = e^{t \ln 2}$$

Average energy of shower particle at depth t:

 $E(t) = E_0/2^t = E_0/e^{t \ln 2}$ $E(t) = E_c \quad t_{max} = \ln(E_0/E_c)/\ln 2 \propto \ln(E_0)$ $N_{max} = e^{t_{max} \ln 2} = E_0/E_c$

After t=t_{max}: ionization, compton effect and photoelectric effect!

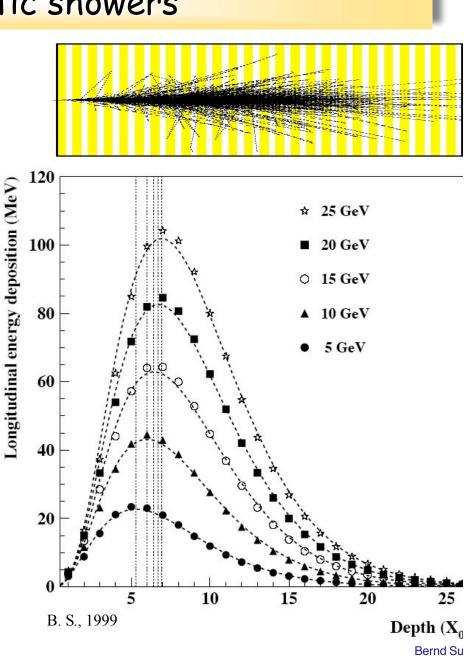
NEPPSRIII Craigville, Cape Cod, 08/23/2004 Bernd Su

Longitudinal shower profile

- □ Size of shower grows only logarithmically with E
- Rossi's approximation B (Analytical description of shower development):

quantity	incident electron	incident photon
t_{max}	$\ln y - 1$	$\ln y - 0.5$
t_{med}	$t_{max} + 1.4$	$t_{max} + 1.7$
N_{max}	$\frac{0.3y}{\sqrt{\ln y - 0.37}}$	$\frac{0.3y}{\sqrt{\ln y - 0.31}}$

□ Longitudinal profile:


$$\frac{dE}{dt} = E_0 \frac{b^{\alpha+1}}{\Gamma(\alpha+1)} t^{\alpha} e^{-bt}$$

 $t_{max} = \alpha/b$

□ 95% shower containment:

$$t_{max}(25GeV \text{ for W}) \approx 7$$

 $L(95\%) \approx t_{max} + 0.08Z + 9.6$

$$L(95\% \text{ for W}) \approx 22$$

B. S., 1999

10

10

10 0.3

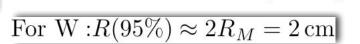
0.2

0.1

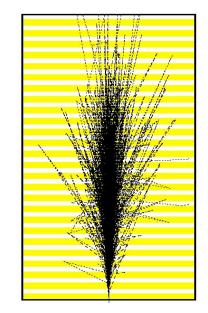
A

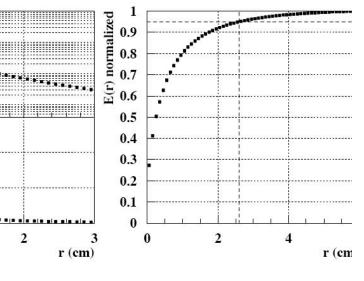
dE/dr normalized dE/dr normalized

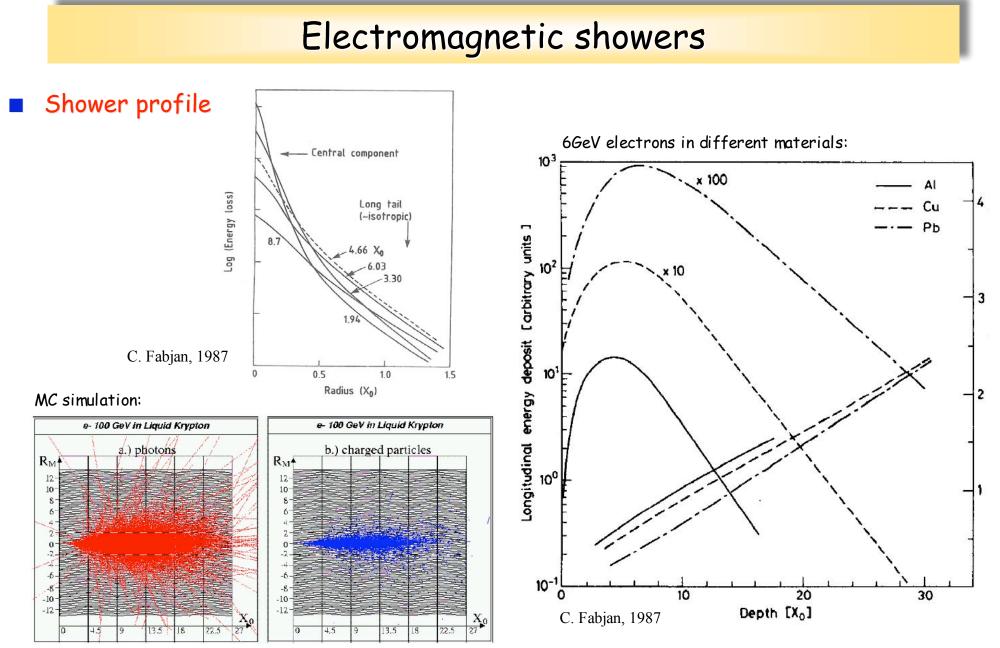
 $= \frac{1}{N} \left\{ e^{-\sqrt{r/\lambda_1}} + C_{12} e^{-r/\lambda_2} \right\}$


