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1 Overview of D�OM

D�OM is an object persistency system for C++ classes. D�OM sits on top of an
underlying I/O package, such as the dspack [1] (for sequential �les) or a database.
D�OM consists of the following elements.

1. Object model classes.

2. Preprocessor.

3. User I/O classes.

4. Dictionary classes.

5. dspack interface classes.

Normally, users interact directly only with the �rst three of the above �ve items.
The last two items are primarily intended for internal use by D�OM. In particular,
package speci�c I/O calls are hidden from the user. The underlying I/O mechanism
can be changed without a�ecting the D�OM user interface.

In addition to this guide, you should also consult the C++ headers for the classes
which you are going to use. In most cases, the details of the interface are described
only in the headers.

1.1 The D�OM Object Model

The D�OM object model is loosely based on the ODMG object model for object
oriented databases [2]. The D�OM object model requires that persistent classes have
the following properties.

1. Persistent classes inherit, directly or indirectly, from the persistent base class
d0_Object.

2. Persistent classes are composed of the following elements:

(a) Atomic types (int, float, d0_Int, d0_Float, etc.).

(b) C++ �xed length arrays.
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(c) D�OM container classes (e.g. d0_Vector<T>).

(d) The C++ standard container classes deque, list, vector, set, multiset,
map, multimap, stack, queue, priority_queue, and valarray.

(e) The additional standard C++ types bitset and complex.

(f) D�OM strings (d0_String) or the C++ standard string class string

(which can also be called basic_string).

(g) D�OM reference classes (smart pointers, d0_Ref<T>).

(h) C++ bare pointers and auto_ptr.

(i) Literal classes (non-persistent user-de�ned classes contained within persis-
tent classes). Literal classes do not need to be derived from d0_Object,
but must be composed of the types allowed in persistent classes.

Certain restrictions apply to the types that can be used with the standard D�OM
template classes (containers and references). Refer to sections 2.2 and 2.4 for details.

Note that data member names starting with two underscores are reserved.

1.2 The D�OM Preprocessor and Dictionary Classes

The D�OM preprocessor is borrowed from the cint C++ interpreter, which is dis-
tributed as part of the ROOT system [3]. The dictionary classes contain information
about the structure of user classes, or in other words they contain class metadata.
The D�OM preprocessor, d0cint, analyzes user's header �les and generates the code
necessary to create the dictionary classes. Users do not normally invoke the dictionary
classes directly. Rather, the D�OM I/O classes use the information in the dictionary
classes to translate the user's persistent objects into dspack or database objects,
which are then read or written by the underlying I/O system. Refer to Appendix B
for more information about D�OM's dictionary classes.

1.2.1 Unde�ned Objects and Schema Evolution

The de�nition of D�OM persistent classes is �xed at compilation time (actually at
preprocessing time). The universe of persistent classes that is known to a particular
program is �xed at link time. Each persistent class known to D�OM has a name
that is deterministically mapped onto a single dspack data set or database table.
One dspack data set or database table stores data from all instances of a particular
persistent class.

Ideally, when D�OM reads previously written data, the names and de�nitions
stored in the previously written data correspond exactly to the current D�OM per-
sistent classes. In such cases the conversion of dspack data into D�OM objects is
straightforward. But if the dspack de�nitions do not match the compiled-in de�ni-
tions, D�OM will attempt to convert the data format. D�OM can cope with simple
situations such as the addition, deletion, or rearrangement of data �elds. Any miss-
ing data is set to zero or null. If D�OM can't convert the data format, a fatal error
results. For more discussion on schema evolution, see Section 8.
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Table 1: D�OM atomic types.
D�OM type Equivalent standard type

d0 Int int

d0 Uint unsigned int

d0 Short short

d0 UShort unsigned short

d0 Long long

d0 ULong unsigned long

d0 Char unsigned char

d0 Bool bool

d0 Float float

d0 Double double

d0 Octet unsigned char

It can also happen that D�OM �nds a dspack data set or database table for which
there is no corresponding persistent class (i.e. an unknown name). This situation is
described in Section 7.

2 D�OM Object Model Classes and Types

This section contains a more detailed description of the D�OM object model classes
and types.

2.1 Atomic Types

A complete list of D�OM atomic types is shown in Table 1. D�OM atomic types
are implemented as simple typedefs. Persistent class headers may be speci�ed using
either the D�OM name or the standard name for the allowed atomic types.

Note that dspack does not support 64-bit integers. If you use a long type on the
Alpha, it will be truncated to 32 bits on output.

2.2 Container Classes

Many types of containers can be saved. A container is represented as a one-
dimensional ordered list of arbitrary length of homogeneous objects.

The type of object stored in a container should satisfy the same requirements as
for a class data member. Atomic types, pointers, references, user-de�ned classes, and
other containers are all legitimate.

Polymorphism is not allowed for objects stored in containers. The type of any
object put into a container must exactly match the type of the class's template argu-
ment. It follows that heterogeneous collections are not allowed. However, the same
e�ect as a heterogeneous collection can be achieved by having a collection of references
or pointers.

6



Note that some container classes can have additional state besides the container
contents, such as the comparison objects for associative containers, or the allocator
object for most STL containers. This additional state is not saved. You should thus
be careful if you create a container with a comparison object or allocator which is not
simply initialized by the default constructor.

The kinds of containers which may be saved are summarized below.

2.2.1 STL Container Classes

The following plain STL container classes can be saved:

� deque

� list

� vector

� set

� multiset

� map

� multimap

� stack

� queue

� priority_queue

� valarray

2.2.2 Hash Table Classes

The following hash table classes, de�ned in the d0_util package, can be saved:

� d0_util::Hashmap

� d0_util::Ptrmap

� d0_util::Ptrset

� d0_util::Strptrmap

� d0_util::Stringset
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Table 2: D�OM and STL container classes.
D�OM STL Description

d0 Vector<T> vector<T> Variable length contiguous
array

d0 List<T> list<T> Linked list
set<T, less<T> > Unordered collection (no du-

plicates)
multiset<T, less<T> > Unordered collection (dupli-

cates allowed)
map<K, T, less<K> > Map (no duplicates)
multimap<K, T, less<K> > Map (duplicates allowed)

2.2.3 Other C++ Types

The following additional template classes from the standard C++ library may be
saved:

� bitset

� complex

2.2.4 D�OM Container Classes

[Note: The classes described in this section are now in the d0_util package.]
The D�OM container classes are derived from STL containers. Table 2 table

summarizes the correspondence between D�OM and STL container classes. The
D�OM containers also inherit a common ODMG-like interface from a generic con-
tainer class d0_Collection<T> (see Fig. 1). The ODMG-like interface is a partial
implementation of the interface de�ned in Ref. [2]. Users can use either the STL in-
terface or the ODMG-like interface. Note that the D�OM containers are not derived
from d0_Object, and therefore can not be persistent on their own. This does imply,
however, that these containers can be used apart from the rest of the persistence
mechanism.

Classes that are to be stored in D�OM containers should implement the de-
fault constructor, copy constructor, destructor, and any methods required by the
corresponding STL container. These typically include the assignment operator (=),
equivalence operator (==), and, if appropriate, the less than operator (<). The other
relational operators are derived from global template functions that are part of STL.
As with any class, it is also good practice to implement the ostream insertion operator
(<<).

Iterators D�OM contains two iterator classes, called d0_Const_Iterator<T> and
d0_Iterator<T>, for iterating over elements of any of the D�OM containers. The
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Figure 1: Mutable container (d0 Vector and d0 List) class diagram.
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Figure 2: Iterator class diagram.

Table 3: Pointer and Reference container classes.
Special class Equivalent ordinary class

d0 PVector<T> d0 Vector<T*>

d0 RVector<T> d0 Vector<d0 Ref<T> >

d0 PList<T> d0 List<T*>

d0 RList<T> d0 List<d0 Ref<T> >

d0 PIterator<T> d0 Iterator<T*>

d0 RIterator<T> d0 Iterator<d0 Ref<T> >

d0 Const PIterator<T> d0 Const Iterator<T*>

d0 Const RIterator<T> d0 Const Iterator<d0 Ref<T> >

constant version of the iterator must be used for read only collections and for im-
mutable collections (sets and multisets). The class diagram for the D�OM iterators
is shown in Fig. 2. There is no inheritance relationship between the D�OM iterators
and STL iterators. However, D�OM iterators ful�ll the interface requirements for
STL bidirectional iterators, and therefore may be used wherever STL iterators are al-
lowed, for example in STL algorithm calls. In addition to the STL interface, D�OM
iterators have an ODMG-like interface that provides some additional functionality
not present in the STL interface.

D�OM iterators can be obtained from any D�OM container class using the meth-
ods d0_begin() and d0_end(). The STL methods begin() and end() return STL
iterators, which can also be used for iterating over D�OM collections.

Pointer and Reference Container Classes Special container and iterator classes
exist for collections of pointers and references. Table 3 lists these special classes and
their functional equivalents. These classes exist for the technical reason that they
allow more sharing of code than the ordinary classes, and hence they produce smaller
code. Either kind of special collection can be used in persistent classes.
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2.2.5 User-De�ned Collections

It is also possible to make D�OM treat an arbitrary class as a collection. For this to
make sense, it must be possible to represent the state of an instance of the class by
an ordered list of values of some uniform type. There are several steps required to
use a user-de�ned collection type:

1. You must de�ne an adapter class for your collection class. This makes it
possible to get data into and out of the collection using a uniform inter-
face. Your adapter class must derive from d0om_Collection_Adapter (see
d0om/d0om_Collection_Adapter.hpp). It must implement the virtual meth-
ods size, collsize, insert_elements, iterate, construct, and destroy.

Note that there several existing adapter classes which you might be able to use.

� If your collection has an interface compatible with an STL sequence, you
can use d0om_STL_Sequence_Adapter. Speci�cally, it must:

{ De�ne value_type, which must have a default constructor.

{ De�ne iterator as at least a forward iterator.

{ Implement clear().

{ Implement size().

{ Implement begin().

{ Implement end().

{ Implement insert (p, n, t), where p is an iterator, n is an inte-
ger, and t is an instance of value_type.

� If your collection has an interface compatible with an STL associative
container, you can use d0om_STL_Assoc_Adapter. Speci�cally, it must:

{ De�ne value_type, which must have a default constructor.

{ De�ne iterator as at least an input iterator.

{ Implement clear().

{ Implement size().

{ Implement begin().

{ Implement end().

{ Implement insert (p, t), where p is an iterator and t is an in-
stance of value_type.

2. Your collection should de�ne the value_type, giving the type of a collection
element.

3. Your collection should also de�ne d0om_collection_adapter as a typedef name
for the adapter class. Note that this name must be de�ned in the collection class
itself, and not in a base class (otherwise, it would be impossible to derive an
ordinary class from a collection class).
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Figure 3: String class diagram.

4. In most contexts where you use your collection class, the complete declaration
of the adapter class is not required. However, it is required when you compile
linkage �les for classes which use the collection. For the adapter classes listed
above, this is handled automatically. Otherwise, you must arrange this yourself.
This can be done by including in the header de�ning the collection class the
construction

#ifdef __D0CINT__

# pragma linkageinclude "adapter-header"

#endif

This causes d0cint to emit #include "adapter-header" in the generated link-
age �le.

For an example of this, see mycoll, mycoll_adapter, and myclasses10 in the
D�OM tests directory.

If you are want to adapt an existing class without modifying it but are having
trouble due to the required typedefs, the #pragma extendclass directive may be
useful. See Section 9.1 for more information.

2.3 D�OM String Class

[Note: The d0_String class is now in the d0_util package.]
The D�OM string class is derived from the ANSI standard string class (see Fig. 3).

The D�OM string class exists for various technical reasons: it �xes bugs and omissions
in various vendor's string implementations, and it can lead to much shorter external
names. (This has been seen to make a considerable di�erence in object �le sizes.)
From the user's point of view, d0_String provides the same functionality as string.
The GNU C++ compiler (v2.7) is known to contain a bug for which the workaround
is to include the D�OM string header before any other D�OM header.

The plain C++ string (or basic_string) class can also be saved. Also note
that the d0_String class is independent from the rest of the persistency mechanism.
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2.4 D�OM Reference Classes

The D�OM reference class d0_Ref<T> functions in many ways like the pointer type
T*. In particular, d0_Ref<T> can be dereferenced by the C++ operators * and ->.
The class d0_Ref<T> is sometimes called a \smart pointer." References provide more
functionality than standard pointers. D�OM references currently have the following
features.

1. Reference counting of dynamic C++ objects.

2. Deferred conversion of dspack objects to C++ format.

3. Deferred I/O for database objects.

2.4.1 Reference Counting

A reference count is logically associated to every persistent object on the heap. This
is true whether or not an object has been instantiated in C++ format. For eÆciency
reasons, whenever possible D�OM defers I/O or data conversion until a reference has
been dereferenced. References to static and automatic objects do not have reference
counts, but such objects can still be pointed to by d0_Ref<T>. Object reference
counts interact with D�OM references as follows:

1. Objects created using the new operator get a reference count of zero.

2. When an object is read from external storage, a reference pointing to a non-
instantiated C++ object, and having a reference count of one, is returned to
the user.

3. The reference count is incremented when a reference is set to point at the object.
This normally happens when a reference is initialized, assigned, or copied.

4. When a reference is cleared or destroyed, the reference count associated with
the pointed-to object is decremented. If the reference count reaches zero, the
object is deleted.

The programmer is not responsible for deleting objects that are managed by refer-
ences. Because the reference itself takes care of deleting heap objects, memory leaks
and dangling references are less likely than with standard pointers. Memory leaks are
still possible if several objects containing references point to each other in a loop. In
such cases, the programmer must break the loop in at least one place by calling the
clear() method of d0_Ref<T>.

It is possible to create a d0_Ref from a C++ pointer without a�ecting the reference
count of the C++ object. This is done with the following construction:

X* xptr;

...

d0_Ref<X> xref (xptr, d0_Ref_Base::NOREFCOUNT);
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This will not a�ect the reference count of the object pointed to by XPTR, either
when the reference is constructed or when it is deleted. This property is copied along
with the reference.

2.4.2 d0 Ref<T> Methods

The following methods are de�ned for d0_Ref<T>:

d0_Ref() Constructor.
d0_Ref(T*) Constructor.
d0_Ref(d0_Ref<U>) Constructor.
d0_Ref(T*, Norefcount) Constructor that doesn't alter the reference

count.
T* operator->() Dereference.
T& operator*() Dereference.
d0_Ref<T>&

operator= (T*)

Assignment.

d0_Ref<T>&

operator= (d0_Ref<U>&)

Assignment.

operator bool () Test for a non-null reference.
bool operator!() Test for a null reference.
void clear() Clear the pointer and decrement the reference

count.
const d0om_Type_Object*

d0om_type()

Return the dynamic type of the object which
this d0_Ref references. If possible, do it with-
out creating the object. Whether this is pos-
sible or not depends on the I/O backend.

void delete_object() Clear the pointer and delete the pointed-to ob-
ject. Throw an exception if the reference count
is greater than one.

bool has_field (const d0_String& fieldname,

const d0om_Type_Class* cls = 0)

Examine the version of cls present in the same
place that the object that this d0_Ref points
to is located. (In the same dspack event, for
example.) If cls is defaulted to zero, exam-
ine the class of the object that this reference
points to. Return true if that version of cls
had a �eld named fieldname. (I.e., return
true if the �eld named was really present in the
data being read, rather than being defaulted.)
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At present, this only really works with the
dspack backend; others will just test the for
fieldname in the current version of the class.
If possible, we do this operation without actu-
ally creating the object to which this d0_Ref
points; whether this is possible or not depends
on the I/O backend.

bool is_deferred() True if the object at which this reference is
pointing has not yet been constructed.

bool

is_dereferenceable()

True if it is safe to dereference this d0_Ref.
(I.e., not is_null and either not is_unknown
or d0om_Options::unknown_action has been
set to MAKE_UNKNOWN.)

bool is_null() Is anything being pointed to?
bool is_unknown() True if the object at which this reference is

pointing does not have compiled-in type infor-
mation. (See Section 7.)

