Cracking the Unitarity Triangle — Latest Results from BABAR —

Masahiro Morii Harvard University

NEPPSR 2004, Craigville, MA

Unitarity Triangle

Already seen it a few times this week

1.5

How is this triangle "measured" experimentally?Using CP violation, of course, ... right?

August 2004

How to Violate CP

- Complex coupling constant (= weak phase)
 - CKM matrix in the SM has 1 such phase
- Interference between ≥ 2 diagrams with different phases
 - e.g., tree and penguin diagrams for $B^0 \to K^+ \pi^-$ (Carlo's talk)

• With 2 diagrams, the size of the CPV is

$$\mathcal{A}_{CP} = \frac{2|A_1||A_2|\sin\Delta\phi\sin\Delta\delta}{|A_1|^2 + |A_2|^2} \qquad \text{weak phase difference} \\ \text{weak phase difference}$$

CKM information in the weak phase $\Delta \phi$

■ $|A_1|/|A_2|$ ratio, $\Delta\delta$ usually not calculable

Observing CPV doesn't necessarily teach us much about its origin

B⁰ Mixing to the Rescue

■ B^0 and \overline{B}^0 mix, i.e., they turn into each other

• Weak phase = $\arg(V_{tb}^2 V_{td}^{*2}) = 2\beta$

Mass eigenstates are linear combinations

$$\begin{vmatrix} B_L \rangle = p \begin{vmatrix} B^0 \rangle + q \begin{vmatrix} \overline{B}^0 \rangle \\ B_H \rangle = p \begin{vmatrix} B^0 \rangle - q \end{vmatrix} \overline{B}^0 \rangle$$

$$p^2 + q^2 = 1$$

B_H and *B_L* differ in mass (Δ*m*), but not in lifetime (ΔΓ = 0)
A little exercise in QM gives us

Pure
$$B^0$$
 state after time $t \Rightarrow |B^0(t)\rangle = e^{-im_B t} e^{-\Gamma t} \left\{ \cos \frac{\Delta m t}{2} |B^0\rangle - i \frac{q}{p} \sin \frac{\Delta m t}{2} |\overline{B}^0\rangle \right\}$
Pure \overline{B}^0 state after time $t \Rightarrow |\overline{B}^0(t)\rangle = e^{-im_B t} e^{-\Gamma t} \left\{ -i \frac{p}{q} \sin \frac{\Delta m t}{2} |B^0\rangle + \cos \frac{\Delta m t}{2} |\overline{B}^0\rangle \right\}$

August 2004

Mixing and Interference

Pure B^0 state, after time t, decays into a CP eigenstate f_{CP}

- Both B⁰ or B
 ⁰ can decay into f_{CP}
 → Interference between "mixed" and "unmixed" paths
- Calculate the CP asymmetry

Neat problem for undergrad. QM

 $\mathcal{A}_{CP}(t) = \frac{N(\overline{B}^0(t) \to f_{CP}) - N(B^0(t) \to f_{CP})}{N(\overline{B}^0(t) \to f_{CP}) + N(B^0(t) \to f_{CP})} = C_f \cos(\Delta m t) + S_f \sin(\Delta m t)$

Golden Modes

- Suppose the decay $B^0 \rightarrow f_{CP}$ goes through a single diagram
 - A_{CP} and \overline{A}_{CP} differ only by the sign of the weak phase

$$\frac{A_{CP}}{\overline{A}_{CP}} = e^{2i\phi}$$

• Mixing term q/p is known to be almost pure phase

• Weak phase is 2β \Rightarrow $\lambda_f = \eta_f \frac{q}{p} \frac{A_{CP}}{\overline{A}_{CP}} = \eta_f e^{2i\beta} e^{2i\phi}$

Things get nice and simple $C_f = 0, \quad S_f = -\eta_f \sin(2\beta + 2\phi)$

 $\mathcal{A}_{CP}(t) = -\eta_f \sin(2\beta + 2\phi) \sin(\Delta m t)$

For "golden" decays, the amplitude S_f of the time-dependent CP asymmetry measures the weak phase

