Crash course in C for
Arduinos

Dan Gastler
2016-03-14

Microcontrollers

What are microcontrollers (uCs)?

e Basically simple computers

e They have a processor, memory, and
input/output ports.

e They run a program designed to control
systems all around you.

e Examples include phones, mp3 players,
computer peripherals, kitchen
appliances, remote controls, etc.

Why are we learning about these?
e Microcontrollers allow you to use the analog and
digital circuits you've learned to control and
monitor the real world.
e When you walk into a research lab, you will be
able to take data from your equipment and send it
to a computer for you to process.

Arduinos (hardware)

Reset button

Digital I/Os

USB interface ' vy yaae
\ £ P DIGITAL (PWM~) K ¥

Microcontroller

Power =i

Analog inputs

Arduinos (software)

Station | Arduino 1.0.1
File Edit Sketch Tools Help

Station §
#include <RCSwitch.h=
#include <Wire. h=

unsigned long devID = 1;
int tmplO2Address = Ox48;

int humidityPin = AQ;
int lightPin = Al;

// input pin for humidity sensor
'/ input pin for light sensor

RCSwitch mySwitch = RCSwitch();

void setup() LY
1

//Start wire for temperature sensor
Wire.begin{};

ff Tranaemitter ie ronnerted tn drdiinn Pin #1732

Arduino Pro or Pro Mini [2.2V, 8 MHz) wi ATrnega328 on jdewittylUSEO

Lol il 1»]

How do we program our arduinos?

Free IDE (win/OSX/Linux):

http://arduino.cc/en/Main/Software
You can use this software to write your

program, build it into something the arduino
can use, and upload your program to the
arduino.

Programs are written in a language that is
similar to C.

The IDE also contains a serial port monitor
that gives you an input/output terminal to
your arduino.

Contains many example programs showing
you how to use all the features of your
arduino.

http://arduino.cc/en/Main/Software

What goes into a program?

Flow control and loops:
e These alter what the program does based on
the input given.
e Give us a structure to repeat a set of

instructions.
Data:
e Data in programs is stored in variables and
constants.

e These include integers, real numbers,
characters and strings.

Functions:

e These are blocks of code that have well
defined inputs and outputs.

e They are used to compartmentalize and
organize your code, making it easier to
understand.

Libraries:

e These are groups of functions and data that
have been put together to accomplish a task.

e Using existing code makes life easier.

Comments/Tabbing:

e Comments tell everyone looking at your code
what it does.

e (Good comments and tabbing help you and
others use and modify your code.

e Choose a tabbing and stick with it!

Data types

Data in digital electronics:

e Data in any computer is stored as binary bits.
e The hardware groups these bits in groups of 8 bits (1 byte) and in groups of bytes (words).

e \We can interpret these bits as integers, real numbers, or characters.

Integers:

e Integers are whole numbers (no decimal point) and can be signed (positive or negative) or unsigned

(only positive).

e \We represent integers in three ways:

o decimal (count to 10):

o hex (count to 16):

o binary (count to 2):

Real numbers:

e Numbers like 3.4, 2.7182, and 1.602*10”-19.
e Only an approximation!

decimal binary hex
1 Ob1 Ox1
43 O0b101011 0x2B
193 | 0b11000001 0xC1

e Real numbers need a decimal point (4.0 for 4) to tell the compiler that it is really a float.

Characters:

e An ASCII character is a code that uses a number to represent a character to print to the screen.

e The character “E” is stored as 69dec, “8” is stored as 56dec.

C/Arduino data types

type size min value max value
(bytes)
dec hex dec hex

char 1 -128 0x80 127 Ox7F
byte 1 0 0x00 255 OxFF
int 2 -32768 0x8000 32767 Ox7FFF
unsigned int 2 0 0x0000 65535 OxFFFF
long 4 -2,147,483,648L | 0x80000000 2,147,483,647L Ox7FFFFFFF
unsigned long 4 0 | 0x00000000 4,294,967,295 | OxFFFFFFFF
float (*double) 4 (+/-)3.4 x 1038 ~6 decimal | (+/-)1.2 x 10*-38