T* ptr() Return the corresponding C++ pointer.
T* ptr_only() Like ptr(), but if the C++ object hasn't yet

been constructed, just return null.
void purge_object() Delete the object instance this d0_Ref is

pointing at, but leave the reference valid so
that the object can be recreated from persis-
tent storage if it is dereferenced again. Ex-
ceptions: If the d0_Ref isn't doing reference
counting, this just clears it. If the d0_Ref is
pointing at an object that wasn't read from
persistent storage, the d0_Ref is just cleared.
If there's more than one d0_Ref pointing at
the object, an exception is thrown.

T* release() Release ownership of the object (similar to
auto_ptr<T>::release). If the object this
d0_Ref is pointing to is not reference-counted,
just return the pointer to it. Otherwise, if the
reference count is not 1, throw an exception.
Otherwise, clear this reference, reset the refer-
ence count on the object to 0, and return the
object pointer.

int version (const d0om_Type_Class* cls = 0)
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Examine the version of cls present in the same
place that the object that this d0_Ref points
to is located. (In the same dspack event, for
example.) If cls is defaulted to zero, exam-
ine the class of the object that this reference
points to. Return the version number of that
instance, or 0 if we couldn't �nd a version
number. For backends that don't store ver-
sion information, this will return the current
version. If possible, we do this operation with-
out actually creating the object to which this
d0_Ref points; whether this is possible or not
depends on the I/O backend.

All six relational operators are de�ned for d0_Ref. A d0_Ref can also be compared
for equality with bare pointers.

The class d0_Ref also provides the typedef names pointer (T*), const_pointer
(T const *) and element_type (T).

The following global typedefs are provided for convenience:
d0_Ref_Any d0_Ref<d0_Object>

d0_Const_Ref_Any d0_Ref<const d0_Object>
The has_field and version methods deserve a little more explaination for the

cls argument. D�OM can only handle references (and pointers) to instances of
d0_Object. Thus, if one wants to specify an instance to D�OM it must be an
instance of d0_Object. But for these methods, one would like to be able to get
information about classes that do not derive from d0_Object. That is why the cls

argument is present. For example, given the following de�nitions:

struct A {};

struct B :

public d0_Object

{

D0_OBJECT_SETUP (B);

A a;

};

d0_Ref<B> r;

Then r->version() will give the version of B in the �le from which
the object pointed to by r was read. To get the version of A, use
r->version (A::d0om_type_static()).

Also, when using has_field, note that D�OM does not consider a class to directly
contain �elds from base classes. Thus, if in addition to the above de�nitions you had

struct C

: public B
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{

D0_OBJECT_SETUP (C);

};

d0_Ref<C> rc;

then rc->has_field ("a") will return false, but the construction
rc->has_field ("a", B::d0om_static_class()) will return true.

2.4.3 Restrictions

Classes T pointed to by d0_Ref<T> must directly or indirectly derive from d0_Object,
regardless of whether or not they are intended to be persistent.

Classes pointed to by d0_Ref<T> are allowed to be polymorphic or abstract.

2.4.4 Name-Only References

C++ allows pointers to be declared that point to incompletely de�ned classes. The
same is true of D�OM references.

class T;

d0_Ref<T> pT;

Such name-only reference declarations are desirable in order to reduce the physical
coupling between modules. Some restrictions apply to name-only references. The
following usages are allowed for name-only references.

1. Declaration

2. Copying

3. clear(), delete_object() and is_null() methods.

The following usages are disallowed for name-only references.

1. Dereferencing.

2. Initialization from a C++ pointer.

3. ptr() method.

2.4.5 Reference Type Conversions

Default pointer conversions are carried out automatically when assigning between
d0_Ref instances. For non-default conversions, you must use an explicit cast. The
syntax is as follows:

D0_REFCAST((type))(object) Downcast
D0_REF_UNSAFECAST((type))(object) Unsafe cast
D0_REFCAST((const type))(object) Constant downcast
D0_REF_UNSAFECAST((const type))(object) Constant unsafe cast
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D0_REFCAST acts like a dynamic_cast, except that it will generate a fatal error if
the type of the object is not valid. D0_REF_UNSAFECAST does not do any checking; it
is not recommended for general use.

If you are using a compiler that supports explicit speci�cation of function template
arguments (i.e., everyone except Microsoft), you can also use the notations

d0_refcast<type>(object) Downcast
d0_ref_unsafecast<type>(object) Unsafe cast

Here are some examples:

d0_Ref<myclass> r1 = new myclass;

d0_Ref_Any r2 = r1;

d0_Ref<myclass> r3 = D0_REFCAST((myclass)) (r2);

d0_Ref<const myclass> r4 = r1;

d0_Ref<const myclass> r5 = D0_REFCAST((const myclass)) (r2);

The above macros are type-safe in the sense that a prohibited conversion will result
in a compiler error. Refer to the header �le d0_Ref.hpp for more information about
reference type conversions and how to use the above macros.

Note that these macros will not work with type names containing commas.
You must de�ne a separate typedef name for those. The old macros D0_REFCONV,
D0_CONST_REFCONV, D0_CONST_REFCAST, and D0_REF_CONST_UNSAFECAST are no
longer needed, but are retained for backwards compatibility.

2.5 C++ Bare Pointers

C++ bare pointers are allowed in persistent classes. The pointed-to class must derive
from d0_Object. Pointers are allowed mainly so that preexisting classes can more
easily be made persistent. For new classes, it is recommended to use the D�OM
reference class d0_Ref<T>, as described in section 2.4.

Whenever an object with C++ pointers is read, all the objects to which it points
are also read (no deferred I/O). The user is responsible for deleting these objects
when done with them.

Because of the di�erent way in which references and pointers manage memory,
pointers and references should not simultaneously be made to point to the same
object. D�OM attempts to enforce this prohibition.

As with D�OM references, persistent pointers can be used to point to polymorphic
or abstract classes.

There are two functions available to do the equivalent of d0_Ref::version and
d0_Ref::has_field for bare pointers:

namespace d0om {

int get_version (const d0_Object* o, const d0om_Type_Class* cls = 0);

bool has_field (const d0_Object* o,
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const d0_String& fieldname,

const d0om_Type_Class* cls = 0);

}

They work just like the d0_Ref methods described in section 2.4.2, except that they
take a pointer to the object as an addtional argument. These functions get declared
if you include the header d0_Ref.hpp.

2.6 C++ auto ptr Class

The C++ auto_ptr class may also be used, subject to the same restrictions as for
bare C++ pointers. In addition, it is an error to write a structure which contains
more than one auto_ptr points at a given object, though there is no checking for
this. (Be careful with using the CD2 auto_ptr class, as it is easy to leave unowned
dangling pointers. The version of auto_ptr actually approved for the standard should
make it harder to run into this.)

2.7 Transient Data in Persistent Classes

Classes are allowed to contain transient data members. Such members are not read
to or written from the persistent store. A class designer can mark a data member
transient using the directive #pragma transient member-names. Here, member-

names is a comma-separated list of the names of the members which you want to be
transient. They are looked up using the scope which is current at the point where the
directive appears; the directive does not have to be lexically inside the class which
it is modifying. A #pragma transient directive should probably be placed inside
a #ifdef __D0CINT__ construction, to hide it from translators other than d0cint.
(Or use D0OM_TRANSIENT; see section 9.2.) Alternatively, a �eld may be marked
as transient by including a C++ comment beginning with the string \//!" on the
same line as the �eld declaration. (This convention was borrowed from ROOT.) This
syntax, however, is deprecated. Also, any data �eld that is not a recognized D�OM
persistent type is transient by default (but you may get a warning).

Examples:

class foo

{

public:

int a;

int b; //! foo::b is transient

struct bar

{

int d;

int e;

};
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int f;

#ifdef __D0CINT__

# pragma transient f // foo::f is transient

#endif

};

#ifdef __D0CINT__

# pragma transient foo::a, foo::bar::e

// foo::a and foo::bar::e are transient.

#endif

The d0_Object interface provides two methods, activate and deactivate, for
initializing and deinitializing transient members when they are moved into and out
of memory (see section 2.8.3).

Related to #pragma transient is #pragma nowrite, which declares that a mem-
ber is to be read, but not written. See Section 8.4 for further discussion.

2.8 D�OM Base Class and Inheritance

A persistent class which is to be referred to by a pointer or d0_Ref must inherit,
directly or indirectly, from the persistent base class d0_Object. Either single or
multiple inheritance may be used. Figure 4 shows an example of persistence via
single inheritance.

class A : public d0_Object { ... };

class B : public A { ... };

The classes A and B are both persistent.
If a class is used only as a data member of another class or as the element type

of a container, then it need not derive from d0_Object. Example:

class A {};

class B : public d0_Object

{

public:

A a; // OK

std::list<A> alist; // OK

A* aptr; // BAD

d0_Ref<A> aref; // BAD

B* bptr; // OK

D0_OBJECT_SETUP (B);

}
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Figure 4: Persistence via single inheritance.

2.8.1 Multiple Inheritance

Figure 5 shows the simplest case of persistence via multiple inheritance.

class pA : public A, public d0_Object { ... };

Multiple inheritance has been used to de�ne a persistent version pA of a non-persistent
class A. Note that only persistence capable �elds of A will persist in pA.

A more complex example of multiple inheritance is shown in Figure 6.
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Figure 5: Persistence via multiple inheritance.
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Figure 6: Persistence via multiple virtual inheritance.

class pA : public A, virtual public d0_Object { ... };

class pB : public B, virtual public d0_Object { ... };

class C : public pA, public pB { ... };

In this example, class C multiply inherits from two persistent classes pA and pB.
The classes pA and pB must use virtual inheritance with respect to d0_Object to
ensure that only copy of d0_Object is contained in class C. In general, the following
restrictions apply to the use of multiple inheritance.

1. Only one copy of any class may be inherited in a persistent class. Use of virtual
inheritance may be necessary to ensure this.

2. Virtual base classes may not contain any persistent data.

2.8.2 Polymorphism

Polymorphism is allowed in the D�OM object model via the reference class
d0_Ref<T> and pointers. References and pointers in persistent classes can point
to polymorphic or abstract classes.

2.8.3 Activate and Deactivate

In general, a persistent class designer does not need to be concerned very much
with the interface of the class d0_Object. Possible exceptions are the methods
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\void activate()" and \void deactivate()" of d0_Object. The activate()

method is called whenever a persistent object is instantiated in memory (all per-
sistent �elds should be �lled in at this point). The deactivate() method is called
just before an object is written. activate() is intended to regenerate transient data
that is dependent on persistent data within the same object. Note that this task can
not be handled by a constructor because the constructor does not have access to the
object's persistent data. deactivate() does the same process in reverse.

A class designer may override activate() or deactivate() if they are needed for
nontrivial processing. In that case, activate() and deactivate() should explicitly
invoke the activate() and deactivate() methods in any base classes.

Note that deactivate() is declared const, and thus any overriding function must
also be declared const. This is a statement of the constraint that deactivate()

should not change the state of the object as it appears from the outside. If certain
class members do need to be changed, they should probably be declared mutable.

2.9 Class Versions

User-de�ned classes can be de�ned with an integer version number. When an instance
of the class is read in, you can query it to see with what version it was written, through
either the d0_Ref<T>::get_version method or the d0om::get_version function
(see sections 2.4.2 and 2.5). If the version number is smaller than the current versions,
this can also trigger a user-written conversion on input (see section 8.3.3).

You specify the version of a class to D�OM using the #pragma version directive:

class A {};

#ifdef __D0CINT__

#pragma version A 5;

#endif

The version number may be an expression that evaluates to a constant integer.
The directive should probably be within a #ifdef __D0CINT__ construct to hide it
from processors other than d0cint. (Or use D0OM_VERSION; see section 9.2.)

The version number is stored in the data �le as part of the dictionary information.
Thus, it does not take up space in each instance of the class. At present (v00-25-00),
only the dspack supports storing version numbers.

2.10 How Objects Are Reconstructed

When an object is being read in, it is �rst initialized using one of its constructors.
Next, all persistent �elds are �lled in. (No class methods are invoked for this.) Next,
if the object's class derives from d0_Object, the activate method is called. Finally,
if the object is being stored in an associative container, the object's copy constructor
is used to copy it to its �nal position.

Normally, the default constructor is used to initialize the object. However, some-
times the default constructor does stu� which is not appropriate for when an object
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is being read. For example, if an object has a persistent bare C++ pointer, and the
default constructor initializes it to newly-allocated memory, then that memory would
be leaked when the object gets read in. (Note, however, that this particular problem
would go away if a d0_Ref were used instead of a bare pointer.)

To solve this problem, you can de�ne a constructor which has a signature of
`(const d0_Input_Info*)'. If such a de�nition is present, then that constructor
will be used instead of the default constructor to initialize objects which are being
read in. Presently, the pointer which gets passed to the constructor will be null, but
it may be used in the future to provide additional information to the constructor.

If a d0_Input_Info constructor is provided, the default constructor need not be
present.

Note also that this behavior is only applicable for top-level (complete) objects.
For objects contained inside of other objects, the constructor used is determined by
the containing object.

2.11 Nested Classes

Nested classes (classes de�ned within other classes) are allowed in D�OM. Nested
classes can be persistent or contained in other persistent classes. The rules for persis-
tent nested classes are the same as for non-nested classes. Namely, they must derive
from d0_Object and otherwise conform to the D�OM object model. Note that nested
classes or structures must be named; they cannot be left anonymous. Also, if a nested
class derives from d0_Object, it must be public.

2.12 Namespaces

Namespaces may be used. A name in a namespace is treated much like a name in
a class scope. The using directive is not fully implemented; you should explicitly
qualify any names you use in a header rather than using a using directive.

2.13 Preprocessor Macros

Cint has only a limited implementation of the C preprocessor.
Conditionals on macro de�nitions (#if defined, #ifdef, #ifndef) should work.
In most cases, simple macros (without parameters) should work as long as the

macro de�nition is a constant or a type name.
Macros with arguments can be used, but only in certain contexts. They should

work at the start of a statement, or in a position where a function call may appear.
They probably won't work in other places. Token pasting works, but stringi�cation
does not.

In general, it is a good idea to rely on preprocessor macros as little as possible in
sources which d0cint is supposed to read.
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2.14 Template Classes

Template classes are allowed in D�OM. Template classes can be persistent or con-
tained in other persistent classes. The rules for persistent template classes are the
same as for non-template classes. Namely, they must derive from d0_Object and
conform to the D�OM object model. In addition it is necessary to declare to the
D�OM preprocessor those instantiations of a template class that are to be made
persistent. This is done using the #pragma linkage directive (see Section 5.9):

#pragma linkage my_template_class<int>

These directives should usually be put inside an #ifdef __D0CINT__ guard to hide
them from translators other than d0cint. (Or use D0OM_LINKAGE; see section 9.2.)
The name given in the directive is looked up in the scope which is current at the
point where it occurs.

A template instantiation may also be declared with a pseudocomment with the
following format:

//! +class my_template_class<int>

In this case, the name must be fully quali�ed, i.e., if it is in a namespace or class
scope, this must be given explicitly.

The linkage directive is probably best placed where where the instantiation is
used.