Transverse shower profile

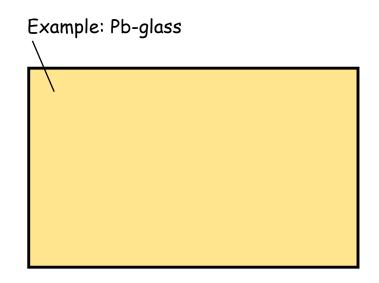
- □ Contributions to widening of shower:
 - Opening angle between e⁻/e⁺ for pair production
 - Emission of bremsstrahlung photons
 - Multiple scattering, dominant for the low-energy part of shower
- Transverse shower structure:
 - High-energy core
 - Low-energy halo
- Gradual widening of shower scales with Molière radius R_M: E_{s≈}21MeV

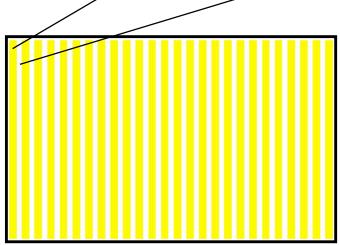

$$R_M \approx 7 \frac{A}{Z} \qquad \qquad R_M \approx E_S \frac{X_0}{E_c}$$


□ 95% shower containment:

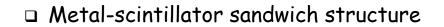

$$R(95\%) \approx 2R_M$$

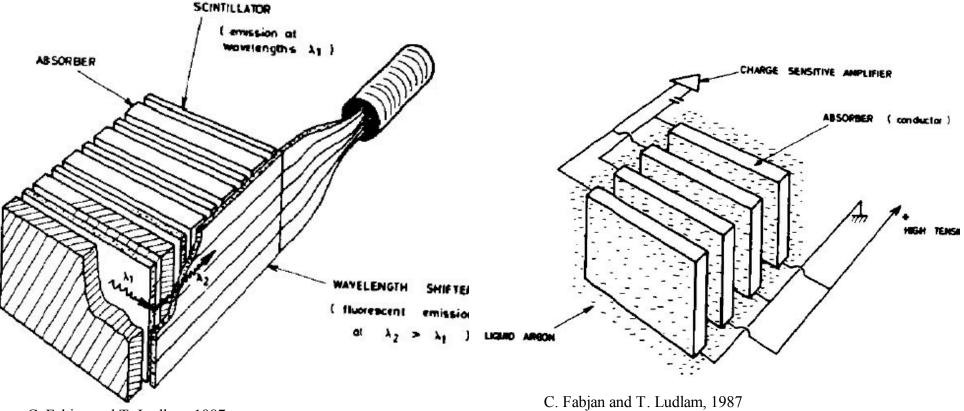
 $\frac{dE}{dr}$




D. Wegener, 2001

Calorimeter types


- Homogeneous calorimeter
 - Detector=Absorber
 - Good energy resolution
 - Limited position resolution (particularly in longitudinal direction)
 - Only used for electromagnetic calorimetry
- Sampling calorimeter
 - Detectors (active material) and absorber (passive material) separated: Only part of the energy is sampled
 - Limited energy resolution
 - Good position resolution
 - Used both for electromagnetic and hadron calorimeter


Example: Tungsten (W) - scintillator

Basic readout types for sampling calorimeters

Metal-liquid argon ionization chamber

C. Fabjan and T. Ludlam, 1987

Scintillators

- General comments
 - Concept: Small fraction energy lost by a charged particle can excite atoms in the scintillation medium. A small percentage of the energy released in the subsequent deexcitation can produce visible light
 - Inorganic (e.g. crystals: BGO, CsI, PbWO₄) and organic scintillator are known
 - Organic scintillators: Organic crystals and liquid scintillators and plastic scintillators

Plastic scintillators

- Wide-spread use as trigger counters and in the calorimeter sampling structures as active detector material
- Example: Rough design numbers for a plastic scintillator coupled to a photomultiplier tube (PMT):
 - Energy loss in plastic (MIP): 2MeV/cm
 - Scintillation efficiency: 1photon/100eV
 - Collection efficiency: 0.1
 - Quantum efficiency: 0.25

Number of photoelectrons: ~500

With a PMT gain of 10⁶ one would collect 80pC!

