CP Violation in the B Meson System

Carlo Dallapiccola
University of Massachusetts, Amherst
Outline

• Refresher (hadrons, \(C, P, \) and \(T \))

• Historical background

• Why is it interesting to study \(CP \) violation?

• How \(CPV \) arises in the Standard Model
 - \(B \) meson decays and \(B \)-Factories
Review of Basic Principles
Particle Zoo 101

- For each fundamental particle x there is an antiparticle \bar{x}

- Observed particles are the leptons and bound states of quarks (hadrons) two types:

<table>
<thead>
<tr>
<th>Mesons (bosons) $q\bar{q}'$</th>
<th>Baryons (fermions) $q_1q_2q_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$u\bar{d} = \pi^+$</td>
<td>$uud = p$</td>
</tr>
<tr>
<td>$u\bar{s} = K^+$</td>
<td>$udd = n$</td>
</tr>
<tr>
<td>$d\bar{s} = K^0$</td>
<td></td>
</tr>
</tbody>
</table>

- **Strong force** keeps quarks bound into hadrons
- **Weak force** responsible for radioactive decay \Rightarrow lepton and quark flavor changes
Discrete Operations

• The field equations (Lagrangians) for particle interactions are symmetric under certain discrete operations or transformations.

• Invariance of these equations under such transformations imply existence of conserved, multiplicative quantum numbers.

• There are 3 particularly important such operations in particle physics...
C: Charge Conjugation

Charged particle wavefunctions not eigenstates

\[C |e^-\rangle = |e^+\rangle \neq \pm |e^-\rangle \]

Many neutral particles are (eigenvalue \(\pm 1\))

\[C |\gamma\rangle = -|\gamma\rangle \quad C |\pi^0\rangle = +|\pi^0\rangle \]
P: Parity

Reflects a system through the origin

- \(x \rightarrow -x\) and \(p \rightarrow -p\)
- but \(L \rightarrow L\)

Particles have intrinsic parity:

\[P |\gamma\rangle = -|\gamma\rangle \quad P |\pi^0\rangle = -|\pi^0\rangle \]

Fermions: opposite parity for particle and antiparticle

Bosons: same parity for particle and antiparticle
T: Time Reversal

Reverses direction of time

$- t \rightarrow -t$

$- p \rightarrow -p$
The CPT Theorem

- These 3 operations are connected through invariance of combined CPT for all forces

- CPT Theorem: all field theories are invariant under this combo of operations (any order)
 - Consequences:
 - particles and antiparticles have same mass and lifetime
 - particles obey spin statistics (Fermi or Bose)
Conservation of C, P, and T?

Strong, electromagnetic and gravitational interactions are observed to be invariant under C, P, and T, separately.

Weak Interaction...

- It conserves neither C nor P.
- First postulated by Lee and Yang in 1956 and verified in studies of β decay of Cobalt.
- Later observed in many other systems (neutrinos, etc.).
Violation of C and P in Weak Decays

Neutrino system:

$$\nu_L \xrightarrow{C} \bar{\nu}_L$$
$$\nu_L \xrightarrow{P} \nu_R$$

Neither of these states are observed in nature

Example ⇒ Pion decay:

$$\Gamma(\pi^+ \rightarrow \mu^+ \nu_L) \neq \Gamma(\pi^- \rightarrow \mu^- \bar{\nu}_L) = 0 \quad C\text{ violation}$$
$$\Gamma(\pi^+ \rightarrow \mu^+ \nu_L) \neq \Gamma(\pi^+ \rightarrow \mu^+ \nu_R) = 0 \quad P\text{ violation}$$
For a long time it was thought that CP was conserved in weak interactions:

\[\Gamma(\pi^+ \to \mu^+ \nu_L) = \Gamma(\pi^- \to \mu^- \bar{\nu}_R) \]

\[\Rightarrow CP \text{ invariance} \]

But in 1964, an expt by Christenson, Cronin, Fitch and Turlay first demonstrated CP violation in the weak decays of \(K^0 \) mesons.
CPV in Kaon Decays