Here is an example:

/*** tmpl.hpp ***/

template <class T>

struct tmpl

{

T x;

};

/*** tint.hpp ***/

#include "tmpl.hpp"

#include "d0om/d0_Object.hpp"

class tint : public d0_Object

{

public:

tmpl<int> y;

};
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#ifdef __D0CINT__

# pragma linkage tmpl<int>

#endif

/*** tfloat.hpp ***/

#include "tmpl.hpp"

#include "d0om/d0_Object.hpp"

class tfloat : public d0_Object

{

public:

tmpl<float> y;

};

#ifdef __D0CINT__

# pragma linkage tmpl<float>

#endif

One would then run tint.hpp and tfloat.hpp through d0cint. It is unnecessary
to run d0cint on tmpl.hpp here, as that header does not actually de�ne any classes
| it only de�nes the template.

An alternate method for signaling that d0cint should generate linkage information
for a template class is provided by the d0om_autolink typedef. This is described in
Section 5.9.

It is also possible to use non-type template arguments; however, d0cint's support
for them is incomplete. Numeric types should work ok. The character string types
char* and const char* should also work, with the caveat that d0cint will not
attempt to evaluate expressions given for such arguments | the expression text is
simply copied. This implies that any nested names appearing as a character string
template argument should be fully namespace- and class-quali�ed.

Types other than the above are not really supported; they may work sometimes,
but that's more by chance than by design. . .

2.15 Translated Classes

Sometimes, one wants to use a class from an external source. This class does not
satisfy the requirements of D�OM, and it cannot be changed, but you want to be
able to save it. In some cases, this can be accomplished by de�ning it as a translated

class, as described below.
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Note that as this mechanism is somewhat complicated to set up, we recommend
that it be used mainly to adapt existing external classes. New D� code should
probably be written to use D�OM directly. In addition, the class to be translated
can only be used as a member of another class | you can't have a pointer to it
directly. (However, the translated class can have internal pieces which are reached by
pointers, as long as these pieces are not directly referenced by D�OM objects.)

Setting up a translated class actually requires three classes. The �rst is the class
you want to adapt, called the target class. Given the target class, you should write
another class which contains all the persistent state of the target class and which
satis�es the requirements of D�OM. This is called the dummy class. Finally, you
need to write the translator class, which knows how to convert between the target
class and the dummy class. The translator class should derive from the abstract class
d0om_Class_Translator. Here is a list of methods which it should implement.

� void* makedum_fromtarg (const void* targ) const

Given a pointer to an instance of the target class, create an instance of the
dummy class containing the same information.

� void deldum (void* dum) const

Delete an instance of the dummy class (which was created by the method
makedum_fromtarg).

� void* makedum_empty () const

Make an empty instance of the dummy class.

� void copydum_totarg (void* targ, void* dum) const

Given a pointer to an instance of the dummy class (created by makedum_empty)
and an instance of the target class, copy the dummy instance to the target
instance. Then delete the dummy instance.

� void construct (void* targ) const

Construct an instance of the target class.

� void destroy (void* targ) const

Destroy an instance of the target class.

� void zero (void* targ) const

Clear an instance of the target class.

� int size () const

Return the size of an instance of the target class, in bytes.

� int align () const

Return the required alignment of an instance of the target class, in bytes.

The translator class is linked to the dummy class by putting a typedef declaration of
d0om_class_translator in the dummy class.

27



There is a also simpli�ed translator interface that can be used in many cir-
cumstances. To use it, both the target and dummy classes must have default
constructors, and it should be appropriate to align instances of the target class
at eight-byte boundaries. In that case, you can instead derive from the tem-
plate class d0om::Translator_Helper<Target, Dummy>, where Target and Dummy

are the target and dummy classes, respectively. (This class in turn derives from
d0om_Class_Translator). The d0om::Translator_Helper class has only three pure
methods that must be supplied:

� void zero_target (Target& targ) const

Clear out the target instance targ.

� void target_to_dummy (const Target& targ, Dummy& dum) const

Convert targ to dum.

� void dummy_to_target (const Dummy& dum, Target& targ) const

Convert dum to targ.

How this all gets organized in the header �les is a bit tricky. I'll go through an
example, showing one way which seems to work.

Suppose you want to adapt a class named C. The header �le for this class is in
otherstuff/C.hpp. The package in which you're including the translator is called
mystuff.

First, create the dummy class. That can be de�ned in the �le mystuff/C_dum.hpp,
and look something like this:

class C_Translator;

#ifdef __D0CINT__

class C

#else

class C_dum

#endif

{

public:

typedef C_Translator d0om_class_translator;

// Define the persistent data here.

...

};

#ifdef D0OM_LINKAGE_FILE

typedef C_dum C;

#endif
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#ifdef __D0CINT__

# pragma linkageinclude "mystuff/C_Translator.hpp"

#endif

When this header is included in normal C++ code (such as from the translator
class), it de�nes the dummy class C_dum. However, when run though d0cint, it
appears to de�ne the class C. This is the de�nition of class C, as far as d0cint is
concerned. The linkage �le which d0cint emits will then contain references directly to
the class C. That's the reason for the line typedef C_dum C. This line is visible only
when the linkage �le is being compiled. You tell d0cint that this is a translated class
with the d0om_class_translator typedef; the target of the typedef is the translator
class. In order for the generated linkage �le to compile, the full declaration of the
translator class must be present. But it may not be desirable to couple C_dum.hpp to
C_Translator.hpp. This can be avoided by using the linkageinclude directive, as
in the example. The directive #pragma linkageinclude text causes d0cint to emit
#include text in the generated linkage �le.

This header de�ning the dummy class should be run through d0cint, generating
a linkage �le and a reference header.

Next, write the translator class. In this example, it would be called C_Translator

and be de�ned in C_Translator.hpp. Finally, you may need a wrapper for the target
class. This can be called mystuff/C.hpp, and might look something like

// If d0cint will read otherstuff/C.hpp, you can just include it here.

#include "otherstuff/C.hpp"

#ifdef __D0CINT__

#pragma linkageinclude "mystuff/C_dum_ref.hpp"

#endif

The linkageinclude here ensures that any persistent class using this header will
automatically get the de�nition for the dummy class. If d0cint will not read
otherstuff/C.hpp, you can instead do the following:

#ifdef __D0CINT__

// A dummy definition of C, that d0cint can parse.

...

#else

# include "otherstuff/C.hpp"

#endif

Then, to use the translated class, you include mystuff/C.hpp from your classes,
rather than otherstuff/C.hpp.

Note that, at present, this mechanism is available only if you are using the dspack
backend.
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2.16 ZOOM and CLHEP Classes

The following classes from Zoom and CLHEP may also be used:

� LinearAlgebra

{ MatrixC

{ MatrixD

{ ColumnVector

{ RowVector

� PhysicsVectors

{ SpaceVector

{ UnitVector

{ LorentzVector

{ PlaneVector

{ AxisAngle

{ EulerAngles

{ Rotation

{ RotationX

{ RotationY

{ RotationZ

{ LorentzTransformation

{ LorentzBoost

{ LorentzBoostX

{ LorentzBoostY

{ LorentzBoostZ

� CLHEP/Vectors

{ Hep3Vector

{ HepLorentzVector

{ HepRotation

{ HepLorentzRotation

� CLHEP/Matrix

{ HepMatrix

{ HepDiagMatrix
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{ HepSymMatrix

{ HepVector

The d0om_zm package must be accessible for this to work. If you use any of these
classes in a persistent class, you should link with the additional library -ld0om_zm.

The names from the FixedTypes header may also be used.
Note that some caution is needed with the vector classes from CLHEP, as there are

di�erent classes with the same names present in the Zoom PhysicsVectors package.

2.17 Reserved Member Names

Member names beginning with two underscores are reserved. The following reserved
names are presently de�ned:

� __baseN | D�OM implements base classes by treating them like additional
member �elds (this is the origin of the restriction against having data in virtual
bases). These members are given names of the form __baseN, where N is an
integer. Members with names of this form should never be used in the input to
d0cint.

� __offsetN | If d0cint sees a member name of this form, it iterprets the
member to be �xed at o�set N within the C++ object. This can be useful
in making external classes work with D�OM, where you want to \overlay"
an external de�nition with one which works with D�OM (and has the same
layout). See the bitset and complex classes for examples of this.

� __packed | Used to store any packed �elds in the class. See Section 2.18.

2.18 Packed Fields

Sometimes, one wants to pack data tighter than it would naturally be stored. You
can tell D�OM to attempt this with the #pragma pack directive. Note that how
this is implemented depends on the speci�c I/O backend | at present, the dspack
backend is the only one that handles packed data. (But it should be ok to specify
#pragma pack directives even if you're using a backend that doesn't support them |
they will just be ignored.) Also note that saving and restoring packed �elds is likely
to be much slower than ones that haven't been packed.

Only members of boolean or numeric type or collections of them may be packed.
The syntax of the packing directive is

#pragma pack (packspec) member-names

Here, packspec describes the sort of packing to do and member-names is a comma-
separated list of the member names to be packed. They are looked up using the scope
which is current at the point where the directive appears; the directive does not have
to be lexically inside the class which it is modifying. A #pragma transient directive
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should probably be placed inside a #ifdef __D0CINT__ construction, to hide it from
translators other than d0cint. (Or use D0OM_TRANSIENT; see section 9.2.)

The packing speci�cation packspec consists of a comma-separated list of \key-
word=value" pairs. The set of keywords accepted depends on the data type of the
member, as listed below. All types, however, accept the nbits keyword, giving the
requested number of bits to be used to store this member. This must be in the range
1{32.

� bool | Boolean �elds have only the nbits keyword.

� Integer types | Besides the nbits keyword, integer types may also have the
keywords lo and hi. These give the (inclusive) range of values allowed for this
member. If either lo or hi is speci�ed, both of them must be. If a range is
speci�ed, then the nbits keyword may be omitted. In that case, the number of
bits will be chosen to be just large enough to hold the requested range.

� Floating point types | Besides the nbits keyword, the following keywords may
be speci�ed:

{ scale | If provided (and nonzero), the number being stored will be di-
vided by this value before being stored. This allows one to scale numbers
into the range allowed for �xed-point representations.

{ signed | If this keyword is set to \0", then a sign bit will not be stored:
i.e., all numbers to be stored must be nonnegative. This defaults to \1".

{ nmantissa | The number of bits to use for the mantissa of the represen-
tation, excluding the sign bit (if any). All remaining bits left over from
nbits after taking out the nmantissa bits and the optional sign bit are
used for the exponent. If there are no more bits left (or if nmantissa
wasn't speci�ed), then a �xed-point representation is used. In the �xed-
point case, the numbers being stored must be in the range (�1; 1) (or [0; 1)
if no sign bit is being stored).

Here are some examples:

class Pack_Test

{

public:

int a;

int b;

unsigned int c;

bool d;

float f;

float g;

#ifdef __D0CINT__

# pragma pack (nbits=4) a;
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# pragma pack (lo=10,hi=14) b;

# pragma pack (nbits=12,lo=0,hi=14) c;

# pragma pack (nbits=1) d;

# pragma pack (nbits=10,scale=20.5) f;

# pragma pack (nbits=10,scale=20.5,nmantissa=5) g;

#endif

};

A packing directive may also be used for arrays and collections of packable types:

class Pack_Test

{

public:

int aa[3];

unsigned int cc[3];

bool dd[3];

float ff[3];

std::list<int> l;

std::vector<int> v;

#ifdef __D0CINT__

# pragma pack (nbits=4) aa;

# pragma pack (nbits=12) cc;

# pragma pack (nbits=1) dd;

# pragma pack (nbits=10) ff;

# pragma pack (nbits=5) l;

# pragma pack (nbits=8) v;

#endif

};

2.18.1 dspack Implementation of Packed Fields

Here are some notes on the implementation of packing in the dspack backend.
The �elds stored by dspack are always at least 32 bits wide. If a class has

packed members, D�OM implements it on top of dspack by declaring a dummy
�eld \_packed" to dspack and packing the data into there. D�OM maintains the
metadata describing the format of the packed data itself, outside of dspack. (The
information is stored as part of the comment string for the _packed �eld.) An array
of N members is packed just like it was N separate members, and packed collections
are stored like collections of integers.

This implies that a class instance must always take up an even multiple of 32 bits
when stored, even if its contents could be packed to a smaller size.

In addition, the current implementation has a restriction that packed �elds cannot
cross a 32-bit boundary. This can cause D�OM to insert additional padding to achieve
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this. This limitation may be removed in the future.
Packing directives may be freely changed (or added or removed) without a�ecting

the ability to read old data.

3 D�OM I/O Interface

D�OM I/O proceeds though an abstract interface that is independent of the un-
derlying I/O mechanism. The underlying I/O mechanism can be changed without
requiring any modi�cation of the I/O interface.

3.1 Class d0Stream

The main I/O interface class is an abstract class called d0Stream. The class d0Stream
is intended to look and feel like a sequential or random access disk �le, regardless of the
underlying I/O implementation. The underlying I/O could in principle be to a single
�le, a sequential �le list, federated �les, a virtual stream, a database, shared memory,
a network connection, or something else. Di�erent concrete subclasses of d0Stream
correspond to di�erent underlying I/O mechanisms (see Fig. 7). In addition to con-
crete subclasses, class d0Stream has an abstract subclass d0StreamDB, which extends
the d0Stream interface in ways that are appropriate for databases. Class d0StreamDB
has its own concrete subclasses corresponding to di�erent physical databases. Classes
d0Stream and d0StreamDB are in the cvs module named d0stream.

3.1.1 Methods of d0Stream

The following methods are available in d0Stream.

int close() Close a stream.
d0_Ref_Any read(const d0Key* key=NULL,

const std::string event key="") Read an event.
void write(const d0_Object& object,

const std::string event key="") Write an event.
bool bind(const d0_Object& object,

const d0Key& key) Associate a key with
an object.

void unbind(const d0Key& key) Delete the speci�ed
key.

const d0Key* make_key(const char* key string) Create a key and ini-
tialize it with a char-
acter string.

d0_List<d0Key> keys() const Return a list of all
known d0Key's.

d0_List<std::string> event_keys() const Return a list of all
known event keys.

34



int lookup(std::string event key) Position the stream
at the given event
key.

void seek(size_t o�set) Seek to the speci�ed
o�set.

int tell() Return the current
o�set.

Note that there is no open method. Objects of type d0Stream are returned already
opened when the are created.

3.1.2 Random Access and Keys

Methods of the d0Stream interface make use of two di�erent kinds of keys. Methods,
read, bind, and unbind take either a reference or a pointer to a d0Key. Methods
read, write, and lookup take a string argument which is interpreted as an event key.
Either kind of key can be used for keyed random access in certain situations. Both
kinds of keyed access work similarly. A key is associated with an event, using either
the bind method (for d0Key's) or the event key argument of write. Keyed access is
then accomplished using arguments of read (for either kind of key), or the lookup

method (for event keys). Depending on the underlying I/O mechanism, the two kinds
of keys may be implemented di�erently, or not al all. The following statements apply
to the two kinds of keys.

1. For event oriented I/O mechanisms, event keys point to entire events and
d0Key's point to individual objects within an event.

2. Database I/O mechanisms implement both event keys and d0Key's using a single
underlying key mechanism.

3. Event keys are always represented as strings. D0Key's are in principle polymor-
phic, although at present the only concrete implementation of class d0Key uses
a single string its sole datum.

4. At most one event key can be associated with an object. With d0Key's, many
keys can be associated with the same object by calling bind repeatedly.

5. The dspack I/O mechanism (class d0StreamDSPACK) does not implement any
random access mechanism that is accessible through the d0Stream interface.

6. The EVPACK I/O mechanism (class d0StreamEVPACK) implements keyed ran-
dom access using event keys and via o�set (seek/tell).