Energy resolution: General considerations

- Intrinsic fluctuations
 - Track length T: Total length of all charged particle tracks • within a calorimeter
 - Total detectable track length: •

- Intrinsic resolution:
- Illustrative example: Pb-glass
- □ Intrinsic sampling fluctuations

$$\begin{split} & N_{max} = E_0/E_{min} \\ & (\sigma_E/E)_{intrinsic} \sim \sigma_{N_{max}}/N_{max} = 1/\sqrt{N_{max}} \propto 1/\sqrt{E_{min}} \simeq 0.7 MeV \text{ for } E_0 = 1 GeV \\ & \overline{N_{max}} = 1000/0.7 = 1500 \\ & \Rightarrow \text{Resolution: few percent!} \end{split}$$

- In a sampling calorimeter, one determines not the total • track length T but only a fraction of it thickness of passive and active absorber
- Number of crossings:
- Sampling resolution:

traction of it depending on the active absorber plates
$$N_x = \frac{T_d}{d} = F(z) \frac{E_0}{E_c d}$$

$$(\sigma_E/E)_{sampling} \sim \sigma_{N_x}/N_x = 1/\sqrt{N_x}$$

NEPPSRIII Craigville, Cape Cod, 08/23/2004

$$T = F(z)\frac{E_0}{E_c}$$

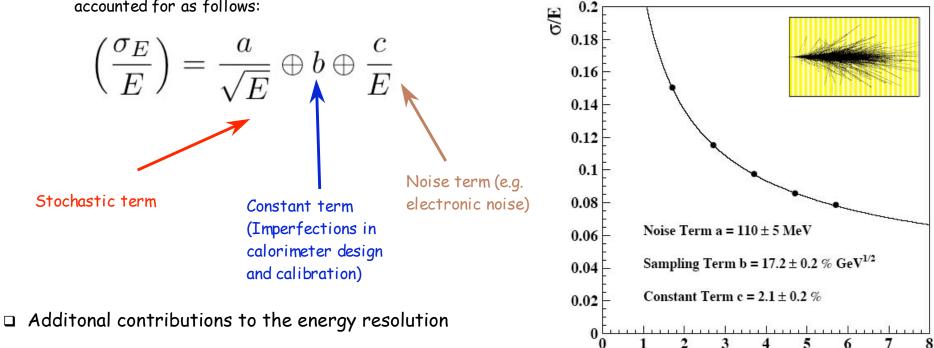
$$z = 4.58 \frac{Z}{A} \frac{E_{min}}{E_c}$$

$$F(z) = e^{z} \left[1 + z \ln(z/1.526) \right]$$

detectors

absorbers

$$N_{max} = E_0 / E_{min}$$


$$(E/E)_{intrinsic} \sim \sigma_{N_{max}}/N_{max} = 1/\sqrt{N_{max}} \propto 1/\sqrt{E_0}$$

 $E_{min} \simeq 0.7 MeV$ for $E_0 = 1 GeV$

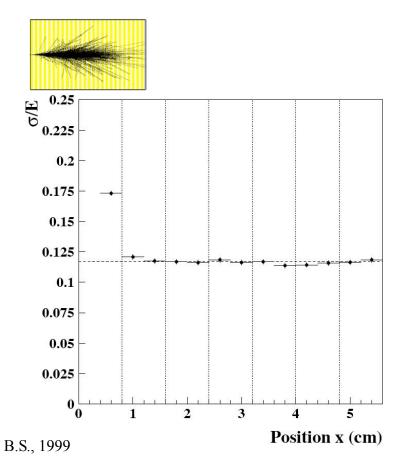
Bernd Su

Energy resolution: General considerations

Instrumental effects

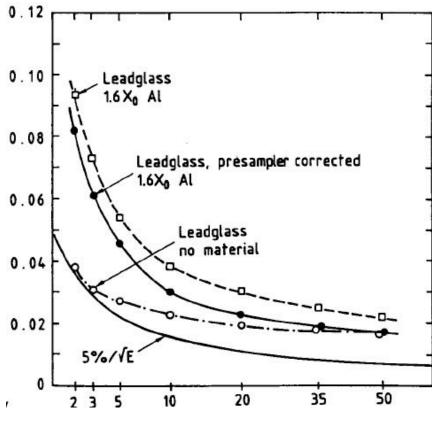
• Effects other then the intrinsic resolution components are accounted for as follows:

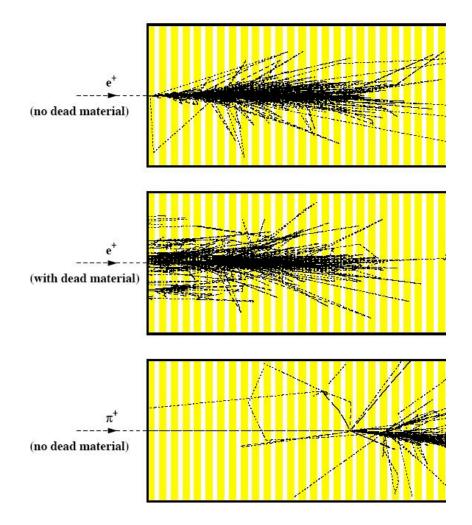
B.S., 1999


- Longitudinal shower leakage
- Transverse shower leakage
- Dead material effects

E (GeV)

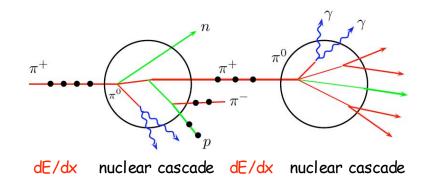
Energy resolution: Limitations

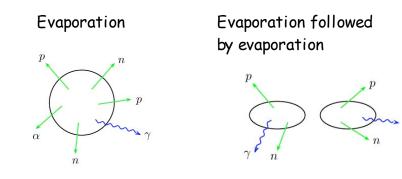

Longitudinal and transverse shower leakage



Energy resolution: Limitations

Dead material effects


OPAL collaboration, C. Beard et al. NIM A 286 (1990) 117.


Hadronic shower development

- General comment: Complexity of of hadronic and nuclear processes produce multitude of effects that determine the functioning and performance of hadron calorimeters
 - Many channels compete in the development of hadronic showers
 - Larger variations in the deposited and visible energy
 - More complicated to optimize
- □ Sizeable electromagnetic (e) besides hadronic (h) shower contribution mainly from π^0 decay (1/3 of pions)
- Invisible energy due to delayed emitted photons in nuclear reactions, soft neutrons and binding energy
- Visible energy smaller for hadronic (h) than for electromagnetic
 (e) showers: Ratio of response e/h > 1
- Larger intrinsic fluctuations for hadronic than electromagnetic showers
- Improvements: Increase visible energy to get e/h=1:
 Compensation (Compensation for the loss of invisible energy)!
- Discussed instr. effects for e showers also hold for h showers

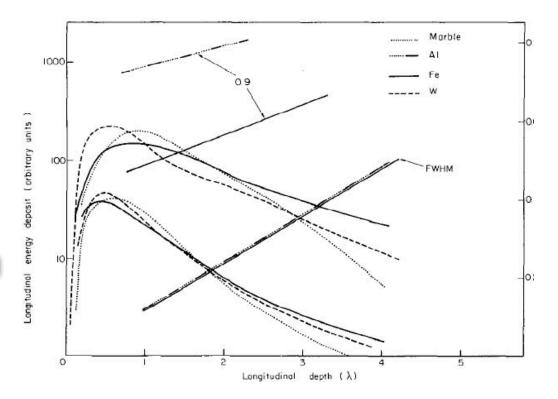
Step 1: Production of energetic hadrons with a mean free path given by the nuclear interaction length:

Step 2: Hadronic collisions with material nuclei (significant part of the primary part of primary energy is consumed in nuclear processes):

NEPPSRIII Craigville, Cape Cod, 08/23/2004 Bernd Su

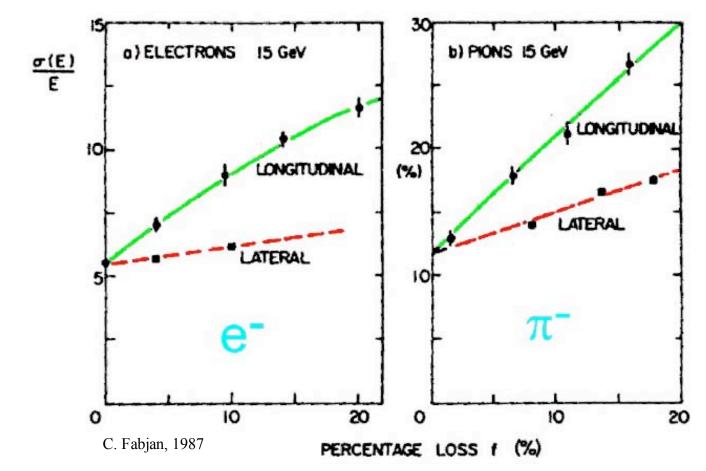
Hadronic shower profile

- \square Longitudinal and transverse shower shape characterized by $\lambda_{\rm I}$
- Hadronic showers are much longer and broader then electromagnetic showers: Means of e/h separation
- Longitudinal containment:


