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Unitarity Triangle
Already seen it a few times this week

How is this triangle “measured” experimentally?
Using CP violation, of course, … right?
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How to Violate CP
Complex coupling constant (= weak phase)

CKM matrix in the SM has 1 such phase
Interference between ≥ 2 diagrams with different phases

e.g., tree and penguin diagrams for B0 → K+π − (Carlo’s talk)
With 2 diagrams, the size of the CPV is

CKM information in the weak phase ∆φ
|A1|/|A2| ratio, ∆δ usually not calculable
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Observing CPV doesn’t necessarily teach us much about its originObserving CPV doesn’t necessarily teach us much about its origin
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B0 Mixing to the Rescue
B0 and B0 mix, i.e., they turn into each other

Weak phase =
Mass eigenstates are linear combinations

BH and BL differ in mass (∆m), but not in lifetime (∆Γ = 0)
A little exercise in QM gives us 
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Mixing and Interference
Pure B0 state, after time t, decays into a CP eigenstate fCP

Both B0 or B0 can decay into fCP
Interference between “mixed”
and “unmixed” paths

Calculate the CP asymmetry
Neat problem for undergrad. QM
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Golden Modes
Suppose the decay B0 → fCP goes through a single diagram

ACP and ACP differ only by the sign of the weak phase

Mixing term q/p is known to be almost pure phase

Weak phase is 2β

Things get nice and simple 
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For “golden” decays, the amplitude Sf of the time-dependent 
CP asymmetry measures the weak phase

For “golden” decays, the amplitude Sf of the time-dependent 
CP asymmetry measures the weak phase
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Measuring CP Violation

Experiment must do 3 things:
Produce and detect B → fCP events

Typical branching fraction: 10-4 – 10-5

Need a lot of lot of lot of lot of B’s
Separate B0 from B0 = “Flavor tagging”

Use Υ4S → B0B0 and tag one B
Measure the decay time

Measure the flight length βγct
But B’s are almost at rest in Υ4S decays
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Three Ingredients
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Ingredient #2:
Flavor tagging

Ingredient  #1:
Signal
reconstruction

Ingredient #3: ∆t determination
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Asymmetric B Factory
Collides e+e− at ECM = m(Υ4S) but with E(e+) ≠ E(e−)

PEP-II: 9 GeV e− vs. 3.1 GeV e+ βγ = 0.56
The boost allows measurement of ∆t

Collides lots of them: 2.4A(e+) × 1.6A(e−)
PEP-II luminosity 9.2×1033/cm2/s = 9.2 Hz/nb

That’s >3x the design ( ) 1nbe e bbσ + − → ∼
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PEP-II Luminosity
Run 4

Run 4

BABAR has accumulated 244 fb−1 of data
Run 4 (Sep’03-Jul’04) was a phenomenal success
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Detector: BABAR 

Precise vertex with a 
silicon strip detector

Charged particle 
momentum with a drift 
chamber in a 1.5 T field

Photon energy with 
a CsI(Tl) crystal 

calorimeter

Particle ID with a 
Cerenkov detector
(DIRC in BABAR,
aerogel in Belle)

Muons detected after 
penetrating iron yoke
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Physics Results
Will walk through the 3 angles and 2 sides

Almost everything is PRELIMINARY
All ICHEP 2004 results from BABAR/Belle are found at

http://www.slac.stanford.edu/BFROOT/www/Public/ichep2004/
http://belle.kek.jp/conferences/ICHEP2004/

BABAR results use data samples between 80 to 227M BB events
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Angle β from b → ccs
“Golden mode” of CP violation

Tree diagram dominates 
No weak phase in decay

cc pair can be J/ψ, ψ2S, χc1, or ηc
They are all CP = −1

sd pair can be KS (CP = +1), KL (−1), or K*0 (mixed)
Total 7730 candidates (78% purity) found in 227 M BB events
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( ) sin(2 )sin( )CP ft mtη β= − ∆A

Clean measurement of angle β



August 2004 M. Morii, Harvard 14

Time-Dependent ACP Fit
J/ψ KL (CP even) mode(cc) KS (CP odd) modes

sin2β = 0.722 ± 0.040 (stat) ± 0.023 (sys) 205 fb-1
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Unitarity Triangle

Precise measurement of sin2β agree with the SM expectation

CKM fit without sin(2β) measurement CKM fit with sin(2β) measurement
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Angle β from b → sss
b → sss decay dominated by the “penguin” diagram

In the SM,
New Physics may enter the loop
ACP may not agree!