7. Both the dspack and EVPACK I/O mechanisms interpret the d0Key argument
of method read as the name of a class within the current event (bind/unbind
has no e�ect).
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Figure 7: Inheritance diagram for d0Stream.
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3.1.3 Random Access Recommendations

1. Use event keys in preference to d0Key's unless you need a feature that is only
available with d0Key's (i.e. multiple keys per object or non-string keys). Event
keys are implemented for more I/O mechanisms than d0Key's, and their usage
is more consistent between I/O mechanisms.

2. Use the EVPACK I/O mechanism for simple random access. Use a database
only if you need database speci�c features, such as queries. EVPACK will give
you better performance and better transportability.

3.1.4 Methods of d0StreamDB

The following methods are available in d0streamDB.

void open_transaction(bool readonly) Open a transaction.
void commit_transaction() Commit a transaction.
void abort_transaction() Abort a transaction.
d0 List<d0 Ref Any> query(const d0 String& classname,

const d0 String& condition,

const d0 String& tables="",

const d0 String& �elds="")

Query database.

The above methods are designed to support transaction and query operations with a
real underlying database, such as Oracle.

The query method has the following four arguments, of which the last two are
optional.

1. Classname. This is the C++ name of a concrete C++ class. The returned
d0_Ref_Any pointers can be downcast (using D0_REFCAST) to the speci�ed class,
or a base class of the speci�ed class, but not to a class that is derived from the
speci�ed class.

2. Condition. This is in general an arbitrary SQL select statement clause, such a
where or order by clause.

3. Tables. This argument contains a comma separated list of tables (not including
the table corresponding to the classname argument) to add to the from clause
of the generated select statement. A non-null tables argument would typically
be required for queries containing join operations, or in general any time table-
quali�ed �elds appear in the condition argument.

4. Fields. This argument contains a comma separated list of additional �elds to
fetch in this query. Fields can be speci�ed in the forms \column" for single-
table queries, or \table.column" for multitable queries. The �elds and tables

arguments have no e�ect on the returned list of pointers, but only on whether
the query generates an error or not.
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Name Mangling Issues in Queries. In general, the condition, tables, and �elds

arguments contain raw SQL that is edited directly into an SQL select statement.
Therefore, table and column names appearing in these arguments should correspond
to database table and columns names, which are not in general the same as the
corresponding C++ class and �eld names.

All three of the SQL arguments allow C++ names to be used instead of database
names by enclosing them in $(...). The string $(class.�eld) appearing in any of
these arguments is converted into a string of the form table.column. The parsing of
$(...) expressions is governed by the following rules.

1. Simple scalar �elds of C++ classes are speci�ed in the form $(class.�eld).

2. Array �elds are speci�ed using normal C++ notation: $(class.�eld[n]). For
this to work, the database schema must be such that the array is not broken
out as a separate table. In general, this will be true for \short" arrays.

3. Fields of contained classes are speci�ed in the form $(class.subclass.�eld). In
this case, class is translated into the database table, and subclass.�eld is trans-
lated into the database column. For this to work, the database schema must
be such that contained class is not broken out as a separate table. This should
usually be true.

4. Template class names, such as containers, are allowed. They are speci�ed in
normal C++ notation.

5. Base classes are treated like contained classes. Field names for base classes
are __base1, __base2, etc., where the number of the base class corresponds
to their order in the class de�nition. A typical C++ �eld expression would be
$(class.__base1.�eld).

6. The class can be omitted in single table queries. The following forms are permit-
ted: $(�eld), $(.�eld), $(.subclass.�eld). The form $(subclass.�eld) (without
a leading period) is not allowed, because in this case subclass would be inter-
preted as a class name.

7. Mixed forms, where the class is speci�ed in C++ format, but the �eld is speci�ed
in database format are allowed, for example $(class.)objid. This syntax is
useful to specify database columns that do not correspond to any C++ class
�eld (i.e. meta�elds).

8. Some C++ class �elds, such as containers and large arrays are broken out as
separate database tables. The $(...) notation does not provide a way to reach
into such auxilliary tables. It may still be possible to reach into such tables by
using a join operation which matches the container �eld of the parent class with
the object id �eld of the container class.

38



3.2 Factory Class d0StreamFactory

A factory class d0StreamFactory exists to provide users with instances of subclasses
of d0Stream. The factory class serves to shield end users from having to directly in-
stantiate d0Stream's concrete subclasses. The factory class also reduces the amount
of compile-time and link-time coupling between user code and the d0Stream sub-
classes. In particular, d0Stream does not have the D0OPEN disease of having link
time coupling to every I/O method in the library. Users must explicitly specify linking
of d0Stream subclasses that they want in a program.

The class d0StreamFactory is a singleton [5]. It has two methods of interest to
users:

static d0StreamFactory* locateStreamFactory ();

d0Stream* make_d0Stream (const d0StreamName& name,

const char* streamType = "",

int mode = ios::in,

const string& = "");

The method locateStreamFactory returns a pointer to the factory singleton. The
method make_d0Stream creates an instance of an open d0Stream subclass. The argu-
ment streamType is a character string that speci�es which type of subclass to create
(use \DSPACK" for d0StreamDSPACK, \EVPACK" for d0StreamEVPACK, \ORACLE" for
d0StreamORACLE_1, or \CORBA" for d0StreamCORBA_1). The argument streamType
may be empty or null when opening �les for reading. In that case, d0StreamFactory
tries to �gure out which type of d0Stream subclass to instantiate. The argument
\name" speci�es the name of a physical stream (e.g. a �lename). The name can
be speci�ed as an ordinary C++ double-quoted string. The argument \mode" de-
termines how the speci�ed d0Stream is to be opened. Mode can take the values
ios::in (read), ios::out (write), or ios::app (append) de�ned in the standard
header iostream. The �nal string argument is not interpreted by d0StreamFactory,
but is passed to the create static method of the concrete d0Stream subclass. It typ-
ically consists of a sequence of name=value pairs. The interpretation of this string is
up to the I/O mechanism. Presently, this is only used by EVPACK; it recognizes a
compression_level= argument.

Note that d0StreamFactory::make_d0Stream will return null if the code to im-
plement the requested stream type has not been linked into the program. Here is an
example of the use of d0StreamFactory and d0Stream.

// Get pointer to factory.

d0StreamFactory* factory = d0StreamFactory::locateStreamFactory();

// Create an instance of d0Stream.

d0Stream* dsin = factory->make_d0Stream("myfile.ds",

"DSPACK", ios::in);
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if (!dsin) {

cerr << "Can't open input file\n";

exit (1);

}

// Read event.

d0_Ref<Event> revent = D0_REFCAST((Event))(dsin->read("Event"));

3.3 Output Filters

When writing, you can supply an output �lter to control which objects get output.
Such a �lter is an instance of a class which derives from d0_Output_Filter_Base.
See the header �le for the de�nition of the interface; essentially, it provides a method
which takes a pointer to an object as an argument and returns a 
ag saying whether
or not that object should be written.

When an object is vetoed by this mechanism, pointers from it are not followed.
Thus, vetoing an object implicitly vetoes all other objects which can only be reached
via that object. References to vetoed objects are set to null.

To install an output �lter, call d0Stream::set_output_filter, passing to it a
pointer to an output �lter instance. This object should have been allocated o� the
heap with new. The stream will take ownership of the �lter; it will get deleted
automatically along with the stream (or the next time the output �lter is changed).
To remove the output �lter, call set_output_filter with a null pointer. The current
output �lter may be retrieved with output_filter.

There is one concrete output �lter implementation available in the library, named
d0_Output_Filter. It has the ability to either select or veto individual objects
and also to select or veto all objects of a given class. See the header �le for more
information.

3.4 Memory bu�ers

EVPACK format data may also be read from and written to memory bu�ers. This
is useful for applications which want to send event data over the network.

3.4.1 Output

Output to memory bu�ers is done using the class d0StreamEVPACK_Buffered_Output
(in d0om_ds). Here is its class de�nition:

class d0StreamEVPACK_Buffered_Output

: public d0StreamDSPACK_Base

//

// Purpose: Evpack stream for writing using
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// an arbitrary hook function.

//

{

public:

// Constructor, destructor.

// OPTARG is additional arguments to pass to evpack.

d0StreamEVPACK_Buffered_Output (const std::string& optarg = "");

~d0StreamEVPACK_Buffered_Output () {}

// Write object.

virtual void write (const d0_Object &object,

const std::string& event_key);

// Supply this in a derived class.

// It will be called for every evpack record written.

virtual std::streamsize writebuf (const char* data,

std::streamsize n) = 0;

};

This class supports the d0Stream interface. However, it cannot be constructed
through the d0Stream factory; you must explicitly create the objects. The usual
write method will write out a tree of objects.

For each EVPACK record generated, the writebuf method will be called. This is
a pure virtual function in d0StreamEVPACK_Buffered_Output, so you should derive
from that class and supply a de�nition for this method. The data will be in the bu�er
described by the pointer data and the size n. Note that the bu�er will not remain
valid after writebuf returns, so you should arrange to copy the data somehow.

An example of the use of this class is in one of the d0om_ds test programs,
d0om_ds/tests/evpack/twrite_evpack_buf.cpp.

3.4.2 Input

Input to memory bu�ers is done using the class d0StreamEVPACK_Buffered_Input
(in d0om_ds). Here is its class de�nition:

class d0StreamEVPACK_Buffered_Input

: public d0StreamDSPACK_Base

//

// Purpose: Evpack stream reading from a memory buffer.

//

{

public:

// Constructor, destructor.

// OPTARG is additional arguments to pass to evpack.

d0StreamEVPACK_Buffered_Input (const std::string& optarg = "");
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~d0StreamEVPACK_Buffered_Input () {}

// Set the buffer for further input to the chunk of

// memory described by DATA and LENGTH.

// Use (0, 0) to clear the buffer.

// If an attempt is made to read past the end of the buffer,

// evpack will behave as if EOF was hit.

void set_buffer (void* data, int length);

};

This class supports the d0Stream interface, including the usual read method.
However, it cannot be constructed through the d0Stream factory; ou must explicitly
create the objects. In addition, random access will not work.

Instead of reading from a �le, this stream class reads from a memory bu�er,
which is supplied via the set_buffer method. The arguments to set_buffer are
the address of the bu�er and its length. If the end of the bu�er is reached, attempts
to read from the stream will behave is if EOF was hit.

The method set_buffer may be called as may times as desired, in order to declare
a new bu�er to a stream. The old bu�er is forgotten. To clear the stream's pointer
to the bu�er (so that the bu�er may be deleted), do set_buffer (0, 0).

An example of the use of this class is in one of the d0om_ds test programs,
d0om_ds/tests/evpack/tread_evpack_5.cpp.

3.4.3 Embedded Dictionary Records

The usual organization of a DSPACK �le consists of a dictionary record at the start
of a �le, then some number of data records, and a �nal dictionary record at the end
of the �le. In order to be able to interpret the data records, the proper dictionary
record must have been read �rst.

This organization works �ne when data is being read from a �le. However, it is
inconvenient if events are being sent over the network, especially if they are being
accumulated from several sources (as in the case of events being received from level 3).
Therefore, EVPACK has an option to embed the dspack dictionary information within
each EVPACK record. (This will, of course, increase the size of the data being
written.) To enable this, add the string \embed_defs" to the optarg parameter used
when creating an EVPACK output stream.

On input, embedded DSPACK dictionary records are handled automatically. Be-
cause it is relatively expensive to process a dictionary record, such a record is read
only if it appears to be di�erent from the previously read dictionary record. (This
determination is made by using a MD5 checksum of the dictionary record.)

4 Using D�OM

A D�OM program should do the following things.
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1. System initialization.

call d0om_init("test");

(Declared in d0om/d0om_init.hpp.) The main purpose of this call is to initial-
ize the D�OM type system. The interpretation of the single character string
argument is I/O mechanism speci�c. In the case of dspack programs, the ar-
gument is passed to the dspack initialization routine dsinit, which uses it to
identify the client to the server.

2. Get an instance of class d0Stream using the stream factory class (see sec. 3.2).

d0StreamFactory* factory =

d0StreamFactory::locateStreamFactory();

d0Stream* dsin = factory->make_d0Stream("myfile.ds", "DSPACK",

ios::in);

if (!dsin) {

cerr << "Can't open input file\n";

exit (1);

}

The instance of d0Stream is returned already opened.

3. Call I/O methods of d0Stream, such as read, write and bind (see sec. 3.1).

4. Call method close and delete the instance of d0Stream.

4.1 How to Make a Class Persistent

In general, a programmer must do three things to make a class persistent.
The �rst step is to make the header �le for the class conform with the persis-

tent object model outlined in section 1.1. This means inheriting from d0_Object

or another persistent class, and ensuring that persistent data �elds are one of the
allowed types. The class must also have a default constructor (or a d0_Input_Info

constructor, see Sec. 2.10).
The second step is to include the following macro in the body of the class decla-

ration:

D0_OBJECT_SETUP(myclass);

The third step in making a persistent class is to run the D�OM preprocessor d0cint.
The command to run d0cint is as follows:

d0cint myclass_lnk.cc -Iinclude myclass.hpp
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In the above example, myclass.hpp is the input header �le and myclass_lnk.cc is
an output �le. The programmer should compile and link the �le myclass_lnk.cc

into his program. The include path for the d0cint command should be the same as
would be used in a normal compilation. Additional -I or -D switches may be speci�ed
as needed. (A make�le scrap is provided to perform this step for you when you build
a library with SRT. See Section 5.8.)

A persistent class can contain both persistent and transient �elds. To make a �eld
transient, use the #pragma transient directive (see Section 2.7). A data element
that is not one of the allowed persistent data types is transient by default. In the
latter case, d0cint will issue a warning message.

When d0cint reads a header, it de�nes the preprocessor symbols `__CINT__' and
`__D0CINT__' in order to identify itself. Thus, if a header contains constructs which
d0cint is not understanding, they can be enclosed in an `#ifndef __CINT__' or
`#ifndef __D0CINT__' to keep d0cint from trying to interpret them. (The practical
distinction between these symbols is that `__CINT__' is also de�ned by rootcint,
while `__D0CINT__' is not.

4.2 Reference Headers

One must link into an application the linkage (_lnk) object for every class which is
to be used. Since there are normally no external references to the linkage object, this
can be problematic if the object gets placed in a library.

Reference headers o�er one solution to this. In addition, they provide a mecha-
nism of ensuring that all modules of the application were compiled with compatible
de�nitions for class layouts.

The idea is this. For each class which d0cint de�nes in a _lnk �le, it also creates a
global symbol de�nition of the form d0omhash_classname_hashcode, where hashcode

is a 8-character string which depends on the de�nition of the persistent �elds of the
class. If you supply the switch `-ref ref h' to d0cint, it will write to ref h a
C++ header containing external references to those global symbols. This reference
header can then be included by the header de�ning the class. (It should probably be
enclosed in a `#ifndef __CINT__' to prevent d0cint from trying to read it before it
is created.) This should ensure that the linkage object is loaded from a library when
it is needed. In addition, if you try to link together objects which were compiled with
di�erent versions of the class, you'll get unde�ned symbols at link-time.

As of v00-17-00, D�OM can automatically make some of these references. For
a given class A de�ned in A.hpp, its linkage �le will contain references to the linkage
�les for all classes which A depends on. Thus, if you have a class which is used only
by reference from another class, you don't need to include its reference header.

4.3 d0cint Command Reference

This section summarizes the syntax for the d0cint command. Note that in most
cases, it should not be necessary to run d0cint directly. It should, instead, be run
through d0om_linkage.mk (see Section 5.8).
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Command format:

� d0cint output-�le options input-headers

The input to d0cint is one or more C++ headers, named in input-headers. The
output is a C++ source �le, named by output-�le.

If any argument starts with `@', the remainder of the argument should be a �le
name. The contents of that �le are then inserted into the argument list.