 $t_{95\%} = a \ln E + b$

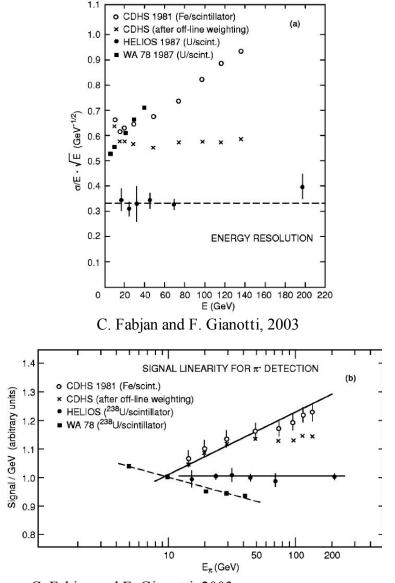
 $t_{max}(\lambda_I) = 0.2\ln E + 0.7$

 $Fe: a = 9.4, b = 39, E = 100 GeV: t_{95\%} = 80 cm$


Transverse containment:

- 95% of shower contained with a cylinder of radius $\lambda_{\rm I}$
- Example: 16.7 cm for Fe

C. Fabjan, 1987


Energy resolution: Example of longitudinal and transverse shower leakage

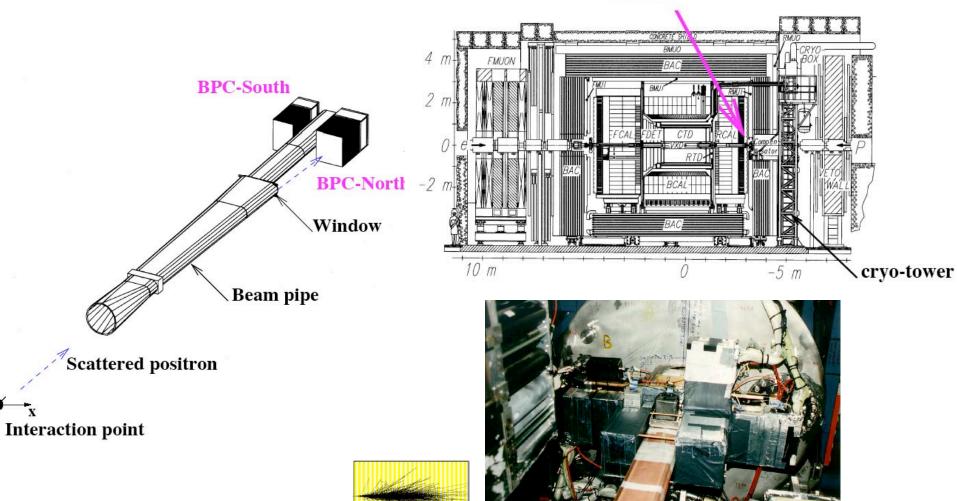
• Longitudinal leakage more serious than transverse shower leakage!

Energy resolution: Concept of compensation

- Compensation for loss of invisible energy: e/h=1
- Noncompensating detectors show deviations from scaling in 1/JE and non-linearity in signal response
- □ How can compensation be achieved?
 - Reduce e and increase h component
 - High-Z material such as U will absorb larger fraction of energy of electromagnetic part of shower: Smaller signal in active part from e contribution!
 - For the hadronic part, low energy neutrons are not affected by U. Interaction of n with hydrogen (large n-p cross section): Recoil proton produced in active part contributes to calorimeter signal thus larger signal in active part from h contribution
 - The amount of electromagnetic reduction and neutron amplification is set by the ratio of absorber to active material: Tuning this ratio yields compensation!
 - Other techniques: Software compensation (H1 Liquid Ar calorimeter)