• Two distinct neutral kaon states had been observed:
 \(K_1^0 \rightarrow \) short lifetime, \(CP \) even (eigenvalue +1)
 \(K_2^0 \rightarrow \) long lifetime, \(CP \) odd (eigenvalue -1)

\[
\begin{align*}
\tau (K_1^0 \rightarrow 2\pi) & = 0.9 \times 10^{-10} \text{ sec} \\
\tau (K_2^0 \rightarrow 3\pi) & = 0.5 \times 10^{-7} \text{ sec}
\end{align*}
\]

• The 1964 expt discovered the longer-lived kaon decaying, very rarely (~10^{-3}) to the \(2\pi, \ CP = +1 \) state

\[
\begin{align*}
|K_L^0\rangle & = |K_2\rangle + \varepsilon |K_1\rangle \\
|K_S^0\rangle & = |K_1\rangle - \varepsilon |K_2\rangle
\end{align*}
\]

| \(\varepsilon \) | \(\approx 2 \times 10^{-3} \) |
Why Such Interest in CP Violation?
Interest in CP Violation

• What is it about the weak interaction that generates CP violation?
 - It is naturally present in the Standard Model of particle physics

• Can we observe it in decays of other particles besides the kaon?
 - Compare measurements with predictions of the Standard Model

• Can we observe the effects of New Physics?
 - Super Symmetry, String Theory \rightarrow sources of more CPV
 - Amount of CPV from SM alone does not explain large matter-antimatter asymmetry of present universe
CP Violation in the Standard Model:
B Meson Decays

\[B^0 = \bar{b}d \]

\[\bar{B}^0 = b\bar{d} \]
CPV in the Decays of B Mesons

• As we shall see, CP violation expected to be relatively large (hopefully experimentally observable!) in the decays of B mesons to certain final states.

• “B-Factories” built in US (BaBar) and Japan (Belle) to produce hundreds of millions of B mesons, with goal of looking for CP violation ⇒ differences in B and \(\bar{B} \) decay rates
 ▪ Colliders of e\(^+\) and e\(^-\) beams → production of \(B\bar{B} \) pairs
 ▪ Began running in 1999 and plan to continue until ~2009

• Looking for CP asymmetries...
CP Asymmetries

- Example: Look for CPV in the B meson decay to final state X (system of final state particles)

$$A_{CP} = \frac{\Gamma(\overline{B} \rightarrow \overline{X}) - \Gamma(B \rightarrow X)}{\Gamma(\overline{B} \rightarrow \overline{X}) + \Gamma(B \rightarrow X)}$$

$$\Gamma(B \rightarrow X) \propto |A_X|^2$$

$$\Gamma(\overline{B} \rightarrow \overline{X}) \propto |\overline{A}_X|^2$$

- $\Gamma(B \rightarrow X)$ is the decay rate for B to decay to X
- $A_{B \rightarrow X}$ is the “transition amplitude” for this decay (complex #)

- $A_{CP} \neq 0$ is violation of CP conservation
Quark “generation” can change in weak decays (quark mixing):

\[b \rightarrow c \quad \text{and} \quad b \rightarrow u \]

Not so for leptons:

\[e^- \rightarrow \nu_e \quad \text{and} \quad e^- \rightarrow \nu_\mu \]
The Weak Couplings of Quarks

- The coupling strength at the vertex is given by
 - g is a *universal* weak coupling
 - gV_{ij} depends on the initial and final state quark
 - For leptons, only g (?)

- The V_{ij} can be written as a matrix (CKM matrix)

- $V_{ij} \Rightarrow V_{ij}^*$ For antiquarks

The transition amplitude, A, is proportional to the product of the couplings for each vertex in the given weak decay
Properties of the CKM Matrix

- The CKM matrix is a 3x3 complex, unitary matrix \((V^+V = 1)\)
- This means 4 independent parameters describe it:
 - 3 real numbers
 - 1 complex phase → possibility of CP violation

\[
V_{CKM} = \begin{pmatrix}
V_{ud} & V_{us} & V_{ub} \\
V_{cd} & V_{cs} & V_{cb} \\
V_{td} & V_{ts} & V_{tb}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\sqrt{V_{td}}e^{-i\beta} \\
\sqrt{V_{ub}}e^{-i\gamma}
\end{pmatrix}
\]

\[
= \begin{pmatrix}
1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\
-\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\
A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1
\end{pmatrix} + O(\lambda^4)
\]