The recognized options are listed below. (All options recognized by cint are
recognized by d0cint, but only those believed to be useful for d0cint are listed
below.)

-Idirectory Add an additional directory to the include path. Directories
are searched in the order in which they are speci�ed. For
each include directory directory, the additional directories direc-
tory/CINT/d0cintinc and directory/d0om_zm/d0cintinc are
also added to at the front of the include path (provided that
they exist).

-Dmacro De�ne a macro for the preprocessor. Only macro de�nitions
without a parameter are likely to work well. (I.e., use -DFOO,
not -DFOO=bar.)

-t Trace �les included by cint.
-T Echo the input read by cint to standard output, along with

additional internal cint debugging information. This can be
useful for localizing parsing problems with template or macro
de�nitions. (Note that this is raw output from cint's reader,
and may contain some artifacts due to the details of how cint

parses its input. In particular, cint sometimes backs up in the
input stream; this can cause some text to be echoed twice.)

-v Dump out the arguments internally passed to the cint main
entry point.

-q Suppress the messages listing which classes d0cint generated
linkage information for.

-ref �lename Write a reference header to �lename. See Section 4.2 for more
information.

-dep �lename Write dependency information to �lename. This contains the
depdencies which the linkage source �le has on the headers.

4.4 Prede�ned Macros

When d0cint runs, it de�nes the following macros to be the values of the correspond-
ing environment variables (without the leading underscores):

� __SRT_ARCH

� __SRT_CXX
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� __SRT_QUAL

� __BFARCH

The macros __D0CINT__ and __CINT__ are also de�ned.

4.5 Environment Variables For Debugging

There are several environment variables which D�OM examines to control whether
to make debugging dumps.

� D0OM_DUMP_DICTIONARY: If this environment variable is de�ned, D�OM will
dump (to stdout) a description of the types that it knows about at the end of
the initialization stage.

� D0OM_DS_DUMP_MAPTABLE: If this environment variable is de�ned, D�OM will
dump (to stdout) the internal details of the mappings it builds between
DSPACK and C++.

4.6 Functions for Debugging

The following two functions may be useful for tracking down memory leaks involv-
ing objects read from dspack. Both of these functions are de�ned in the header
d0om_ds/debug.hpp.

� d0om_DS::list_objects (std::ostream& os, bool mask_ptr = false) |
Dump to os a list of all dspack objects which still have live references. The
information printed for each object includes the address (if it has been created),
type name, �le o�set, and dataset index. If mask_ptr is true, then the pointer
and �le o�set �elds will be suppressed in the output (this is for regression
testing).

� d0om_DS::summarize_objects (std::ostream& os) | This is similar, but it
prints only one line per object type, giving the number of objects with live
references of each type.

5 How to Compile and Link a D�OM Program

This section contains some practical instructions on how to get access to D�OM.

5.1 Requirements

The examples in this section assume that the following products are available locally:
ups, SoftRelTools, and d0cvs. If d0cvs is unavailable, vanilla cvs should work in
most cases. The only d0cvs speci�c command used in this section is \lscvs." The
examples shown here are known to work on d0chb. The same procedures should work

46



at remote unix computers. It is not necessary to be local to the cvs repository to use
cvs commands.

D�OM is presently known to work with KCC 3.4g, gcc 2.95, and SGI CC 7.3 on
Irix 6.5, KCC 3.4g, and gcc 2.95 on Linux, and KCC 3.4g on Digital Unix 4.0d. Most
packages should also work on NT with the Microsoft compiler.

5.2 Setups

In general, before compiling or linking a program that uses d0library code, including
D�OM, several setups may be necessary. The most basic setup, which gives access
to released code, and to the SoftRelTools utilities is:

setup D0RunII test

This setup de�nes the environment variables BFROOT, BFCURRENT, BFDIST, and
BFARCH. To gain access to the cvs repository, use the following setup command:

setup d0cvs

This setup de�nes the environment variables CVS_DIR, D0CVS_DIR, and CVS_ROOT. It
should also set up the C++ compilers. (If you want to change the C++ compiler
you're using, you'll need to change the de�nition of BFARCH.) For more information
about the D0 cvs and SoftRelTools environments, refer to the D0 code management
web page [4].

5.3 CVS Libraries

Use the d0cvs command \lscvs" to see a list of currently de�ned cvs modules. The
cvs modules relevant to the D�OM system are shown in Table 7. Package DSPACK

contains the distribution from CERN, slightly modi�ed to build under SRT. CINT
contains the cint C++ interpreter from HP Japan, with numerous local modi�cations.
d0_util contains a number of utility classes used by D�OM. d0om is the core portion
of D�OM, and d0stream is the abstract part of the stream code. d0om_ds is the
D�OM-DSPACK interface. The Oracle and Corba interfaces are in d0omORACLE and
d0omCORBA, respectively.

5.4 D�OM Source Code

Already released D�OM source code can be found in the SoftRelTools packages area.
The root directory for D�OM source code is

$BFDIST/packages/d0om/<package-version>.
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Table 7: D�OM-related cvs modules.
CVS module Libraries Description

d0omORACLE -ld0omORACLE D�OM Oracle interface.
d0omCORBA -ld0omCORBA D�OM Corba interface.
d0om zm -ld0om zm Adapters for Zoom classes.
d0om ds -ld0om ds, -lstream ds D�OM DSPACK interface.
d0stream -lstream Stream interface code.
evpack -evpack EVPACK package.
d0om -ldoom Basic D�OM code.
DSPACK -ldspack DSPACK package.
CINT -lcint CINT C++ interpreter.
d0 util -ld0 util Utility classes.

5.5 Releases

Already compiled D�OM C++ libraries and the d0cint executable can be found in
the SoftRelTools releases area. Some signi�cant directories in the releases area are as
follows:

$BFDIST/releases/<release-version> Release root

$BFDIST/releases/<release-version>/bin/$BFARCH Executables

$BFDIST/releases/<release-version>/lib/$BFARCH Link libraries

$BFDIST/releases/<release-version>/include Include path

$BFDIST/releases/<release-version>/include/d0om D0OM include files

$BFDIST/releases/<release-version>/d0om Link to D0OM package

$BFDIST/releases/<release-version>/DSPACK Link to DSPACK package

The release version can be a tag, such as \current" or \test", or a version
number. The include path for compilers and d0cint should be speci�ed as
-I$BFDIST/releases/<release-version>/include. The link path for link libraries
should be speci�ed as -L$BFDIST/releases/<release-version>/lib/$BFARCH. The
libraries needed for linking are listed in Table 7. In addition to these, the zoom li-
braries -lExceptions and -lZMutility will be needed; and if you use EVPACK,
-lz for zlib. You also need to link against the system's fortran library. This varies
from system to system; here are additional link 
ags for various systems:

Irix -lftn

AIX -lxlf90 -lxlf

Digital Unix -taso -lUfor -lfor -lFutil -lots -lm -lc_r

Linux -lf2c -ldl -lcrypt

(Note that -taso is required for any application which links with dspack on
Digital Unix.)

If you are using the d0Stream interface with dspack, you'll need to be sure that
the module d0StreamDSPACK.o gets loaded from the library libstream_ds.a. There
are two general ways of doing this:
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� Extract the module from the library and include it explicitly in your link com-
mand.

� Include the header d0StreamDSPACK.hpp explicitly in some other module
which you are linking in. Including this header creates a reference to the
d0StreamDSPACK module, causing it to be loaded from the library.

Some make�le fragments are now available to try to simplify linking with these
libraries.

Including d0om/arch_spec_d0om.mk, for example, will de�ne the make symbol
D0OM_LIBES, containing the library speci�cations which you should add to your link
command in order to link with D�OM. If you want to link everything with D�OM,
then you could add the value of D0OM_LIBES to LOADLIBES. (This is not done by
default, in case you only want to link some programs with the package.)

Here is a list of these scraps:

� DSPACK/arch_spec_dspack.mk: De�nes DSPACK_LIBES. (Note: On OSF, this
will also add -taso to LDFLAGS, which is required for linking with dspack on
that platform.)

� d0om/arch_spec_d0om.mk: De�nes D0OM_LIBES. This links with only the `core'
D�OM library. It does not link with the stream code, or with any of the I/O
backends.

� d0stream/arch_spec_d0stream.mk: De�nes D0STREAM_LIBES. This links with
d0om and the stream code. It does not link with any of the I/O backends.

� d0om_ds/arch_spec_d0om_ds.mk: De�nes D0OM_DS_LIBES. This links with
D�OM, the stream code, and the dspack I/O backend. This scrap also de�nes
D0OM_EV_LIBES, which includes evpack in the link.

If you are using Zoom classes in persistent classes, you should also link with
-ld0om_zm.

5.6 Becoming a Developer

It is possible to create a private releases area. When you do this, you must do a full
recompilation of any packages that you are interested in, either from the packages
area, or of code extracted from cvs. You might do this because you want a more
recent version of the code than can be found in the releases area, or because you want
to be able to modify the library code. The following is an example session that shows
one does this:

setup D0RunII

setup d0cvs

mkdir ~/myrelease

cd ~/myrelease
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Table 8: D�OM header �les.
D�OM class category Header �le

Base class d0om/d0 Object.hpp

Atomic typedefs d0om/d0 basic types.hpp

Strings d0 util/d0 String.hpp

Container classes d0 util/d0 Vector.hpp

d0 util/d0 List.hpp

d0 util/d0 PVector.hpp

d0om/d0 RVector.hpp

d0 util/d0 PList.hpp

d0om/d0 RList.hpp

Iterators d0 util/d0 Iterator.hpp

d0 util/d0 PIterator.hpp

d0om/d0 RIterator.hpp

References d0om/d0 Ref.hpp

Stream interface d0stream/d0Stream.hpp

d0stream/d0StreamFactory.hpp

d0stream/d0Key.hpp

newrel -t current test # Creates directory ~/myrelease/test

cd test

addpkg -h d0om_ds # Fetch D0OM DSPACK interface code from cvs.

addpkg -h d0stream # Fetch D0OM stream code from cvs.

addpkg -h d0om # Fetch D0OM code from cvs.

addpkg -h d0_util # Fetch utility classes from cvs.

addpkg -h CINT # Fetch CINT code from cvs.

addpkg -h DSPACK # Fetch DSPACK code from cvs.

gmake installdirs # Make some directories.

gmake # Compile everything

Refer to the code management web page [4] for more information about developer
tools.

5.7 D�OM Header Files

Table 8 contains a list of D�OM header �les. D�OM header �les are included in
user programs with the following type of #include statement:

#include "d0om/d0_Ref.hpp"

Note the inclusion of the directory (such as \d0om/") in the include statement.
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5.8 Generating Linkage Files

D�OM supplies a make�le scrap which can be used to generate the linkage �les. To
use this, include the line

include d0om/d0om_linkage.mk

in your GNUmakefile before standard.mk. Before including it, you should de�ne
the variable LINKAGE_HPP to be a list of headers to process through d0cint (the
�le name only, without any leading path component) and LINKAGE_HPP_DIRS to
be a list of directories in which to search for those headers. The standard include
path will be searched, if necessary, to �nd these directories. If you don't specify
LINKAGE_HPP_DIRS, it will default to the name of the current package. If LINKAGE_REF
is de�ned, a single object �le incorporating all reference headers will be created in
$(libdir). The object �le name is $(LINKAGE_REF)_ref.o.

By default, both the C++ sources and the reference headers will be gener-
ated in $(workdir). These defaults can be changed by setting the variables
LINKAGE_CPP_DIR and LINKAGE_REF_DIR. The C++ sources will be added to
LIBCPPFILES, and (provided LINKAGE_CPP_DIR wasn't overridden) appropriate vpath
directives will be issued to allow these sources to be found.

If you wish to prevent d0cint from running but want to retain all the dependencies
which d0om_linkage.mk sets up, de�ne the variable DONT_RUNCINT.

By default, when d0cint is run from d0om_linkage.mk, it will produce no out-
put if it is successful. But if the make variable VERBOSE is set, d0cint will echo
a list of the classes for which it produced linkage information. Further, if you
expect d0cint to produce warnings for some of your �les, de�ne the make vari-
able D0OM_LINKAGE_ERRORS_EXPECTED. This will cause d0om_linkage.mk to pre�x
all d0cint output with `-->', which will prevent the release procedures from claiming
that your package is broken.

Example:

LIB := libfoo.a

LIBCPPFILES := $(wildcard *.cpp)

# Process the headers foo/class1.hpp

# and foo/class2.hpp.

LINKAGE_HPP_DIRS := foo

LINKAGE_HPP := class1.hpp class2.hpp

include d0om/d0om_linkage.mk

include SoftRelTools/standard.mk

5.9 Controlling Generation of Linkage Information

When d0cint is run on a header �le, it generates dictionary information only for
the classes which are de�ned in that header. In particular, if A.hpp de�nes class A,
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B.hpp de�nes class B, and B.hpp includes A.hpp, then running d0cint on B.hpp will
not generate dictionary information for class A | you must run d0cint separately
on A.hpp and B.hpp, even if class B uses class A.

In some cases, however, more control over this process is desirable. This can be
had with the #pragma linkage and #pragma nolinkage directives. A directive of
the form

#pragma linkage class-names

tells d0cint to generate dictionary information for class-names (which should be a
comma-separated list). On the other hand,

#pragma nolinkage class-names

tells it not to generate dictionary information for classes for which it would ordinarily
do so. Note that these directives take e�ect only if they are in the outermost header
�le (i.e., the one which you named to d0cint).

These directives should usually be used inside an #ifdef __D0CINT__ construc-
tion in order to hide them from translators other than d0cint. (Or use D0OM_LINKAGE
and D0OM_NOLINKAGE; see section 9.2.)

One use of this facility is to tell d0cint to generate dictionary information for
particular template instantiations (see Section 2.14). It may also be useful for using
classes from external libraries.

One additional mechanism is available. If a class declares a typedef name called
d0om_autolink (it doesn't matter what it is de�ned as), then that class will always
have linkage information generated, provided that it is used, directly or indirectly, by
another class for which linkage information is being generated. One application of
this is to get linkage information generated for template classes, without requiring the
user to explicitly declare all instantiations of the class. (#pragma linkage won't work
in this case, because it can only be applied to a speci�c instantiation, not a template.)
This mechanism is used, for example, to ensure that if user uses a map<K, T> template,
linkage information is generated for the associated pair<const K, T> class.

As an example, here is the de�nition of std::pair as used by d0cint:

template <class T1, class T2>

struct pair {

typedef T1 first_type;

typedef T2 second_type;

T1 first;

T2 second;

pair();

pair(const T1& x, const T2& y);

// Flag that this class should have full linkage information

// generated in each header where it's used.

typedef int d0om_autolink;

};
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Note that this mechanism should not be used for concrete classes deriving from
d0_Object; otherwise, you'll probably end up with multiply de�ned symbols at link
time.

6 Utility Programs

This section lists various utility programs which are available.

6.1 dsdump

The program dsdump can be used to dump out the contents of a D�OM dspack (or
evpack) �le. It takes a single argument, the name of the input �le, and dumps out
all records in the �le.

Here is an example of the output from the program. Note that object instances
are identi�ed by the class name followed by an integer ID number.

Read record 1 (d0om_ds format version 5)

d0om_DS_Head:1

d0_Ref<d0_Object> head: T3:2

T3:2

T3::t3foo bar:

d0_Int a: 98

d0_Int b: 99

d0_Ref<T2<int> > r1: T2<int>:3

d0_Ref<T2<float> > r2: T2<float>:4

T2<int>:3

d0om_Unknown_List<T1<int> > b:

d0_Int a: 4

d0_Int a: 7

d0_Int a: 10

T2<float>:4

d0om_Unknown_List<T1<float> > b:

d0_Float a: 9.4

d0_Float a: 6.2

d0_Float a: 3.4

Note that the data format must be version 5 (written by v00-15-00) or later for
this to work.