C. Fabjan and F. Gianotti, 2003

NEPPSRIII Craigville, Cape Cod, 08/23/2004 Bernd Su


Electromagnetic and hadronic calorimeters

Overview

Technology (Experiment)	Depth	Energy resolution	Date
NaI(Tl) (Crystal Ball)	$20X_0$	$2.7\%/E^{1/4}$	1983
$\operatorname{Bi}_4\operatorname{Ge}_3\operatorname{O}_{12}(\operatorname{BGO})(\operatorname{L3})$	$22X_0$	$2\%/\sqrt{E}\oplus 0.7\%$	1993
CsI (KTeV)	$27X_0$	$2\%/\sqrt{E}\oplus 0.45\%$	1996
CsI(Tl) (BaBar)	$16 - 18X_0$	$2.3\%/E^{1/4} \oplus 1.4\%$	1999
CsI(Tl) (BELLE)	$16X_0$	1.7% for $E_{\gamma} > 3.5 \text{ GeV}$	1998
$PbWO_4 (PWO) (CMS)$	$25X_0$	$3\%/\sqrt{E}\oplus 0.5\%\oplus 0.2/E$	1997
Lead glass (OPAL)	$20.5X_{0}$	$5\%/\sqrt{E}$	1990
Liquid Kr (NA48)	$27X_0$	$3.2\%/\sqrt{E} \oplus \ 0.42\% \oplus 0.09/E$	1998
Scintillator/depleted U (ZEUS)	$20 - 30X_0$	$18\%/\sqrt{E}$	1988
Scintillator/Pb (CDF)	$18X_0$	$13.5\%/\sqrt{E}$	1988
Scintillator fiber/Pb spaghetti (KLOE)	$15X_0$	$5.7\%/\sqrt{E} \oplus 0.6\%$	1995
Liquid Ar/Pb (NA31)	$27X_0$	$7.5\%/\sqrt{E} \oplus 0.5\% \oplus 0.1/E$	1988
Liquid Ar/Pb (SLD)	$21X_0$	$8\%/\sqrt{E}$	1993
Liquid Ar/Pb (H1)	$20 - 30X_0$	$12\%/\sqrt{E}\oplus1\%$	1998
Liquid Ar/depl. U (DØ)	$20.5X_0$	$16\%/\sqrt{E}\oplus 0.3\%\oplus 0.3/E$	1993
Liquid Ar/Pb accordion (ATLAS)	$25X_0$	$10\%/\sqrt{E} \oplus 0.4\% \oplus 0.3/E$	1996


Sampling calorimeter: ZEUS Beam Pipe Calorimeter (BBC) at ep collider HERA **BPC**

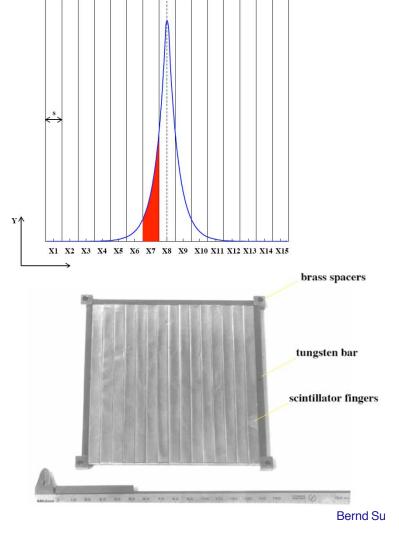
y t

Sampling calorimeter: ZEUS Beam Pipe Calorimeter (BBC) at ep collider HERA

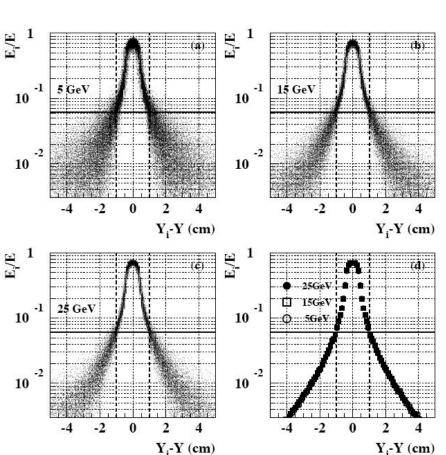


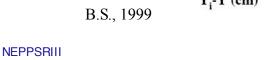
□ Specifications:

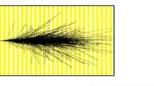
- Tungsten-scintillator electromagnetic-sampling calorimeter
- > Depth: 24 X₀
- Alternating horizontal and vertical oriented 8 mm wide scintillator fingers
- > Energy resolution: $17\%/\sqrt{E}$
- > Accuracy of energy calibration 0.5%
- > Uniformity: 0.5
- > Position resolution: < 1 mm</p>
- > Alignment: 0.5 mm
- > Time resolution: < 1 ns