Measuring CP Violation

$$\mathcal{A}_{CP}(t) = \frac{N(\overline{B}^0(t) \to f_{CP}) - N(B^0(t) \to f_{CP})}{N(\overline{B}^0(t) \to f_{CP}) + N(B^0(t) \to f_{CP})} = C_f \cos(\Delta m t) + S_f \sin(\Delta m t)$$

- Experiment must do 3 things:
 - Produce and detect $B \rightarrow f_{CP}$ events
 - Typical branching fraction: $10^{-4} 10^{-5}$
 - Need a lot of lot of lot of lot of B's
 - Separate B^0 from $\overline{B}^0 =$ "Flavor tagging"
 - Use $Y_{4S} \rightarrow B^0 \overline{B}{}^0$ and tag one *B*
 - Measure the decay time
 - Measure the flight length $\beta\gamma ct$
 - But *B*'s are almost at rest in Y_{4S} decays

Three Ingredients

$$A_{CP}(t) = \frac{N(\overline{B}^0(t) \to f_{CP}) - N(B^0(t) \to f_{CP})}{N(\overline{B}^0(t) \to f_{CP}) + N(B^0(t) \to f_{CP})} = C_f \cos(\Delta mt) + S_f \sin(\Delta mt)$$

Ingredient #3: Δt determination

Asymmetric B Factory

• Collides e^+e^- at $E_{CM} = m(Y_{4S})$ but with $E(e^+) \neq E(e^-)$

- PEP-II: 9 GeV e^- vs. 3.1 GeV $e^+ \rightarrow \beta \gamma = 0.56$
 - The boost allows measurement of Δt
- Collides lots of them: $2.4A(e^+) \times 1.6A(e^-)$
 - PEP-II luminosity 9.2×10^{33} /cm²/s = 9.2 Hz/nb
 - That's >3x the design

M. Morii, Harvard

PEP-II Luminosity

- BABAR has accumulated 244 fb⁻¹ of data
 - Run 4 (Sep'03-Jul'04) was a phenomenal success

August 2004

Detector: BABAR

Physics Results

• Will walk through the 3 angles and 2 sides

- Almost everything is **PRELIMINARY**
- All ICHEP 2004 results from BABAR/Belle are found at
 - http://www.slac.stanford.edu/BFROOT/www/Public/ichep2004/
 - http://belle.kek.jp/conferences/ICHEP2004/
- **BABAR** results use data samples between 80 to 227M $B\overline{B}$ events

Angle β from $b \rightarrow c\bar{c}s$

•
$$c\bar{c}$$
 pair can be J/ψ , ψ_{2S} , χ_{c1} , or η_c
• They are all CP = -1

• $s\bar{d}$ pair can be K_S (CP = +1), K_L (-1), or K^{*0} (mixed)

Total 7730 candidates (78% purity) found in 227 M $B\overline{B}$ events

Time-Dependent A_{CP} Fit

M. Morii, Harvard

Unitarity Triangle

August 2004

Angle β from $b \rightarrow s\bar{s}s$

• $b \rightarrow s\bar{s}s$ decay dominated by the "penguin" diagram

- In the SM, $\mathcal{A}_{CP}^{b \to s\bar{ss}} = \mathcal{A}_{CP}^{b \to c\bar{cs}} = \sin 2\beta$
- New Physics may enter the loop → \mathcal{A}_{CP} may not agree!
- ϕK_S is pure-penguin
 - Small BF: 7.6×10⁻⁶
- $\eta' K_S$ has tree diagrams too
 - Suppressed by small V_{ub}
 - \mathcal{A}_{CP} affected by 0.01 to 0.1
 - Larger BF: 5.5×10⁻⁵

 $B^0 \to \phi K_S$

 $B^0 \rightarrow \eta' K_S$

Status of Angle β

Measurements of CPV in *s*-penguin channels improving rapidly
Average S < sin2β by 2.7σ(BABAR), 2.4σ(Belle)

August 2004

Angle α

 Consider b → uūd decay
 Example: B⁰ → π⁺π⁻
 Decay involves V_{ub} → Weak phase γ
 CP asymmetry should measure sin(2β+2γ) = -sin 2α

■ Not so fast – There are penguins

- We can measure sin2α only if the penguins are much smaller than the tree
- It's about 1/3 in $B^0 \rightarrow \pi^+ \pi^-$
 - Not so good...
- Is there a better way?