With the argument --sizes, dsdump will also dump out the sizes of all nonempty
dspack datasets in the �le. The argument --notree will suppress the usual dump
of the event contents.
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With the option --raw, dsdump will print collections of numeric types as raw
hexadecimal dumps. This is useful for looking at raw data. If, in addition, the
--byteswap option is given, the values being printed in the hex dump will be
byteswapped on little-endian machines.

With the option --examine, dsdump will invoke the dspack debugger for each
event read. (See Section 6.2.)

The option --precision=prec may also be speci�ed, to set the precision used
when writing 
oating point numbers.

The option --versions will cause dsdump to print the stored version numbers for
all classes.

The option --key=key will cause dsdump to seek to the event with event key key

before starting to dump. (This works only for evpack format �les.)
The option --count=N will cause dsdump to exit after printing N events.
The option --only=pattern will cause dsdump to print only objects with names

matching the regular expression pattern. Any commas in pattern are replaced with
`|', so that a comma-separated list may be used. This option is implemented only on
unix platforms.

6.2 dspack debugger

There is also a dspack \debugger," which can be used to examine the raw dspack

structures. There are several ways to start the debugger. The �rst is by running
dsdump with the --examine switch (see Section 6.1). In this case, the debugger will
be called after each event is read. If you are reading �les in evpack format (as
opposed to plain dspack format), this is the only way to use the debugger to look
at the data.

The second way to start the debugger is with the standalone dstest program.
The third way is to run dspack in client-server mode. The �rst step is to start

the server with `dsserver':

$ dsserver

Starting server snyder_d0linux01

Next, start the debugger with `ds db':

$ ds db

DSPACK 1.520, 10 Mar 1998 (dsdb, server: snyder_d0linux01)

dsdb>

Once the debugger has been started by any of these methods, saying `help' will give
you a list of valid commands.

You can open an input �le with `input'; `read' will then read the next event
from the �le. (But if you started the debugger through dsdump --examine, an event
should already be loaded.)

dsdb> input tmp/Linux2-KCC_3_3/d0om_ds/ttmpl.ds

54



Read definitions

dsdb> read

Read one event

You can see what dspack data sets are de�ned with `ls -l':

dsdb> ls -l

Name Type Id Sect Size Items Nent Bytes Free

d0om_DS_Evdat S 67 1 3 3 1 12 0

Object S 68 1 1 1 0 0 0

Ref_d0_Object_ S 69 1 1 1 0 0 0

d0om_DS_Head S 70 1 1 1 1 4 0

T3__t3foo S 71 1 2 2 0 0 0

T1_int_ S 72 1 1 1 3 12 0

_LT1_int_ S 73 1 2 2 0 0 0

T2_int_ S 74 1 2 1 1 8 0

T1_float_ S 75 1 1 1 3 12 0

_LT1_float_ S 76 1 2 2 0 0 0

T2_float_ S 77 1 2 1 1 8 0

Ref_T2_int__ S 78 1 1 1 0 0 0

Ref_T2_float__ S 79 1 1 1 0 0 0

T3 S 80 1 4 3 1 16 0

Int S 81 1 1 1 0 0 0

UInt S 82 1 1 1 0 0 0

The `Nent' column gives the number of entries in that data set in the current record.
To print the de�nition of a data set, enter its name:

dsdb> T3

typedef struct T3__t3foo DS_VARIABLE { /*T3::t3foo;s */

int_t a; /*a */

int_t b; /*b */

} T3__t3foo;

typedef struct Ref_T2_int__ DS_VARIABLE { /*d0_Ref<T2<int> >;r */

void *ptr; /*T2_int_ */

} Ref_T2_int__;

typedef struct Ref_T2_float__ DS_VARIABLE { /*d0_Ref<T2<float> >;r */

void *ptr; /*T2_float_ */

} Ref_T2_float__;

typedef struct T3 DS_VARIABLE { /*T3;o */

struct T3__t3foo bar; /*bar */

struct Ref_T2_int__ r1; /*r1 */

struct Ref_T2_float__ r2; /*r2 */

55



} T3;

This also prints the de�nitions of any contained data sets. Note that the names of
the data sets may not match the names of the C++ classes | they are sometimes
\mangled" in order to conform to the restrictions which dspack puts on names. You
can see the full name, though, in the comment �eld on the �rst line of the de�nition.

To dump out the data in a data set, enter the data set name preceded by an
asterisk:

dsdb> *T3

Data set: /T3

Type: Structure (at: 0x5000669c)

1 bar T3__t3foo

Type: Structure (at: 0x5000669c)

1 a Integer : 98

2 b Integer : 99

2 r1 Ref_T2_int__

Type: Structure (at: 0x500066a4)

1 *ptr Pointer : 0x5000656c T2_int_(1)

3 r2 Ref_T2_float__

Type: Structure (at: 0x500066a8)

1 *ptr Pointer : 0x50006624 T2_float_(1)

This will dump out all entries in the data set. To dump only some of the entries, you
can use a Fortran-like array notation, like `T3(3)' or `T3(2:5)'.

To exit from the debugger, use `quit'. If you started the debugger through
dsdump --examine the program will read the next event and start the debugger
again. If you were running in client-server mode, the server will remain running, and
you can reconnect to it and resume where you left o� by entering `ds db' again. To
kill the server, use the command `ds kill'.

A GUI front end to the dspack debugger is also available via the command
`dsmgr'. You must have tcl/tk available for this to work. You should also have a
dspack server running before starting dsmgr.

6.3 evdump

The evdump program can be used to dump out the header information in an evpack
�le. No information about the event contents will be displayed.

Here is an example of the output from the program:

At 0 Type: DSPACK definitions Key: Run number: 1, Event Number: 1

Reclen: 31395 Comp flag: 5 Uncompr size: 172032 Checksum: 1686699045

Dictionary offset: 0

At 31395 Type: DSPACK data Key: Run number: 1, Event Number: 1

Reclen: 2978550 Comp flag: 5 Uncompr size: 8888320 Checksum: 3024682299
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Dictionary offset: 0

At 3009945 Type: DSPACK data Key: Run number: 1, Event Number: 2

Reclen: 2722989 Comp flag: 5 Uncompr size: 7700480 Checksum: 2251321869

Dictionary offset: 0

The evdump program takes two arguments. If --dump-index is speci�ed, the
contents of any evpack index records will be printed. If --dump-record is speci�ed,
then a hex dump will be made of each record read (after it has been uncompressed).

6.4 evaddindex

The evaddindex program will read through an evpack �le accumulating event key
information. It will then discard any existing index record at the end of the �le and
write a new one. Any incomplete record at the end of the �le will also be discarded.
Thus, this program may be used to recover an evpack �le that was not closed
normally.

7 Unknown Objects

An \unknown" object is one for which there is no compiled-in type information; i.e.,
the linkage �le wasn't linked in. This section describes the behavior of D�OM for
such objects.

7.1 Output

Generally, when reference to an unknown object is encountered while writing, the
object is ignored and a null reference is written instead. A warning is emitted when
this occurs.

However, if the objects being written were read in from another �le, special con-
siderations apply. See Section 7.3 below for details.

7.2 Input

When D�OM �nds a reference to an unknown object, it can dynamically build dic-
tionary information for that class based on the type information in the data �le.
(Presently, this works only with the dspack back end, and only for data written
by at least version v00-15-00 of the library. For other cases, any references to un-
known objects on input are simply set to null.) D�OM can then create objects based
on this type information. However, any such objects will be instances of the type
d0_Unknown_Object, and not instances of the C++ class to which the reference was
referring. Therefore, dealing with instantiations of unknown objects requires special
care, and this feature is disabled by default.

The behavior of D�OM when a reference to an unknown object is dereferenced is
controlled by the d0om_Options::unknown_action(). This option has three possible
values:
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� RETURN_NULL | Return a null pointer. This is the default. If this happens, a
warning will be generated by doing a ZMthrow of Exc_Missing_Type.

� THROW_EXCEPTION | Throw an Exc_Missing_Type_Fatal exception.

� MAKE_UNKNOWN | Create an object of type d0_Unknown_Object. This violates
C++ typing rules, so you should enable this option only if you are prepared to
deal with that.

The time at which this option is examined depends on the type of the reference.
Bare C++ pointers (and auto_ptr's) must be initialized with a C++ pointer; thus,
this dereferencing occurs when the pointers are constructed. With the default setting
of RETURN_NULL, a bare pointer pointing at an unknown object is initialized to null,
and the unknown object is lost.

A d0_Ref, however, can be initialized to point at an unknown object. In this case,
the option is not consulted until the reference is actually dereferenced. A d0_Ref

pointing at an unknown object will have the following properties:

� is_null() is false.

� is_unknown() is true.

� d0om_type() returns the type of the unknown object.

If an attempt is made to reference the reference with RETURN_NULL in e�ect, a null
C++ pointer will be returned.

If MAKE_UNKNOWN is enabled, any references which are read may actually be point-
ing at an instance of d0_Unknown_Object. Generally, the only safe way of accessing
information in an object instance will then be through the dictionary information.
Before this can be done, however, the pointer must be converted to a d0_Object

pointer. This cannot be done safely using standard C++ pointer conversions; it
should be done using the conv_to_objptr() method of d0om_Type_Object.

Most analysis code should not set MAKE_UNKNOWN. It is intended to be used by
applications such as data structure browsers.

7.3 Copying

An additional feature is available for the case where a reference to an unknown object
is encountered while writing and the unknown object was read from a �le which
contains type information. In that case, the object will automatically be instantiated
for the write. After the write is complete, the object will be automatically deleted
again.

The upshot is that when copying a structure from an input �le to an output �le,
objects with no compiled-in linkage information can be copied too, provided that they
are reached from known objects by d0_Ref's and not bare C++ pointers. This option
can be disabled with d0om_Options::make_unknowns_on_write().

Note, however, the following limitation of the current implementation. If you copy
events from several di�erent input �les which use di�erent versions of an unknown
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type, then the version used for all objects of that type in the output �le will be that
used in the �rst input �le to use that type.

8 Schema Evolution

This section describes how class de�nitions may be changed so that old data �les are
still readable. Note that support for schema evolution depends on the implementa-
tion of the I/O backend. This section presently describes the status of the dspack
backend, but the others should be similar.

In general, the commonest changes | including adding a new �eld | are handled
automatically. Changing names or types, however, may require special attention.

Note that the schema evolution system described here only deals with changes in
the form of the data. Changes in the meaning of the stored data cannot be handled
without knowledge of the semantics of the class in question. If you must make such a
change, you'll need to add a version number to your class, and handle the translation
yourself.

8.1 Class Names

When reading a data �le, D�OM matches classes which were saved to classes in the
running program by matching names. This implies that if you change the name of
a class, then you will not be able to read instances of that class in old data �les.
Note that \name" here refers to the fully-quali�ed class name | moving a class
into a di�erent namespace counts as changing its name! Therefore, you should think
carefully about the name of a class and its namespace before writing data using it.

If, however, the name of a class must change, there is a feature which can help.
In a header �le processed through d0cint, include a directive like

#pragma classalias newclass oldclass;

This tells D�OM that the class presently known as newclass was previously known as
oldclass. If D�OM encounters the class oldclass while reading a data �le, it will map
it to newclass. You may provide multiple classalias directives for a given newclass.
You should not, however, attempt to create a data �le containing both oldclass and
newclass. Also, a #pragma classalias directive should probably be put inside a
#ifdef __D0CINT__ construction, in order to hide it from other language processors.
(Or use D0OM_CLASSALIAS; see section 9.2.) (Note that, at present, only the dspack
backend pays attention to this information.)

8.2 Class Members

D�OM translates between saved classes and classes in the program by matching the
names of members. Therefore, members maybe freely added, deleted, or reordered.
Note that, except as described below, renaming a class member is logically the same
as deleting a member and then adding a new one.
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If a member is deleted, the information contained in the data �le for that member
is silently ignored. If a member is added, it is initialized to zero when reading a
data �le which doesn't contain that member. There is no straightforward way to
distinguish between a missing member and a member which just happened to be
zero. If such a distinction is important for your class, we suggest that you add a
version number member to the class.

Except as noted below, it is not allowed to change the type of a member. If that
should happen, an exception will be thrown. This restriction may be relaxed in the
future.

A numeric type may be changed into another numeric type. Note that a warning
may be generated in cases where this loses precision. This is implemented as a set of
prede�ned conversions (see Section 8.3).

If a member is an array, the size and dimensionality of the array may be changed
freely, as long as the base type does not change. A non-array member may also be
freely changed to an array, or vice-versa.

In addition, a collection type may be freely changed to any other collection type
with the same element type. I.e., you can change list<int> to vector<int>, but
not to list<float>.

Note that if a member is deleted from a class, that member name should not be
reused in the future. (When reading an old data �le, D�OM has no way of knowing
that it's supposed to be a new member.) Therefore, when you delete members from
a class, it is a good idea to preserve them in the class documentation. This is also
helpful in understanding old data �les.

If you must rename a persistent class member but need to be able to continue to
read that member in old data �les, you can use the memberalias directive, which
works in a manner similar to classalias. It has the form:

#pragma memberalias newname oldname;

Here, newname is looked up in the context in which the directive occurs. If oldname

has a class or namespace quali�er, that is ignored. For example,

struct A { int a; };

#ifdef __D0CINT__

#pragma memberalias A::a b;

#endif

says that if the member `A::a' isn't found in the data, D�OM should try looking for
`A::b' instead. As for classalias, this directive should probably be placed inside an
#ifdef __D0CINT__ construction. (Or use D0OM_MEMBERALIAS; see section 9.2.)

Note that, at present, the memberalias mechanism works only with the dspsack
backend.

8.3 Conversions

The automatic rules D�OM uses for schema evolution suÆce for many simple situa-
tions. However, some sorts of changes | particularly those that involve changes in
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the meaning of the stored data | can never be done completely automatically. To
help with such cases, D�OM allows arbitrary converters to be registered to convert
between types.

A converter is an instance of an object that derives from d0om::Converter<To>

(or d0om::Converter_Base). It knows how to convert between two types, here called
the \source" and \target" types. If D�OM is expecting to see the target type but
instead sees the source type, it does not throw an exception (as it would ordinarily
do); instead, it runs the converter.

The target type of the conversion must be a type that is known to D�OM. The
source type, however, need not be. In such a case, D�OM will automatically de�ne
a new type instance to describe the source type that it �nds. The converter should
then use the D�OM dictionary information to pick �elds out of the source instance
by name. An example of that will be given below. Due to the feature, the source
type is always speci�ed by name only.

Note that this section describes the case where the source and target types have
di�erent names. Conversions may also be used to convert between di�erent versions
of the same type; see section 8.3.3.

We'll �rst discuss how converters get registered, then turn to how to write con-
verters themselves.

At this point, only the dspack backend handles conversions.

8.3.1 Registering Converters

There are two ways in which a converter may be registered: declaratively, by putting
a #pragma convert directive in a header read by d0cint, or programatically, by
calling d0om_Dictionary::register_converter.

A converter may be registered by putting a #pragma convert directive in a header
being read by d0cint. The syntax is:

#pragma convert target-class source-type converter-name

Here, target-class is the name of the class that is the target of the conversion. This
must be a class that is known to d0cint, and it is looked up in the scope that is
current where the directive appears.

source-type is the name of the source type of the conversion. This name need
not be known to d0cint, and it need not be a class type. The name given is simply
passed through to the d0cint output, so the name must be complete | including
any namespace pre�xes | and must not be a typedef name (or use any as template
arguments).

converter-name is the name of the converter class. This must be a class deriving
from d0om::Converter (or d0om::Converter_Base), and the class must have a de-
fault constructor. Again, this name is simply passed through to the d0cint output
�le, so it should include any namespace pre�xes. This class must be de�ned in the
linkage (_lnk.cpp) �le, but it may be undesirable to include the header de�ning the
converter directly from the header de�ning the class being converted, as that would
mean that all users of that class have a dependency on the converter. This can be
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avoided by using the #pragma linkageinclude directive, which emits its argument
only in the linkage �le. (See Section 9.1.)