φ KS is pure-penguin
Small BF: 7.6×10-6

η’KS has tree diagrams too
Suppressed by small Vub
ACP affected by 0.01 to 0.1
Larger BF: 5.5×10-5
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B0 → φ KS

B0 → φ KS candidates

114 ± 12 events

Time-dependent CP asymmetry

0.29 0.31(stat)
SKSφ = ±

Combining φ KS and φ KL together, we get

0 tagB

0 tagB

CPA

205 fb-1

0 0
0.07
0.040.50 0.25(stat) (syst), 0.00 0.23(stat) 0.05(syst)

K K
S C

φ φ
+
−= ± = ± ±
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B0 → η' KS

Time-dependent CP asymmetryB0 → φ KS candidates
0  tagB

0  tagB

CPA

205 fb-1

0

0

'

'

0.27 0.14(stat) 0.03(syst)

0.21 0.10(stat) 0.03(syst)
K

K

S

C
η

η

= ± ±

= − ± ±

S is 3.0σ from sin2β from ccs
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Status of Angle β

Belle
BABAR

Measurements of CPV in s-penguin channels improving rapidly
Average S < sin2β by 2.7σ (BABAR), 2.4σ (Belle)
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Angle α
Consider b → uud decay

Example: B0 → π +π −

Decay involves Vub Weak phase γ
CP asymmetry should measure

Not so fast – There are penguins
We can measure sin2α only if the
penguins are much smaller than the tree
It’s about 1/3 in B0 → π +π −

Not so good…
Is there a better way?
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B0 → ρ +ρ −

B0 → ρ +ρ − has much smaller penguin
Known from small B(B0 → ρ 0ρ 0) < 1.1×10−6 (90%C.L.)
B(B0 → ρ +ρ −) = (30 ± 4 ± 5)×10−6

ρ is vector meson ηCP depends on the polarization
Determine the polarization from decay-angle distribution

Longitudinal fraction
Almost pure CP eigenstate

0B ρ +ρ −

π +

0π
0π

π −

1θ2θ
Φ

2 2
1 2

2 2
1 2

Longitudinal cos cos

Transverse sin sin

θ θ

θ θ

∝

∝

0.04
0.030.99 0.03Lf

+
−= ±

205 fb-1
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B0 → ρ +ρ −

Simultaneously fit for fL and 
S, C of the long. component

B0 → ρ +ρ − candidates Time-dependent CP asymmetry

0 tagB

0 tagB

CPA

)(14.0)(27.017.0

)(14.0)(42.042.0

syststatC

syststatS

long

long

±±−=

±±−=

111 fb-1
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Status of Angle α
ACP in B0 → ρ +ρ − combined
with BFs for B0 → ρ +ρ −,
B+ → ρ +ρ 0, and B0 → ρ 0ρ 0

A promising method for
measuring α
Agrees with the SM with
a large error

96 10(stat) 4(syst)
deg

11(penguin)
α

± ±⎡ ⎤
= ⎢ ⎥±⎣ ⎦
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Angle γ
Hard to find a good channel that measure γ

A lot of not-so-good techniques are being studied
Example: B− → D0K−, D0 → KSπ +π −

2 decay diagrams 
Weak phases differ by γ
If D0 decays into a CP eigenstate,
interference violates CP 

Back to the old question
How do we know the relative
amplitudes?
How do we know the strong phase?
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B− → D0K−, D0 → KSπ +π −

Suppose we know the amplitude for D0 → KSπ +π − as a function 
of m+ = m(KSπ +) and m− = m(KSπ −)

Total decay amplitude should be

Experiments must
Determine f(m−,m+) from fit to the
D0 → KSπ +π − Dalitz plot 
Fit the decay rates for B+ and B−

and extract rB, δ and γ
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Status of Angle γ
Sensitivity is proportional to rB ~ |Vub|/|Vcb| small

No sensitivity for rB < 0.1 with
current statistics
Bayesian probability with flat prior
gives rB < 0.18 (90% C.L.)

