Vibrational Spectroscopy of Optogenetic Rhodopsins

Adrian Yi, Natalia Mamaeva, Kenneth J. Rothchild

Department of Physics, Photonics Center and Molecular Biophysics Laboratory, Boston University, Boston, MA 02215, USA

What are rhodopsins?

1) Animal rhodopsins
 - Rods & cones in the retina responsible for vision
2) Microbial rhodopsins
 - Membrane proteins in microbes responsible for ion transport, energy transduction, signaling, etc.

Why study microbial rhodopsins?

1) Model for key cellular processes
 - Ion transport, energy transduction, signaling, etc.
2) Optogenetics
 - New interdisciplinary field revolutionizing neuroscience

Microbial rhodopsin

(Pictured left: bacteriorhodopsin)

- Light-sensitive proteins
- Chromophore: retinal (red)
- 7-transmembrane α-helices
- Various types
 - Ion pumps
 - Bacteriorhodopsin (H+): Archaebacterium (H+)
 - Halorhodopsin (Cl-)
- Signaling
 - Sensory rhodopsin I & II
- Light-gated Channels
 - CaChR1, CaChR2 (cations)
 - GACR1, GACR2 (anions)

Optogenetics

- Developed in 2005
- Microbial rhodopsins are expressed in specific cells of interest by DNA insertion
- Cells are excited by shining light, which activates phosphorycles of expressed microbial rhodopsins
- Provides spatial and temporal specificity advantages over electrical stimulations

Examples of optogenetic proteins

- Channelrhodopsin 1/2 (Chlamydomonas reinhardtii channelrhodopsin-2)
 - Cation channel widely used for cell activation
 - One of first two channelrhodopsins discovered
- ACR1 (Chlamydomonasaugustae channelrhodopsin)
 - Cation channel
 - Studied by our group in 2014:105
- HR (Halorhodopsin)
 - Anion pump, used as an inefficient cell silencer
- QuasAR1/QuasAR2 (Quality superior to AR3 – 1/2)
 - Membane potential dependent fluorescent protein
- GACR1 & GACR2 (Guillardia theta anion-channelsphotopsin)
 - Anion channel discovered in 2015, >1000 times more efficient than HR as cell silencer

How do optogenetics work

A light-sensitive protein from algae

Take the gene for this protein...

... and insert the DNA into specific neurons in the brain.

Neurons communicate by **“flashing blue light!”**

With the right combination of neurons, you can rewire an entire brain circuit to control specific behaviors (like movement)

http://neurobyn.blogspot.se/2011/01/controlling.html

Resonance Raman Spectroscopy

- Inelastic scattering technique
- 785nm laser excitation
- Chromophore bands are resonantly enhanced, enabling us to probe near the chromophore without the absorption from rest of the protein
- Used to probe ground state structure and protonation states of the protein

Low-temperature Fourier-transform Infrared (FTIR) Difference Spectroscopy

- Direct absorption technique using film samples
- Liquid nitrogen cooled cryostat sample holder allows temperature to be controlled from 80 to 300 K.
- LED lights are used to switch between photo-intermediate states

Bacteriorhodopsin Photocycle

Bacteriorhodopsin absorbs photons near 570nm, which drives it into its photocycle resulting in a displacement of a proton out of the cell.

Recent papers