Here's an example:

namespace foo {

struct New_Class

{

int x;

};

#ifdef __D0CINT__

# pragma linkageinclude "foo/Conv.hpp"

// New_Class is looked up in the current scope.

// Old_Class is not looked up here, so it needs

// to be a complete name.

# pragma convert New_Class foo::Old_Class Conv;

#endif

} // namespace foo

As mentioned earlier, a converter may also be registered programatically, by calling
d0om_Dictionary::register_converter. See the d0om_Dictionary.hpp header for
details. Here, you must pass it the converter instance. Here's an example:

static Conv conv;

d0om_Dictionary* g = d0om_Dictionary::global ();

g->register_converter ("foo::Old_Class",

g->get_class_type ("foo::New_Class"),

conv);

The conversion to use should be unambiguous. If you register two conversions
with the same source and target types with converters that have di�erent dynamic
types, you'll get a warning (the last one registered takes precedence).

Conversions are also considered when resolving pointers. Consider the following:
you have a pointer declared to point to type A. Type B derives from type A. The pointer
actually points to an object of type C, which is not known to D�OM, but there is a
conversion from C to B. D�OM will resolve this by looking for any conversions from
type C to any types that derive from A. If it �nds more than one such candidate, it
will issue a warning.

8.3.2 Writing Converters

A converter should derive from the class d0om::Converter, de�ned in the header
d0om/d0om_Converter.hpp. (In some special cases, may be necessary to derive from
d0om::Converter_Base instead.) Here are the relevant parts of the de�nition of
d0om::Converter:
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template <class To, class From=char>

class Converter

: public Converter_Base

{

public:

// Constructor, destructor.

Converter () {}

virtual ~Converter () {}

// Convert FROM (of type FROM_TYPE) to TO (of type TO_TYPE).

// The instance at TO will have already been constructed.

virtual

void convert (const From* from, const d0om_Type* from_type,

To* to, const d0om_Type* to_type) const = 0;

};

The derived class must implement the convert method. When it runs, it should
convert the object at from to the object at to, assuming that the instance at to has
already been constructed. D�OM passes to the converter the type instances for both
the source and target types; this helps in writing generic converters.

Usually, the target type for a converter will be �xed at compile time. In that case,
the To template parameter should be set to that type, and the to pointer passed to
convert will already be cast to the correct type.

For the source type, though, there are two possibilities. The source type may also
be known to D�OM. In that case, the From template argument may be set to the
corresponding C++ type and the values manipulated directly. The other possibility
is if the source type is not known to D�OM. In this case, the type of the source
pointer should be left at its default, and the information from the source instance
should be retrieved using the D�OM dictionary information. Examples of these two
styles are given below.

First, consider the case where both types are known to D�OM. One might have,
for example, these declarations:

struct Old_Class

{

// Calorimeter cell index, 0-63.

int iphi;

};

struct New_Class

{

// Angle of center of calorimeter cell, 0-2pi.

float phi;

};
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#ifdef __D0CINT__

# pragma linkageinclude "foo/Conv.hpp"

# pragma convert New_Class Old_Class Conv;

#endif

The converter could then be written like this:

#include "d0om/d0om_Converter.hpp"

class Conv

: public d0om::Converter<New_Class, Old_Class>

{

virtual

void convert (const Old_Class* from, const d0om_Type* from_type,

New_Class* to, const d0om_Type* to_type);

};

#include "d0om/d0om_Dictionary.hpp"

#include <cmath>

#include <cassert>

void Conv::convert (const Old_Class* from, const d0om_Type* from_type,

New_Class* to, const d0om_Type* to_type)

{

// Check that we have the source type we expect.

static const d0om_Type* expected_from_type = 0;

if (expected_from_type == 0) {

d0om_Dictionary* g = d0om_Dictionary::global ();

expected_from_type = g->get_class_type ("Old_Type");

}

assert (from_type == expected_from_type);

to->phi = from->iphi / 32. * M_PI + (M_PI/64);

}

The second style of converter, which does not assume that the source type is known
to D�OM, is appropriate if you do not want you program to have any dependencies
on the old code. In that case, the declaration of Old_Class in the example above
could be dropped, and the converter written like this:

#include "d0om/d0om_Converter.hpp"

class Conv

: public d0om::Converter<New_Class>
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{

virtual

void convert (const char* from, const d0om_Type* from_type,

New_Class* to, const d0om_Type* to_type);

};

#include "d0om/d0om_Type_Class.hpp"

#include <cassert>

void Conv::convert (const char* from, const d0om_Type* from_type,

New_Class* to, const d0om_Type* to_type)

{

// Get the source type descriptor as a d0om_Type_Class.

// Check that we have the source type we expect.

const d0om_Type_Class* fcls =

dynamic_cast<const d0om_Type_Class*> (from_type);

assert (fcls != 0);

// Get the value of member `iphi' in the instance

// of `fcls' at `from'.

int iphi = fcls->get_int (from, "iphi");

// Do the conversion.

to->phi = iphi / 32. * M_PI + (M_PI/64);

}

See the D�OM sources for further information about using the dictionary infor-
mation.

8.3.3 Version Conversions

Converters can also be used between di�erent versions of the same class. For
this to work, you must have declared the version of the class to D�OM with a
#pragma version directive (see section 2.9). You declare a converter from version
n of class C to the current version n the same manner as described above, except
that for the source name you use the special form \C-vn". This converter is used
when reading any instances of version n and earlier, unless there is another converter
registered with a smaller version.

For example, suppose we have the declarations

struct A {};

#pragma version A 6;

#pragma convert A A-v2 Conv1;

#pragma convert A A-v4 Conv2;
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In this case, the converter Conv1 will be used for versions 1 and 2, Conv2 will be
used for versions 3 and 4, and the default conversion rules will be used for any later
versions. (Note that if the version read is larger than the current version, the default
conversion rules are always used.)

8.3.4 Implicit Conversions

D�OM provides some implicit conversions, in addition to those that have been ex-
plicitly registered.

If there is a conversion from type A to type B, then there is an implicit conversion
from any collection of A to any collection of B.

8.3.5 Prede�ned Conversions

D�OM registers some conversions by default.
There are six prede�ned conversions, between all of int, float, and double.

However, the three of these that narrow the type give a warning when they run.

8.4 nowrite

There is an additional mechanism available that may be helpful when changing class
members. A member may be tagged as \no-write," using #pragma nowrite, which
works in a manner similar to #pragma transient. For example:

struct foo

{

int a;

};

#ifdef __D0CINT__

# pragma nowrite foo::a; // foo::a should not be written.

#endif

Class members that are tagged as nowrite will be read in from input �les, if they
exist, but will not be written to output �les. This can be used to assist in schema
evolution, as sketched in the following example.

Suppose you have a class foo:

struct foo

: public d0_Object

{

A a;

D0_OBJECT_SETUP (foo);

};
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You want to change `A a' to `B b', while retaining the ability to read old data �les.
One solution would be to maintain both members and add a conversion, as outlined
here:

struct foo

: public d0_Object

{

A a;

B b;

void activate ();

D0_OBJECT_SETUP (foo);

};

void foo::activate ()

{

if (a.has_info() && !b.has_info()) {

convert_a_to_b (a, b);

a.clear();

}

}

This will work, but it has the disadvantage that the declaration \A a" will take
up some space in the output �le. This overhead may be avoided by declaring the
member a as nowrite:

#pragma nowrite foo::a;

8.5 Other Points

D�OM pays no attention to methods. Therefore, they may be freely changed, without
a�ecting the ability to access stored data. The same applies to static data members
and data members declared as transient.

D�OM expands all typedef names before writing to a data �le. Therefore, typedef
aliases for types may be freely changed.

9 d0cint Pragma Reference

9.1 Pragma Listing

The section lists some of the pragma directives accepted by d0cint. (cint proper
recognizes some additional directives, which are probably not generally useful and are
thus not documented here.)

These directives should all be on a single source line. They may optionally be
ended with a semicolon, but that is not required. If they are used in source �les
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which are to be read by a C++ compiler, they should probably be put inside an
#ifdef __D0CINT__ construction, in order to hide them from the compiler. (Or use
the macro variants listed in section 9.2.)

� #pragma classalias newclass oldclass

Declare that newclass was previously known as oldclass. See Section 8.

Example:

#ifdef __D0CINT__

# pragma classalias ns::foo foo;

// Class `ns::foo' used to be known as just `foo'.

#endif

� #pragma extendclass class

This pragma allows one to add to the de�nition of an already existing class.
It should be followed on the next line by an open brace, then the body of the
material to be added, then a closing brace. Note that the member protection
is reset to the default; thus, when extending a class, all members will be
considered private unless you include a public: keyword.

This construction can be useful for injecting typedefs required by D�OM into
classes de�ned in existing header �les.

Example:

class foo {};

#ifdef __D0CINT__

# pragma extendclass foo

{

public:

// Inject this d0om typedef into class foo.

typedef foo_adapter d0om_collection_adapter;

}

#endif

� #pragma include_next "header"

This pragma searches the include path supplied to d0cint for header. Unlike
#include, however, it does not stop at the �rst match it �nds, but continues
searching until it �nds a second match. (Any paths containing `/d0cintinc/'
are also skipped.) That header is then included. This is useful for writing cint
wrapper headers around existing headers.

Note also that this directive accepts only the "" form of inclusion, not <>, and
that it searches only the directories explicitly speci�ed from the command line
with -I switches.

Example:
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#pragma include_next "Package/foo.hpp"

� #pragma linkage classes

Tell d0cint to generate linkage information for classes. This only has an e�ect
if it is in the outermost header �le. See Section 5.9.

Example:

#ifdef __D0CINT__

# pragma linkage foo; // Generate linkage info

// for class foo.

#endif

� #pragma linkageinclude text

Have d0cint emit #include text in the linkage �le. See Sections 2.2.5 and 2.15
for usage examples.

Example:

#ifdef __D0CINT__

# pragma linkageinclude "foo.hpp"

// Include foo.hpp from the linkage source.

#endif

� #pragma memberalias newname oldname

Declare that the class member newname was previously known as oldname. See
Section 8.2.

In this construction, newname is looked up in the context in which the directive
appears. Any class or namespace quali�ers present in oldname are ignored. The
class must have a persistent member named newname, and must not have one
named oldname.

Example:

struct A { int a; };

#ifdef __D0CINT__

# pragma memberalias A::a b;

// Member `A::a' used to be known as `A::b'.

#endif

This tells D�OM that if it can't �nd the member A::a in the data, it should
also try looking for A::b.
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� #pragma nolinkage classes

Tell d0cint to not generate linkage information for classes. This only has an
e�ect if it is in the outermost header �le. See Section 5.9.

Example:

#ifdef __D0CINT__

# pragma nolinkage foo; // Don't generate linkage info

// for class foo.

#endif

� #pragma nowrite members

Tell d0cint that members are should be read but not written. See Section 8.4.

Example:

struct foo

{

int a;

};

#ifdef __D0CINT__

# pragma nowrite foo::a; // foo::a should not be written.

#endif

� #pragma pack (packspec) members

Tell D�OM to attempt to pack members as described by packspec. See Sec-
tion 2.18.

Example:

struct foo

{

int a;

int b;

};

#ifdef __D0CINT__

// Pack a,b into a single int.

# pragma pack (nbits=16) foo::a, foo::b;

#endif

� #pragma transient members

Tell d0cint that members are transient. See Section 2.7.

Example:
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struct foo

{

int a;

};

#ifdef __D0CINT__

# pragma transient foo::a; // foo::a is transient

#endif

� #pragma version class version

Tell d0cint that class class has version version. The name class is looked up in
the context in which the directive appears. The version number version is an
expression that evaluates to a constant integer. It is an error to attempt to alter
the version number of a class. (Multiple #pragma version directives for a class
are permitted as long as the version numbers are the same.) See Section 2.9.

Example:

struct foo

{

int a;

};

#ifdef __D0CINT__

# pragma version foo 5;

# pragma version foo 3+2; // Ok -- same version number.

#endif

9.2 Pragma Macros

The header d0om/d0om_pragma_macros.hpp contains alternate, macro versions of
most of the d0cint pragma directives. The advantage is that the macros can be
de�ned to expand to something harmless if d0cint is not running; thus, you can avoid
cluttering your source with #ifdef __D0CINT__ directives. For example, instead of
writing

...

#ifdef __D0CINT__

# pragma transient A::b;

#endif

you can write

#include "d0om/d0om_pragma_macros.hpp"

...

D0OM_TRANSIENT (A::b);
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Here is the list of de�ned macros:

� D0OM_CLASSALIAS(newcls,oldcls)

� D0OM_CONVERT(to,from,conv)

� D0OM_LINKAGE(name)

� D0OM_LINKAGEINCLUDE(path)

� D0OM_MEMBERALIAS(newmem,oldmem)

� D0OM_NOLINKAGE(name)

� D0OM_NOWRITE(name)

� D0OM_PACK(packspec,field)

� D0OM_TRANSIENT(name)

� D0OM_VERSION(cls, vers)

A Some d0 Ref<T> Details

This section contains some of the details of how class d0_Ref<T> is implemented and
how it interacts with the class d0_Object. The class diagram for d0_Ref<T> is shown
in Fig. 8. Observe that, in addition to being associated with the class d0_Object,
d0_Ref<T>'s are associated with another class d0om_Indptr, or \indirect pointers."
There can be at most one d0om_Indptr associated with any instance of d0_Object.
An object's reference count, if any, is part of its associated d0om_Indptr. There are
several way in which the classes shown in Fig. 8 can be instantiated.

1. Null references are not associated with any instance of d0_Object or any indirect
pointer.

2. Static and automatic d0_Object's have no associated indirect pointer or ref-
erence count. Such non-reference-counted objects may still be pointed to by a
d0_Ref<T>.

3. Instances of d0_Object that are created on the heap using the new operator are
associated with one indirect pointer of type d0om_Transient_Indptr and one
or more d0_Ref<T>'s.

4. Except as provided for in the following case, objects read from dspack are
associated with one indirect pointer of type d0om_DS::Indptr and one or more
d0_Ref<T>'s. Instantiation of the corresponding d0_Object is deferred until
one of the associated d0_Ref<T>'s is dereferenced.
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Figure 8: Class diagram for d0 Ref<T>.

5. Objects that have been read from dspack using bare C++ pointers have an
associated indirect pointer of type d0om_DS::Indptr, but are never allowed to
be pointed to by a d0_Ref<T>. D�OM enforces this by setting the 
ag _noref

in d0om_Indptr to be true. In this case, the instantiation of the corresponding
d0_Object can not be deferred, as it would be for d0_Ref<T>.

Cases three and four represent the typical non-trivial uses of d0_Ref<T>. In either
case, the number of d0_Ref<T>'s that are pointing to an indirect pointer is maintained
in the reference count that is part of the indirect pointer. Should the reference count
ever reach zero, the indirect pointer and its associated d0_Object are deleted.

If I/O methods other than dspack are added to D�OM, it will be necessary to
create additional subclasses of d0om_Indptr, as well as of d0Stream.

