
Crash course in C for
Arduinos

Dan Gastler
2016-03-14

Microcontrollers
What are microcontrollers (uCs)?

● Basically simple computers
● They have a processor, memory, and

input/output ports.
● They run a program designed to control

systems all around you.
● Examples include phones, mp3 players,

computer peripherals, kitchen
appliances, remote controls, etc.

Why are we learning about these?
● Microcontrollers allow you to use the analog and

digital circuits you’ve learned to control and
monitor the real world.

● When you walk into a research lab, you will be
able to take data from your equipment and send it
to a computer for you to process.

1

Arduinos (hardware)

Microcontroller

Power

USB interface

Reset button Digital I/Os

Analog inputs
2

Arduinos (software)
How do we program our arduinos?

● Free IDE (win/OSX/Linux):
http://arduino.cc/en/Main/Software

● You can use this software to write your
program, build it into something the arduino
can use, and upload your program to the
arduino.

● Programs are written in a language that is
similar to C.

● The IDE also contains a serial port monitor
that gives you an input/output terminal to
your arduino.

● Contains many example programs showing
you how to use all the features of your
arduino.

3

http://arduino.cc/en/Main/Software

What goes into a program?
Flow control and loops:

● These alter what the program does based on
the input given.

● Give us a structure to repeat a set of
instructions.

Data:
● Data in programs is stored in variables and

constants.
● These include integers, real numbers,

characters and strings.

Functions:
● These are blocks of code that have well

defined inputs and outputs.
● They are used to compartmentalize and

organize your code, making it easier to
understand.

Libraries:
● These are groups of functions and data that

have been put together to accomplish a task.
● Using existing code makes life easier.

Comments/Tabbing:
● Comments tell everyone looking at your code

what it does.
● Good comments and tabbing help you and

others use and modify your code.
● Choose a tabbing and stick with it!

4

Data types
Data in digital electronics:

● Data in any computer is stored as binary bits.
● The hardware groups these bits in groups of 8 bits (1 byte) and in groups of bytes (words).
● We can interpret these bits as integers, real numbers, or characters.

Integers:
● Integers are whole numbers (no decimal point) and can be signed (positive or negative) or unsigned

(only positive).
● We represent integers in three ways:

○ decimal (count to 10):
○ hex (count to 16):
○ binary (count to 2):

Real numbers:
● Numbers like 3.4, 2.7182, and 1.602*10^-19.
● Only an approximation!
● Real numbers need a decimal point (4.0 for 4) to tell the compiler that it is really a float.

Characters:
● An ASCII character is a code that uses a number to represent a character to print to the screen.
● The character “E” is stored as 69dec, “8” is stored as 56dec.

decimal binary hex

1 0b1 0x1

43 0b101011 0x2B

193 0b11000001 0xC1

5

C/Arduino data types
type size

(bytes)
min value max value

dec hex dec hex

char 1 -128 0x80 127 0x7F

byte 1 0 0x00 255 0xFF

int 2 -32768 0x8000 32767 0x7FFF

unsigned int 2 0 0x0000 65535 0xFFFF

long 4 -2,147,483,648L 0x80000000 2,147,483,647L 0x7FFFFFFF

unsigned long 4 0 0x00000000 4,294,967,295 0xFFFFFFFF

float (*double) 4 (+/-)3.4 x 10^38 ~6 decimal (+/-)1.2 x 10^-38

* On most computers and some arduinos, doubles are 8
bytes

6

ASCII cheat sheet

7

Arrays
Strings:

● Strings are collections of characters that allow you to build messages
● Strings are NULL terminated which means that the last character is ‘\0’, the NULL character.
● A string for “Hello world!” would be,

● Example on the arduino

‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘ ‘ ‘w’ ‘o’ ‘r’ ‘l’ ‘d’ ‘!’ ‘\n’ ‘\0’

0x72 0x65 0x6c 0x6c 0x6f 0x20 0x77 0x6f 0x72 0x6c 0x64 0x21 0x0A 0x00

8

Mathematical operations
● Assignment (=)

○ This operation takes what is on right of it and puts it in the variable to the left of it.
○ d = 2 + 3: loads 5 into the variable d

● Basic math (+,-,*,/,%)
○ These are the add/subtract, multiply/divide and modulus operations you are use to.

● Compound operations (++,--,+=,-=,*=,/=)
○ These combine math operations with the assignment operator as a shorthand
○ a++ means a = a + 1
○ a+=b means a = a + b
○ a/=3.0 means a = a / 3.0

● Example of mixed operations

Gotchas on the next slide!
9

10

Logical operations
Logical operations:

● We can use integers to represent boolean values with the integer 0x0 being false and all other
integers being true.