$B^0 o ho^+ ho^-$

■ $B^0 \rightarrow \rho^+ \rho^-$ has much smaller penguin ■ Known from small $\mathcal{B}(B^0 \rightarrow \rho^0 \rho^0) < 1.1 \times 10^{-6} (90\% \text{C.L.})$ 205 fb⁻¹ ■ $\mathcal{B}(B^0 \rightarrow \rho^+ \rho^-) = (30 \pm 4 \pm 5) \times 10^{-6}$

• ρ is vector meson $\rightarrow \eta_{CP}$ depends on the polarization

Determine the polarization from decay-angle distribution

Longitudinal $\propto \cos^2 \theta_1 \cos^2 \theta_2$ Transverse $\propto \sin^2 \theta_1 \sin^2 \theta_2$

• Longitudinal fraction $f_L = 0.99 \pm 0.03^{+0.04}_{-0.03}$

Almost pure CP eigenstate

 $B^0 o
ho^+
ho^-$

 $B^0 \rightarrow \rho^+ \rho^-$ candidates

⁸Δt (ps)¹⁰

111 fb⁻¹

Time-dependent CP asymmetry

Status of Angle α

• \mathcal{A}_{CP} in $B^0 \to \rho^+ \rho^-$ combined with BFs for $B^0 \to \rho^+ \rho^-$, $B^+ \to \rho^+ \rho^0$, and $B^0 \to \rho^0 \rho^0$

 $\alpha = \begin{bmatrix} 96 \pm 10(\text{stat}) \pm 4(\text{syst}) \\ \pm 11(\text{penguin}) \end{bmatrix} \text{deg}$

- A promising method for measuring α
- Agrees with the SM with a large error

Angle y

• Hard to find a good channel that measure γ

- A lot of not-so-good techniques are being studied
- Example: $B^- \rightarrow D^0 K^-$, $D^0 \rightarrow K_S \pi^+ \pi^-$
 - 2 decay diagrams \rightarrow
 - Weak phases differ by γ
 - If D⁰ decays into a CP eigenstate, interference violates CP
- Back to the old question
 - How do we know the relative amplitudes?
 - How do we know the strong phase?

$B^- \rightarrow D^0 K^-, D^0 \rightarrow K_S \pi^+ \pi^-$

Suppose we know the amplitude for $D^0 \to K_S \pi^+ \pi^-$ as a function of $m_+ = m(K_S \pi^+)$ and $m_- = m(K_S \pi^-)$

Total decay amplitude should be $M_{-}(m_{-}, m_{+}) = f(m_{-}, m_{+}) + r_{B}e^{i(\delta - \gamma)}f(m_{+}, m_{-})$ for $B^{-} \to K_{S}\pi^{+}\pi^{-}K^{-}$ $M_{+}(m_{-}, m_{+}) = f(m_{+}, m_{-}) + r_{B}e^{i(\delta + \gamma)}f(m_{-}, m_{+})$ for $B^{+} \to K_{S}\pi^{+}\pi^{-}K^{+}$

Experiments must

- Determine $f(m_-,m_+)$ from fit to the $D^0 \rightarrow K_S \pi^+ \pi^-$ Dalitz plot \rightarrow
- Fit the decay rates for B^+ and $B^$ and extract r_B , δ and γ

Status of Angle γ

• Sensitivity is proportional to $r_B \sim |V_{ub}|/|V_{cb}| \leftarrow \text{small}$

- No sensitivity for $r_B < 0.1$ with current statistics
- Bayesian probability with flat prior gives $r_B < 0.18 (90\% \text{ C.L.})$
- Combining D^0K^- and D^0K^{*-}