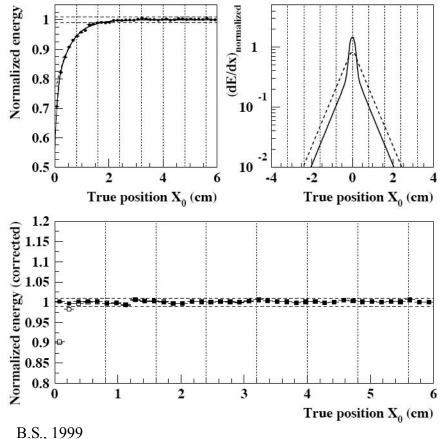

Sampling calorimeter: ZEUS Beam Pipe Calorimeter (BBC) at ep collider HERA

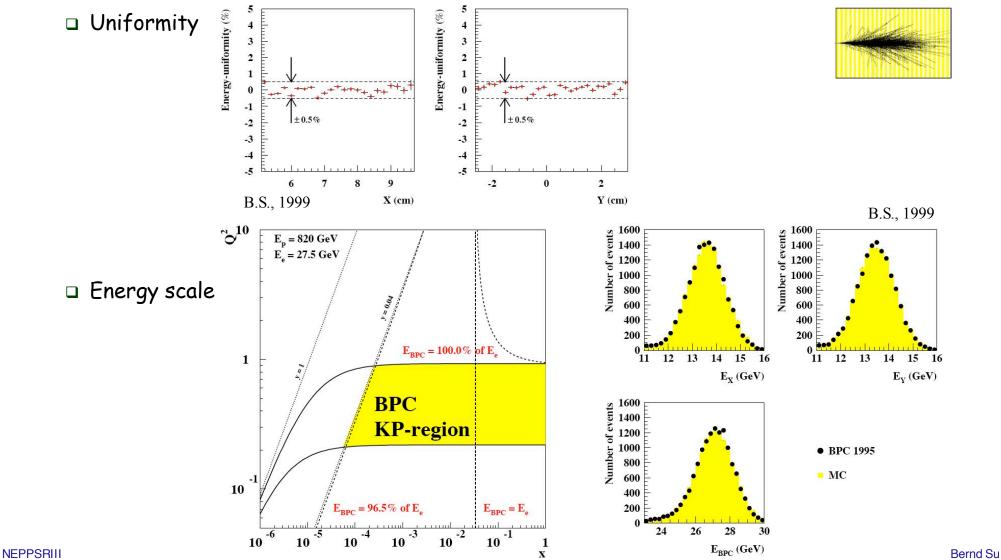
🗆 Layout

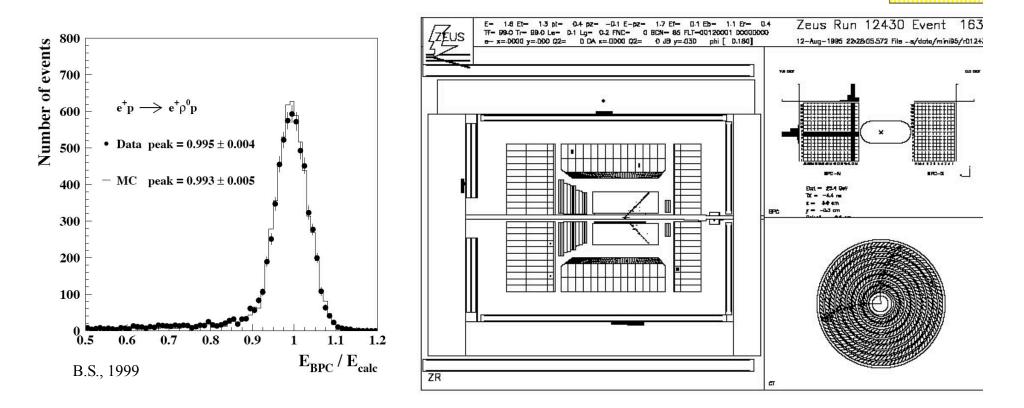


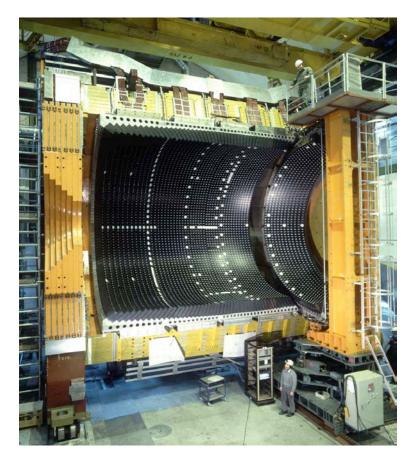

NEPPSRIII Craigville, Cape Cod, 08/23/2004

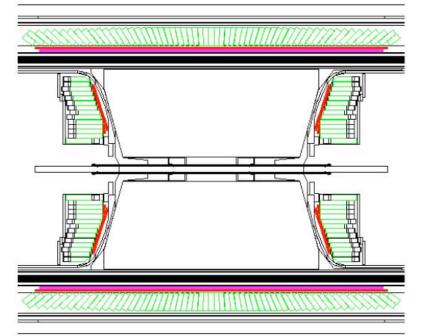



Sampling calorimeter: ZEUS Beam Pipe Calorimeter (BBC) at ep collider HERA


□ Transverse shower profile (MC study)