* On most computers and some arduinos, doubles are 8

ASCII cheat sheet

Dec HxOct Char Dec Hx Oct Html Chr |Dec Hx Oct Himl Chr| Dec Hx Oct Html Chr
0 0 000 NUL (null) 32 20 040 Space| 64 40 100 @ [96 60 140 `
1 1 001 S0H (start of heading) 33 21 041 ! ! 65 41 101 A A 97 61 141 a a
2 2 002 5TX (start of text) 34 22 042 &«#34; " 66 42 102 &«#66; B 98 62 142 «#98; b
3 3 003 ETX (end of text) 35 23 043 # # 67 43 103 &«#67; C 99 63 143 c C
4 4 004 EOT (end of transmission) 36 24 044 $ § 68 44 104 &«#68; D (100 64 144 &#l00; d
5 5 005 ENQ {endquiry) 37 25 045 % % 69 45 105 «#69; E |101 65 145 &#l01; &
6 6 006 ACK {acknowledge) 38 26 046 & & 70 46 106 &«#70; F (102 66 146 &«#102; £
7 7 007 BEL (bell) 39 27 047 &«$39; "' 71 47 107 «#71; G |103 67 147 g o
§ § 010 BS (backspace) 40 28 050 (| 72 48 110 H H |104 68 150 h h
9 9 011 TAE (horizontal tab) 4] 29 051 l:) 73 49 111 &«#73; I |105 69 151 i i
10 A 012 LF (NL line feed, new line)| 42 24 052 &«#42; * 74 44 112 &«#74; J |106 64 152 j]
11 B 013 VT (wertical tab) 43 2B 053 + + 75 4B 113 &«#75; K |107 6B 153 k k
12 C 014 FF (NP form feed, new page)| 44 2C 054 &«#44; , 76 4C 114 «#76; L (108 6C 154 &«#108; 1
13 D 015 CR (carriage return) 45 2D 055 - - 77 4D 115 M M |109 6D 155 m n
14 E 016 50 (shift out) 46 2E 056 . . 78 4E 116 N N |110 6E 156 l0; n
15 F 017 3I (shift in) 47 2F 057 «#47; / 79 4F 117 &«#79; 0 |111 6F 157 &#lll; o
16 10 020 DLE (data link escape) 48 30 060 0:; 0 80 50 120 P P |112 70 160 &#ll2; p
17 11 021 DC1l (dewvice control 1) 49 31 061 1: 1 8l 51 121 &«#81; 0 |113 71 161 q d
158 12 022 DCZ (device control 2) 50 32 062 2 2 82 52 122 &«#82; R |114 72 162 l1l4; ¢
19 13 023 DC3 (device control 3) 51 33 063 3: 3 83 53 123 &«#83; 5 |115 73 163 s =
20 14 024 DC4 (device control 4) 52 34 064 &«#52; 4 84 54 124 «#84; T |116 74 164 &#ll6; ©
21 15 025 NAK (negatiwve acknowledge) 53 35 065 5 5 §5 55 125 &«#85; U |117 75 165 u u
22 16 026 SYN (synchronous idle) 54 36 066 6: 6 86 56 126 V V |118 76 166 l1l5; v
23 17 027 ETE (end of trans. block) 55 37 067 7 7 87 57 127 &«#87; W |119 77 167 l19; w
24 18 030 CAN (cancel) 56 38 070 8 & 88 58 130 X.; X |120 78 170 x X
25 19 031 EM (end of medium) 57 39 071 &«#57; 9 89 59 131 «#89; ¥ |121 79 171 &«#l2l:; ¥
26 14 032 SUE (substitute) 58 34 072 : : 90 54 132 «#90; Z |122 74 172 &«#l22; z
27 1B 033 ESC (escape) 59 3B 073 ; ; 91 5B 133 &«#91; [(123 7B 173 { {
28 1C 034 F§ (file separator) 60 3C 074 < < 92 5C 134 &«#92; \ |124 7C 174 &«#124;
29 1D 035 G5 (group sSeparator) 61 3D 075 &#$6l; = 93 5D 135 &«#93;] [125 7D 175 } }
30 1E 036 RS (record separator) 62 3E 076 > > 94 S5E 136 &«#94; * |126 7E 176 ~ ~
31 1F 037 US ({unit separator) 63 3F 077 ? 2 95 S5F 137 _ _ |127 7F 177 DEL

Source: www.LookupTables.com

Arrays

Strings:
e Strings are collections of characters that allow you to build messages
e Strings are NULL terminated which means that the last character is \0’, the NULL character.
e Astring for “Hello world!” would be,
IHI lel lll lll lol 1 1 IWI IOI lr.l lll ldl I!I l\nl I\OI
0x72 0x65 Ox6¢c Ox6¢ Ox6f 0x20 ox77 Oxo6f 0x72 0x6¢ 0x64 0x21 Ox0A | 0x00
e Example on the arduino
void Toop(]
{
//Create an array of chars and load 1t with "Hello world?" Send
char str[20] = "Hello world?"; //NULL character added automatically Hello world! | &
Serial.println{str); // prints "Hello world?" and a line feed Hello world? '
Hello world!
str[ll] = '!'; //change the '?' to a '!' Hello world?
str[l2] = '\n'; /F/48dd the '“n' char to add line feed ourselves Hello world!
/Me just overwrote the \O char, oops. v
Al | ' o]
//8dd the NULL character since we just deleted 1it. g -)
str[13] = "\Q'; v! Autoscroll No line ending | ¥ | | 94

Serial.print({str}; //prints "Hello world!!"