B D�OM Dictionary Classes

This section summarizes D�OM's dictionary classes. A diagram of the dictionary
classes is shown in Fig. 9. Each C++ data type or subtype is described by a class
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derived from abstract class d0om_Type. Each D�OM type is identi�ed by a character
string name and by subtype. Each D�OM subtype falls into one of the following four
categories, each of which corresponds to one of the subclasses of d0om_Type.

1. Atomic types.

2. Collections.

3. References.

4. Classes.

In addition to these classes which describe types, there is an additional class
d0om_Dictionary which manages the type instances. A d0om_Dictionary instance
owns a collection of type instances, and has methods for creating them and looking
them up.

There is one distinguished d0om_Dictionary instance, called the \global" dictio-
nary. It can be found using the static method d0om_Dictionary::global(). Other
dictionaries are \local." When a local dictionary is searched for a type, if the type
isn't found, the global dictionary is automatically searched as well.

The type objects for classes and objects are created in the (static) routine
d0om_type_setup() in each linkage source �le. This gets called during initializa-
tion (from d0om_init).

B.1 Atomic Types

Atomic types are one of the types listed in Section 2.1, and are described by class
d0om_Type_Atomic. Class d0om_Type_Atomic adds a single enumerated datum to
d0om_Type which identi�es the atomic type.

B.2 Collections

Collection types are one of the containers listed in Section 2.2, and are described
by class d0om_Type_Collection. Class d0om_Type_Collection has as its data an
enumerated collection type, and a link to the contained type, which can be any D�OM
type.

B.3 References

Class d0om_Type_Reference is used to describe bare C++ pointers, bare C++ ref-
erences, and d0_Ref<T>'s. Class d0om_Type_Reference contains an enumerated ref-
erence type and a link to the pointed to type, which must derive from d0_Object,
and which is described by class d0om_Type_Object.
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Figure 9: Class diagram for dictionary classes.
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B.4 Classes

D�OM classes are described by class d0om_Type_Class, whether or not they are
derived from d0_Object. Information about the base classes and data �elds that
make up the class are stored in class d0om_Type_Class itself (details not shown).
Classes that don't derive from d0_Object are instantiated as a concrete instances
of class d0om_Type_Class. Classes that derive from d0_Object are instantiated
as subclasses of class d0om_Type_Object. Concrete and abstract classes are de-
scribed respectively by instances of the template classes d0om_Type_Objclass<T>

and d0om_Type_Abstract_Objclass<T>, where the template argument T is the type
of the class being described.

B.5 Accessing the Dictionary classes

The complete dictionary interface is too complicated to completely document here.
And end users should not normally need to access the dictionary. However, this
section contains some hints about how to gain access to dictionary information.

The following methods of d0_Object allow the programmer to determine the type
of any instance of a class that is derived from d0_Object.

virtual const d0om_Type_Object* d0om_type() const; // Dynamic type

static d0om_Type_Object* d0om_type_static(); // Static type

The class d0om_Object_Walker uses the dictionary information to visit each data
member of a class instance and perform user-speci�ed processing on them. See
d0om_ds/src/utils/dsdump.cpp for an example of its use.

C dspack Speci�c I/O Interface

This section documents the I/O interface presented by the dspack interface classes.
This interface is not intended to be used by ordinary users. It is included here for
completeness.

Writing is handled by class d0om_DS::Outunit (which is de�ned by the header
�le d0om_ds/Outunit.hpp). Reading is handled by class d0om_DS::Inunit (header
�le d0om_ds/Inunit.hpp) The following program fragment shows the steps involved
in writing an event.

#include "d0_util/d0_String.hpp"

#include "d0om/d0_Object.hpp"

#include "d0om/d0_Ref.hpp"

#include "d0om_ds/Outunit.hpp"

#include "Event.hpp"

int main()

{
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d0_Ref<Event> rEvent;

// System initialization. The argument name is passed to DSPACK's

// initialization routine, dsinit.

d0om_init("test");

// Open output file

d0om_DS::Outunit* oun = d0om_DS::Outunit::open("test.ds");

// Write event. Every class referenced in Event is also written out.

oun->write_obj (rEvent);

// Close output file.

oun->close(); // Close output file

}

The following is an example of a reading program.

#include "d0_util/d0_String.hpp"

#include "d0om/d0_Object.hpp"

#include "d0om/d0_Ref.hpp"

#include "d0om_ds/Inunit.hpp"

#include "Event.hpp"

int main()

{

d0_Ref<Event> rEvent;

// System initialization.

d0om_init("test");

// Open input file.

d0om_DS::Inunit* iun = d0om_DS::Inunit::open("test.ds");

// Event reading loop. Read a new DSPACK record.

while(iun->read_dsrec()) {
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// Return the first object of class Event in the current record.

rEvent =

D0_REFCAST((Event)) (iun->getref(1, Event::d0om_type_static()));

}

// Close input file.

iun->close();

}

C.1 D�OM to dspack Interface Classes

This section contains a more detailed description of the classes which provide the map-
ping between the D�OM data model and its I/O interface; and the data structures,
�les and I/O mechanisms of the dspack package. The D�OM stream I/O interface
is abstract and therefore independent of any particular I/O mechanism. However,
each speci�c stream implementation requires a set of interface classes through which
the actual translation of data between C++ objects and the data structures of the
I/O mechanism occur and through which the mapping between an I/O stream and
the physical �le I/O mechanisms is accomplished.

The interface between D�OM and dspack consists of the following elements

1. Speci�c sub-class of d0Stream for dspack I/O

2. Mapping classes between D�OM Persistent classes and dspack datasets, in-
cluding a class which represents a dspack directory

3. Pointer mapping classes

4. dspack File Identi�er representation classes

5. DSPACK class through which all calls to dspack are made

6. Exception handling

C.2 d0StreamDSPACK

This sub-class of d0Stream currently reads and writes events from a d0Stream which
has been mapped to a dspack data �le. An event in a dspack data �le consists of
a number of interdependent dspack datasets, treated as a single logical record.

However, in addition to this basic read/write �le stream I/O, an additional stream
read/extract capability is provided - to return a pointer to a named class based on a
key (which maps one-to-one onto a D�OM class name). This type of read/extract is
only performed when the key, a character string, consists of a minus sign (-) followed
by the name of a class.
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The implementation also allows for an \event" to be written out consisting of
any tree of D�OM persistent objects starting from a speci�c d0_Object. Checks for
circular pointer references are implemented.

Creation of a d0StreamDSPACK instance returns an open stream behind which all
of the needed objects for mapping between stream I/O and dspack I/O and between
C++ classes and dspack datasets have been created and populated. This involves
creation of an appropriate d0om_DS::Unit instance (either for input or output) and
creation of a matching \Directory" object for the stream. The \Directory" object
holds various dspack indices and also manages the collection of objects which serve
to provided data mapping functions - see Saveable classes described below.

A d0StreamDSPACK object when instantiated :-

1. opens a dspack data �le, for either read or write, using a d0om_DS::Unit class
object as the representation of the dspack input or output �le and its �le
identi�er.

2. creates a directory object to store and manage the map between dspack dataset
objects and C++ classes. If data is being read then the dspack header �le,
which contains 'self-de�ning' complete de�nitions of all objects that may be
found in the �le, is �rst read and used to construct the directory.

3. creates instances of Saveable classes - one for each type of persistent object to
be mapped between dspack and D�OM

C.3 I/O stream to �le ID mapping classes

The class d0om_DS::Unit allocates and manages dspack �le IDs (or unit numbers
as they are sometimes called). There are specialized sub-classes for input units and
output units.

d0om_DS::Inunit (subclass of d0om_DS::Unit)

d0om_DS::Outunit (subclass of d0om_DS::Unit)

C.4 Mapping classes between D�OM persistent classes and
dspack datasets

C.4.1 d0om DS::Dir

This class, together with its partner class d0om_DS::Dirrep, forms an object registry
for dspack datasets. It tracks the object index, dspack handle, section location in
dspack for each object. It creates Saveable objects for each type of object being
managed. It keeps a map of complete descriptive information for each �eld of each
object.

A class d0om_DS::Dirchange provides a mechanism for changing the directory for
a d0StreamDSPACK stream.

A class d0om_DS::Rawdir is used to manage the creation and allocation of dspack
directories.
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C.4.2 Saveable Base Class

d0om_DS::Saveable is the base class for classes which play the role of `Agents' in
the conversion of data between D�OM C++ class instances and elements in dspack
datasets. A d0om_DS_Saveable instances is associated with a particular dspack
directory. For each directory and for each type of D�OM persistent class present a
d0om_DS::Saveable sub-class of matching type is instantiated and used to carry out
the mapping and data conversion operations.

The base class handles the common functions needed for all D�OM persistent
classes, namely:

� the generic mapping from the C++ class name to a valid dspack dataset name.
This may involve mangling the class name to conform to dspack names.

� access to dspack dataset handles

� the generic movement of N data items between the C++ memory location and
the corresponding dspack memory bu�er, including reservation of space in
the dspack memory bu�er. These methods, which save and restore data, are
normally overridden by subclass methods.

Subclasses of d0om_DS::Saveable handle the speci�c data translation functions
involved in mapping each type of D�OM persistent class to the elements of its dspack
dataset representation.

C.4.3 d0om DS::Class and d0om DS::Classrep

Saveable subclasses for di�erent types of D�OM persistent classes.
These two classes together hold the mapping between C++ class member �elds

and dspack �elds for a particular class. They are logically one mapping class, but
are sub-divided into two classes because of compiler/template limitations. Each C++
class member �eld is represented in a map table by

� �eld name.

� o�set in the C++ structure.

� number of adjacent identical elements in the C++ structure.

� o�set in the dspack structure (or -1 if doesn't exist in dspack).

� number of adjacent identical elements in the dspack structure.

� the type of Saveable for this member �eld.

� 
ag for if the �eld represents a base subobject.
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d0om_DS::Class methods which save and restore data use the mapping table to
determine how to allocate space and initialize memory. They then perform the actual
translation and copy of the �elds.

d0om_DS::Object is a subclass of d0om_DS::Class. All C++ classes which inherit
from d0_Object are mapped and translated by the subclass d0om_DS::Object of
d0om_DS::Class which, in addition to calling the base class methods to save and
restore, also performs the activation and deactivation of an object instance as it is
read in (restored) or written out (saved).

C.4.4 d0om DS::Collection

This subclass handles the save and restore of the data structures representing a
D�OM Container (aka Collection) class and also iterates over the elements of the
Container, invoking the save and restore methods of the appropriate Saveable type
for each of the contained instances. All Container collections are represented by two
separate dspack datasets. One dataset contains a two element structure denoting
the number of items in the collection and a pointer to the �rst collection element.
The other dataset stores the actual collection elements contiguously. All D�OM Con-
tainer types are handled in the same way. For ordered collections the order of the
elements is signi�cant.

C.4.5 d0om DS::Atomic

This subclass, and its more speci�c derived classes, handle the mapping of D�OM
atomic data types. The �xed length fundamental atomic data types - Integer, Short,
Character, Boolean, Float and Double are all handled in a similar way by the
d0om_DS::Fundamental classes. These handle the translation of the fundamental
atomic types between a C++ �eld and the dspack dataset named for the speci�c
data type - e.g. \.INT4" for Integers.

All supported fundamental atomic types except for Double require no fur-
ther code to perform the mapping beyond that provided through the C++ lan-
guage support. The one exception to this is Double, for which a supporting class
d0om_DS_double_hack is needed.

C.4.6 d0om DS::String and d0om DS::Stringrep

The mapping between a C++ atomic �eld and a dspack dataset element is handled
slightly di�erently for string atomic types. A string is represented in two separate
datasets; one storing a two-element structure containing a pointer to the start of
the string and its length, and the other storing the actual body of the string. The
d0om_DS::Stringrep class merely provides the mapping to named dspack dataset
\x.CHAR4" which is used for storage of the body of strings - packed into an integral
number of 4 byte character string elements.
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C.4.7 d0om DS::Reference

The mapping between a C++ member �eld which stores either a C++ bare pointer
or a d0_Ref pointer is handled by this class or one of its derived classes

� d0om_DS::Reference_Pointer: for handling C++ pointers or references.

� d0om_DS::Reference_D0Ref: for handling d0_Ref objects.

� d0om_DS::Reference_DynRef: for handling DynRef objects.

� d0om_DS::Reference_Auto_Ptr: for handling auto_ptr objects.

All types of references contained in C++ classes are implemented in their dspack
representation as dspack pointers. The mapping between references and dspack

pointers is quite tricky and has many checks to

� ensure that there are no circular pointer references

� handle polymorphism

� check for potential con
icts between C++ bare pointers and D�OM smart
pointers

C.4.8 d0om DS::Dummy

Although this class is derived from d0om_DS::Saveable it does not carry out mapping
functions in the same way as the other sub-classes. Rather, it is used by those other
classes when, in the course of mapping between a dspack dataset and C++ classes,
it is discovered that a particular dataset contains a �eld which has no corresponding
�eld in its C++ class. An instance of a d0om_DS::Dummy class is then created by the
Saveable class handling the mapping. This instance is used merely as a temporary
memory storage location so that the normal mapping operations of locating space,
clearing/zeroing space, and performing a copy can proceed into a \dummy" data area.
An instance of d0om_DS::Dummy is not associated with a particular dspack directory;
it is created and destroyed as needed by the d0om_DS::Saveable instance.

C.5 Location mapping classes

C.5.1 d0om DS::Loc

Objects are located in dspack using a triple

(file_offset,Saveable,index)

This triple is represented by the class d0om_DS::Loc.
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C.5.2 d0om DS::Indptr

This class is a dspack speci�c subclass of d0om_Indptr which provides the methods
to locate an object in memory using d0om_DS::Loc objects.

C.5.3 d0om DS::Bound Pointer

???

D Cint License

License:

� License condition described in this README �le overrides other descriptions
if there is any di�erence.

� Copyright of Cint and associated tools are owned by Hewlett-Packard Japan
Company and the author. Acknowledgement to the author by e-mail is recom-
mended at installation.

� Source code, binary executable or library of Cint and associated tools can
be used, modi�ed and distributed free of charge for non-commercial pur-
pose provided that the copyright notice appear in all copies and that both
that copyright notice and this permission notice appear in supporting doc-
umentation. Registration is requested, at this moment, for commercial use.
Send e-mail to the author. The registration is free. (gotom@jpn.hp.com or
MXJ02154@niftyserve.or.jp)

� If a modi�cation is made on any of the source or documentation, it has to be
clearly documented and expressed.

� Hewlett-Packard Japan Company and the Author make no representations
about the suitability of this software for any purpose. It is provided \as is"
without express or implied warranty.

� Above condition will overrides other license described in source code and other
documentation if there is con
ict. It applies and will not be changed for this
revision of CINT package.

� Support and consulting of CINT will be available from Hewlett-Packard
Japan \MPN Consulting Group". CINT is distributed as free software,
however, there have been requests for commercial uses and there are peo-
ple who feel comfortable about having oÆcial support channel. Contact
Akira_Fujita@om.jpn.hp.com or the author(gotom@jpn.hp.com). Having of-
�cial support and consulting contract is recommended for serious commercial
project.
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� readline, glob and malloc directories contain �les associated with GNU read-
line library which is copylefted by GNU project. Refer to General Public Li-
cense(GPL). Cint and the GNU readline are completely separate software pack-
ages which can work independently.

� For copyright notice and licensing of AIX dlfcn, please read
platform/aixdlfcn/README.

References

[1] R. Zybert, dspack User's Guide, version 1.12.

[2] The Object Database Standard: ODMG-93, Release 1.2, R.G.G. Cattell ed., Mor-
gan Kaufmann, San Francisco, 1996.

[3] http://root.cern.ch/

[4] http://www-d0.fnal.gov/software/cmgt/cmgt.html

[5] Design Patterns, E. Gamma et al., Addison-Wesley, Reading, Mass., 1995.

84