All elements other than \(V_{td}\) and \(V_{ub}\) are real.
CPV in B Decays: Example

- Example: $B^0 \rightarrow K^+ \pi^-$ and $\overline{B}^0 \rightarrow K^- \pi^+$

\[
A_{K^+\pi^-} = |A_{K^+\pi^-}| e^{-i\gamma} e^{i\delta}
\]

\[
\overline{A}_{K^-\pi^+} = |\overline{A}_{K^-\pi^+}| e^{+i\gamma} e^{i\delta}
\]

\[
A_{CP} = 0 \text{ since } |\overline{A}_{K^-\pi^+}|^2 = |A_{K^+\pi^-}|^2
\]

\[\gamma \text{ is the phase from } V_{ub}\]

\[\delta \text{ is any phase from "strong interactions"}\]
CPV in B Decays: Example

- But what if a second diagram exists...?

\[
A_{K^+\pi^-}^T = |A_{K^+\pi^-}^T| e^{i(-\gamma + \delta_T)}
\]

\[
A_{K^+\pi^-}^P = |A_{K^+\pi^-}^P| e^{i\delta_P}
\]

Tree

Penguin

\[
A_{K^+\pi^-} = A_{K^+\pi^-}^T + A_{K^+\pi^-}^P = |A_{K^+\pi^-}^T| e^{i(-\gamma + \delta_T)} + |A_{K^+\pi^-}^P| e^{i\delta_P}
\]

\[
\overline{A}_{K^-\pi^+} = \overline{A}_{K^-\pi^+}^T + \overline{A}_{K^-\pi^+}^P = |A_{K^+\pi^-}^T| e^{i(\gamma + \delta_T)} + |A_{K^+\pi^-}^P| e^{i\delta_P}
\]
CPV in B Decays: Example

- Now a non-zero *CP* asymmetry can be possible in SM!

\[
A_{\text{CP}} = \frac{\Gamma(B^0 \rightarrow K^+\pi^-) - \Gamma(B^0 \rightarrow K^-\pi^+)}{\Gamma(B^0 \rightarrow K^+\pi^-) + \Gamma(B^0 \rightarrow K^-\pi^+)}
\]

\[
\equiv \frac{|A_{K^+\pi^-}|^2 - |A_{K^-\pi^+}|^2}{|A_{K^+\pi^-}|^2 + |A_{K^-\pi^+}|^2}
\]

\[
= \frac{2|A_T||A_P| \sin \gamma \sin (\delta_T - \delta_P)}{|A_T|^2 + |A_P|^2 + 2|A_T||A_P| \cos \gamma \cos (\delta_T - \delta_P)}
\]

\(\neq 0\) if:

\[
\gamma \neq 0, \pi/2 \\
\delta_T - \delta_P \neq 0, \pi/2
\]
CPV in B Decays: Example

- This *CP* asymmetry has just been observed for first time at the *BaBar* experiment!

In sample of ~550 million *B* mesons:

1606±51 \(B^0 \rightarrow K^+ \pi^- \)

decays observed

\[A_{CP} = -0.133\pm0.030(\text{stat})\pm0.009(\text{syst}) \]
Very interesting and important discovery of *direct CP* violation in *B* meson decays

- But real goal is to try and make a measurement of the Standard Model parameters β and γ

 Not easy because we need theoretical predictions for values of $|A_T|$, $|A_\rho|$ and $\delta_T - \delta_P$

- A “cleaner” way involves measurements of *indirect CP* violation ⇒ see talk by Morii
Summary

• Study of CP violation in Weak decays of particles at forefront of particle physics research:
 - Crucial ingredient in cosmology \rightarrow need to explain how the universe can exist as we observe it today!
 - Arises in the Standard Model (SM) via the single imaginary quantity in the quark-mixing (CKM) matrix, and nowhere else.
 - Until recently (2000), no reliable comparison of experimental measurements and SM predictions \rightarrow effects had been predicted to be largest in decays of B mesons

Advent of B-Factories in 1999 to study this phenomenon \Rightarrow Very successful so far! CP asymmetries being observed

Do expt. measurements agree with SM...or New Physics?