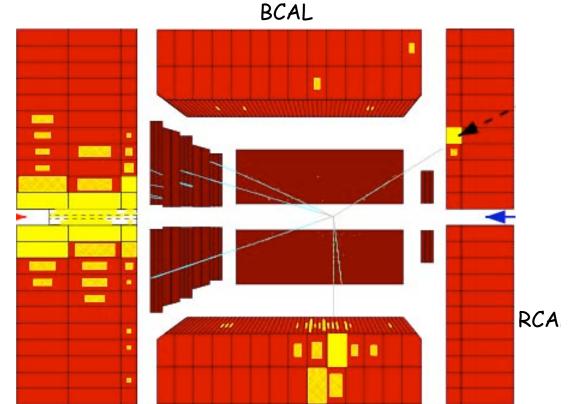

Sampling calorimeter: ZEUS Beam Pipe Calorimeter (BBC) at ep collider HERA


Craigville, Cape Cod, 08/23/2004


Sampling calorimeter: ZEUS Beam Pipe Calorimeter (BBC) at ep collider HERA

Uncertainty of energy scale

- Homogeneous calorimeter: OPAL Pb-glass calorimeter at e⁺e⁻ collider LEP
 - 🗆 Layout

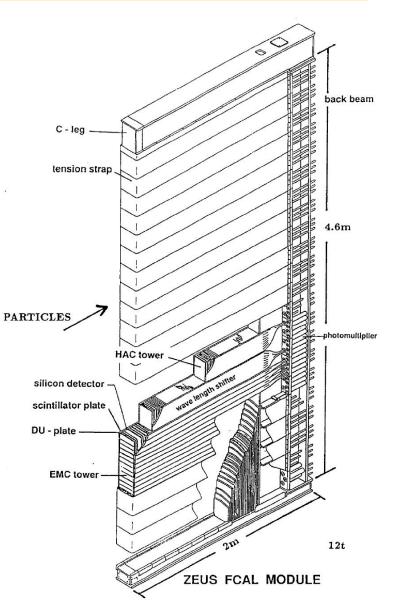

OPAL collaboration, C. Beard et al. NIM A 305 (1991) 275.

- 10572 Pb-glass blocks (24.6X₀)
- Energy resolution: $\frac{\sigma_E}{E} = \frac{6\%}{\sqrt{E}} \oplus 0.002$
- Spatial resolution: 11mm at 6GeV

Hadronic calorimeter

ZEUS Uranium Calorimeter at ep collider HERA

- 3 Sections: Uranium Calorimeter
 - Forward (FCAL) (7λ): 2.2° 39.9°
 - > Barrel (RCAL): 36.7° 129.1°
 - > Rear (RCAL) (4λ): 128.1° 176.5°
- F/RCAL modules 20cm width
- Original beam pipe hole: 20 x 20 cm²
- Compensating: e/h = 1.00 ± 0.02 (3.3mm U/2.6mm SCI)


FCAL

Hadronic calorimeter

ZEUS Uranium Calorimeter at ep collider HERA

- Linear response to electrons and hadrons
- Energy resolution
 - > Electrons: $\frac{\sigma_E}{E} = \frac{18\%}{\sqrt{E}}$ > Hadrons: $\frac{\sigma_E}{E} = \frac{35\%}{\sqrt{E}}$

Timing resolution:
$$\sigma_t = \frac{1.5}{\sqrt{E}}$$
 ns

Summary

Review

- Calorimeter: Prime device to measure energy (E) of high-energy particles through total absorption
- Conceptual idea of calorimeter principle: Shower formation of decreasingly lower-energy particles
- Electromagnetic calorimetry:
 - Underlying shower processes (QED) well understood: Completely governed by pair production and bremstrahlung above 1GeV
 - Transverse and longitudinal shower dimension: Characterized by radiation length
 - Homogeneous and sampling calorimeter types
- □ Hadronic calorimetry:
 - Complexity of of hadronic and nuclear processes produce multitude of effects that determine the functioning and performance of hadron calorimeters: Electromagnetic and hadronic component
 - Transverse and longitudinal shower dimension: Characterized by nuclear interaction length
 - Sampling calorimeter types
 - Crucial step: Compensation for invisible energy in nuclear reactions: Achieve e/h = 1 by tuning the ratio of the passive/active sampling layer thickness ⇒ Improvement in energy resolution: ZEUS U/SCI calorimeter: 35%/JE

Summary

Literature

- Textbooks
 - R. Fernow, Experimental particle physics, Cambridge University Press, Cambridge
 - W.R. Leo, Techniques for Nuclear and Particle Physics Experiments, Springer, New Yor
 - R. Wigmans, Techniques in calorimetry, Cambridge University Press, Cambridge
 - T. Ferbel, Experimental Techniques in High-Energy physics, Addison-Wesley, Menlo Pai
- □ Papers
 - C. Fabjan and T. Ludlam, Ann. Rev. Nucl. Part. 32 (1982) 32.
 - C. Fabjan, in Experimental Techniques in High-Energy physics, edited by T. Ferbel (Addison-Wesley, Menlo Park).
 - C. Fabjan and F. Gianotti, Rev. Mod. Phys. 75 (2003) 1243.
 - R. Wigmans, Ann. Rev. Nucl. Part. Sci. 41 (1991) 133.
 - B.S., EPJdirect C2 (1999) 1.