 $\gamma = (88 \pm 41 \pm 19 \pm 10)^{\circ}$

- Not a precision measurement...
- Future: combine multiple methods to constrain r_B better

The Sides

In addition to the angles, we measure the lengths of the sides

• Uncertainties of the "left" and "right" sides are dominated by the smallest CKM elements V_{ub} and V_{td}

"Left" Side – $|V_{ub}|$

• Rate of $b \rightarrow u\ell v$ decay is proportional to $|V_{ub}|^2$

 Leptonic part is free from strong final-state interaction

$$\frac{\Gamma(b \to u \ell \,\overline{v})}{\Gamma(b \to c \ell \,\overline{v})} \approx \frac{\left|V_{ub}\right|^2}{\left|V_{cb}\right|^2} \approx \frac{1}{50}$$

- Must suppress $50 \times \text{larger } b \rightarrow c\ell v \text{ decays}$
- Traditional approach: select events with large lepton energy
 - "Endpoint" above kinematical limit for the $b \rightarrow c\ell v$ decay
 - Only ~6% of $b \rightarrow u\ell v$ events are accessible

Lepton Endpoint

- Select electrons in $2.0 < E_{\ell} < 2.6 \text{ GeV}$
 - Accurate subtraction of background is crucial!
 - Data taken below the Y_{4S} resonance for non-*BB* background
 - Fit the E_{ℓ} spectrum with $b \to u\ell v$, $B \to D\ell v, B \to D^*\ell v, B \to D^{**}\ell v$, etc. to extract

$$\mathcal{B}(B \to X_u ev) = (1.73 \pm 0.22_{exp} \pm 0.33_{theo}) \times 10^{-3}$$

Turn into

$$|V_{ub}| = (3.94 \pm 0.25_{exp} \pm 0.37_{theo} \pm 0.19_{HQET}) \times 10^{-3}$$

Hadronic Mass and q^2

 $\blacksquare E_{\ell}$ is not the only kinematic variable available

- There are 3 independent variables
- Consider m_X (hadronic mass) and q^2 (lepton-neutrino mass²)
- $\sim ~70\%$ of $b \rightarrow u\ell v$ has $m_X < m_D$
 - High efficiency + smaller extrapolation

• Cut on q^2 is less efficient (~20%) but smaller theoretical errors

Recoil Method

• Must reconstruct all decay products to measure m_X or q^2

August 2004

Status of $|V_{ub}|$

- Different approaches for $|V_{ub}|$ pursued to tackle theoretical uncertainty
 - Largest error from the "shape function"
 - Determined by CLEO measurement of photon energy spectrum in $b \rightarrow s\gamma$
- Future improvement from
 - New techniques ← More data helps
 - Theoretical progress
 - Better measurement of $b \rightarrow s\gamma$

"Right" Side – $|V_{td}|$

 $\blacksquare B^0$ mixing involves virtual top exchange

• Once B_s mixing rate is measured

$$\frac{B^{0} \text{ mixing rate}}{B_{s} \text{ mixing rate}} \stackrel{\Delta m_{d}}{\longrightarrow} \approx \frac{|V_{td}|^{2}}{|V_{ts}|^{2}}$$

• What can we do besides waiting for Tevatron?

Radiative penguin decays $b \rightarrow s/d \gamma$

$B \rightarrow \rho \gamma$

Status of $|V_{td}|$

\square $\mathcal{B}(B \to \rho \gamma)$ limits the length of the "right" side

- Bound comparable to that from the mixing
- Theory errors from
 ρ vs. K* form factor
 difference and
 weak annihilation
- Observing $B \rightarrow \rho \gamma$ with additional statistics will be *very* interesting

Summary

- The unitarity triangle is under attack from all directions
 - Huge data sample allow more and more measurements
- In addition to sin2β, many measurements are reaching interesting precisions
 - CPV in penguin decays, $B \rightarrow \rho\rho$, $B \rightarrow u\ell v$, $B \rightarrow \rho\gamma$, ...
- Will we crack the unitarity triangle?