● There are shorthands in the arduino C of “true” and “false” for these boolean ints.
● Examples with a = true and b = false:

symbol meaning example result

&& logical and a && b false

|| logical or a || b true

! logical not !a false

== logical equals a == b false

Common mistake! (“=” is not the same as “==”)!!!!!!!!
b == a compares b and a returns false
b = a means b is assigned the value of a, which is the value true returns true!

11

Control Flow
From IfStatementConditional example

From switchCase example

These types of statements tell our program how to
change its behavior based on data.
if - else if - else:

● An if statement executes a block of code if a
logical condition is true.

● If we want to execute another block of code if
that statement isn’t true, we add in an else.

● If we have multiple conditions, we can use
the else if statement to organize the blocks.

Switches:
● A switch statement chooses a block of code

to run based on the value of an integer.
● Each case should be followed by a break

statement to end the block of code.
● Cases can be grouped together only one

break if they share the same block of code.
● It is good practice to have a default: case to

catch missing cases.
12

Loops
From ForLoopIteration example

From WhileStateConditional example

For loops:
● Use these when you have a set number of

things that need to be operated on in the
same way.

○ processing arrays of data
○ processing groups of objects (left)

● Control uses 3 parts
○ initialization (how we start)
○ test condition (how we stop)
○ step (how we move forward)

● The code is placed between “{“ and “}”.
While and do-while loops:

● These loops continue until a condition is met.
● The condition is checked

○ before code (while loop)
○ after code (do-while loop)

13

Functions
From BarometricPressureSensor example

From Ping example

Why do we use functions?
● Functions allow us to break up our code

into logical chunks.
● Organizing often used code in functions

saves us from copy/pasting it
Syntax:

● Functions have:
○ A name
○ A list of values they expect
○ Code that manipulates those values
○ A value returned to the caller

● The code in the function is put between the
“{“ and “}” characters.

● The function ends with a return statement
or when it gets to the end of the code.

● This code has access to global variables
and variables created inside the function.

14

A basic program for the Arduino

Special setup function
that is called once when
the arduino starts.

Special loop function
that is called over and
over again forever.

Global variable

Library function that
configures a I/O pin for
output mode.

Library function that
writes a ‘1’ to the led pin

Library function that
causes the arduino to
sleep for 1000 ms

15

Arduino specific functions & libraries
Special Arduino functions
void setup(): This function is run once when the Arduino is powered up (or reset) and sets up the initial

conditions for your code.
void loop(): This function is called after setup() has finished and is called over and over again forever.

I/O port control:
Digital:

● pinMode(pin,mode): This sets the mode (INPUT/OUTPUT) of the pin on the arduino.
● digitalWrite(pin, value): This writes the value(HIGH/LOW) to pin on the arduino.
● digitalRead(pin): This returns the value of the pin on the arduino.

Analog:
● analogRead(pin): Read the analog value on pin and return the value (0 - 1024).
● analogWrite(pin,value):Write (PWM) the value to pin.

Useful libraries:
Serial: Used to communicate with your computer over a USB cable and a terminal program.

See the SerialCallResponse example under communication.
16

Bitwise Operations

● Remember, data types are fundamentally made out of bits.
● There are special commands to do operations directly on these bits.

● These are used when we want to assemble read bits into a byte or get a bit out of a byte for writing.

symbol meaning example result

& and 0b0111 & 0b0100 0b0100

| or 0b0011 | 0b1010 0b1011

^ xor 0b0011 ^ 0b1010 0b1001

~ complement ~0b0101 0b1010

<< left shift 0b0010 << 2 0b1000

>> right shift 0b1000 >> 1 0b0100

17

10hz Binary counter
with LED outputs

18

Variable scope

19

Go have fun with your Arduinos!
● If you haven’t already, please pick up an Arduino pack from Prof. Sulak, one of the TA’s, or me.

● Your homework over break is to install the Arduino software (http://arduino.cc/en/Main/Software) and get the
blinky example working on your Arduino.

● You can find it along with many other examples by going to File->Examples in the Arduino IDE.

● Please change the frequency of your blinky program to make sure you have everything working.

● If you need help, feel free to talk to the TAs or myself or check the arduino reference website:
http://arduino.cc/en/Reference/HomePage .

20

http://arduino.cc/en/Main/Software
http://arduino.cc/en/Reference/HomePage

Homework
dec

(unsigned)
hex binary val >>3 val &0x3 val | 0x80 final dec

123 0x7B 0b01111011 0x0F 0x03 0x83 131

255

0x80A5

0b11100111

-128
*(signed int)

*hint: ints are 2 bytes long and http://en.wikipedia.org/wiki/Two%27s_complement

Work these out on paper first and then write code to check them.

http://en.wikipedia.org/wiki/Two%27s_complement