Combining D0K− and D0K*−

Not a precision measurement…
Future: combine multiple methods
to constrain rB better

194 fb-1

(88 41 19 10)γ = ± ± ± °
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The Sides
In addition to the angles, we measure the lengths of the sides

Uncertainties of the “left” and “right” sides are dominated by the 
smallest CKM elements Vub and Vtd
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“Left” Side – |Vub|
Rate of b → uℓv decay is proportional to |Vub|2

Leptonic part is free from strong
final-state interaction

Must suppress 50× larger b → cℓv decays
Traditional approach: select events with large lepton energy

“Endpoint” above kinematical limit
for the b → cℓv decay
Only ~6% of b → uℓv events are
accessible

b

u
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ν

ubV
2

2
( ) 1
( ) 50
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b c V
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ν

Γ →
≈ ≈

Γ →
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A

b u→

b c→

lE
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Lepton Endpoint
Select electrons in 2.0 < Eℓ < 2.6 GeV

Accurate subtraction of background
is crucial!
Data taken below the Υ4S resonance
for non-BB background
Fit the Eℓ spectrum with b → uℓv,
B → Dℓv, B → D*ℓv, B → D**ℓv,
etc. to extract

Turn into

Data (eff. corrected)
MC

Data (continuum sub)
MC for BB background

3( ) (1.73 0.22 0.33 ) 10u exp theoB X eν −→ = ± ± ×B

3(3.94 0.25 0.37 0.19 ) 10ub exp theo HQETV −= ± ± ± ×
80 fb-1
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Hadronic Mass and q2

Eℓ is not the only kinematic variable available
There are 3 independent variables
Consider mX (hadronic mass) and q2 (lepton-neutrino mass2)

~70% of b → uℓv has mX < mD
High efficiency + smaller extrapolation

Cut on q2 is less efficient (~20%) but smaller theoretical errors

E A
2q νA Xm
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Recoil Method
Must reconstruct all decay products to measure mX or q2

Eℓ was much easier
B mesons produced in pairs

Reconstruct one B in any mode
Rest of the event contains exactly
one recoil B

Find a lepton in the recoil B
Remaining part must be X in B → Xℓv

Calculate mX and q2

For mX < 1.7 GeV and q2 > 8 (GeV)2

Fully reconstructed
B → hadrons

lepton

v

X

3(4.92 0.39 0.36 0.46 ) 10ub stat exp syst theo systV −= ± ± ± ×

3( ) (0.88 0.14 0.13 0.02 ) 10
bu stat exp syst (m ,a) systB B X lν −∆ → = ± ± ± ×

80 fb-1
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Status of |Vub|
Different approaches for
|Vub| pursued to tackle
theoretical uncertainty

Largest error from the
“shape function”
Determined by CLEO
measurement of photon
energy spectrum in b → sγ

Future improvement from
New techniques More data helps
Theoretical progress
Better measurement of b → sγ

80 fb-1
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“Right” Side – |Vtd|
B0 mixing involves virtual top exchange

Once Bs mixing rate is measured

What can we do besides waiting for Tevatron?
Radiative penguin decays b → s/d γ

Expect

W+

W-

b

d

d

b
2

2
tdd

s ts

Vm
m V

∆
≈

∆
B0 mixing rate 

Bs mixing rate 
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Vb d
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≈
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2
* 6
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B B K

V
ρ γ γ+ + + + −→ ≈ → = ×B B Reachable at

B Factories
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B → ρ γ
Main background from non-BB events

Jet-like geometry Use event shape
variables Neural Net

B → K*γ is 40× larger
Particle ID with the Cherenkov detector

Combine ρ+γ, ρ0γ and ωγ, assuming

A little smaller than expected by the SM

0 0 0( ) 2 ( ) 2 ( )B B Bρ γ ρ γ ωγ+ +Γ → = Γ → = Γ →

6

6

( ) (0.6 0.3 0.1) 10
1.2 10 (90%C.L.)

B ρ γ+ + −

−

→ = ± ± ×

< ×

B
191 fb-1
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Status of |Vtd|
B(B → ργ) limits the length of the “right” side

Bound comparable
to that from the
mixing

Theory errors from
ρ vs. K* form factor
difference and
weak annihilation
Observing B → ργ
with additional
statistics will be very interesting 95% C.L. limit including 

theory errors

Without theory errors
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Summary
The unitarity triangle is under 
attack from all directions

Huge data sample allow more 
and more measurements

In addition to sin2β, many 
measurements are reaching 
interesting precisions

CPV in penguin decays, B →
ρρ, B → uℓv, B → ργ, …

Will we crack the unitarity 
triangle?
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