Mathematical operations

Assignment (=)
o This operation takes what is on right of it and puts it in the variable to the left of it.
o d=2+3: loads 5 into the variable d
Basic math (+,-,*,/,%)
o These are the add/subtract, multiply/divide and modulus operations you are use to.
Compound operations (++,--,+=-=*= /=)
o These combine math operations with the assignment operator as a shorthand
o at++ means a=a+1

o a+=b means a=a+b
o al=3.0 means a=al/3.0
Example of mixed operations
float a,b,c: int d = 5;
a =12; d=d+ 3; d =8
b = 3.1; d4+; d =95
c =(a*b)+4; /7 40.2 d: *=2; i/ d =18
d =d % 4 d=2 |

Gotchas on the next slide!

Floats are truncated to integers

float x = 0.1;

int i = x; // 0

int i = x*9 JF 8ill. 0O
int i = x*10 il 3

Floats are truncated to integers

float x = 10 * (50 / 500); // O
float y = 10.0 * (50/500); // 0!
float y = 10 * (50.0/500); // 1!

You must add “.0” to force arithmetic
to be floating point.

By default, all integer arithmetic is truncated

to 16 bits (-32768 to 32767)

If any intermediate result will overflow this range
you must force a “long” (32-bit) calculation by appending “L”

float x =0.1;

int i = 500 * 5000 / 1024;
long j = 500 * 5000 / 1024;
int I = 500L * 5000 / 1024;

// 927
// still 9??
// 244 - yes!

10

Logical operations

Logical operations:

e We can use integers to represent boolean values with the integer 0x0 being false and all other
integers being true.

e There are shorthands in the arduino C of “true” and “false” for these boolean ints.
e Examples with a = true and b = false:

symbol meaning example result
&& logical and a&&b false
|| logical or allb true
! logical not la false
== logical equals a== false
Common mistake! (“=” is not the same as “=="")11
b == compares b and a returns false

b=a means b is assigned the value of a, which is the value true

returns true!

11

Control Flow

From IfStatementConditional example

vold 100[1() 1
// read the value of the potentiometer:
int analogValue = analogRead({analogPin};

/¢ 1f the analog ;
if {analogvalue = threshold) {
digitalWrite(ledPin, HIGH);
b
else {

digitalWrite (ledPin, LOW);
h

value 1s high enough, turn

on

the LED:

From switchCase example

// do something different depending on the
/ range value:

switch (range) {

case O: // your hand 1s on the
Serial.println{"dark"});
break;

case 1: // your hand is close to the
Serial.println{"dim")};
break;

case 2: /¢ your hand 1s
Serial.println{"medium"};
break;

case 3: // your hand 1s nowhere near the
Serial.println("bright");
break;

E

sensor

a few 1nches

sensor

from the

Sensor

Senso

r

These types of statements tell our program how to
change its behavior based on data.
if - else if - else:
e An if statement executes a block of code if a
logical condition is true.
e If we want to execute another block of code if
that statement isn’t true, we add in an else.
e |f we have multiple conditions, we can use
the else if statement to organize the blocks.
Switches:
e A switch statement chooses a block of code
to run based on the value of an integer.
e Each case should be followed by a break
statement to end the block of code.
e (Cases can be grouped together only one
break if they share the same block of code.
e |tis good practice to have a default: case to
catch missing cases.

12

Loops

From ForLoopIteration example

// loop from the lowest pin to the highest:
for {int thisPin = 2; thisPin < 8; thisPin++) {
/4 turn the pin on:
digitalWrite (thisPin, HIGH);
delay(timer};
‘/ turn the pin off:
digitalWrite(thisPin, LOW);
b

From WhileStateConditional example

¢/ while the button is pressed, take calibration readings
while (digitalRead(buttonPin) == HIGH) {
calibrate();

b

For loops:

e Use these when you have a set number of
things that need to be operated on in the
same way.

o processing arrays of data

o processing groups of objects (left)
e Control uses 3 parts

o initialization (how we start)

o test condition (how we stop)

o step (how we move forward)
e The code is placed between “{* and “}".

While and do-while loops:

e These loops continue until a condition is met.
e The condition is checked

o before code (while loop)

o after code (do-while loop)

13

Functions

From BarometricPressureSensor example

vold writeRegister({byte thisRegister, byte thisvalue) {
// SCPLOOD expects
// of the byte. So shift the bits
thisRegister = thisRegister =< 2;
'/ now combine the register address
byte dataToSend =

the register address in the upper 6 bits

left by two bits:

and the command into
thisRegister | WRITE;

one byte

/7 take the chip select low to select the device:
digitalWrite{chipSelectPin, LOW};

SPI.transfer(dataToSend); //Send register location
SPI.transfer(thisvalue); //Send value to record into register
‘/ take the chip select high to de-select:
digitalWrite {chipSelectPin, HIGH};

From Ping example

long microsecondsToCentimeters{long microseconds)
1
£ The speed of sound 1s 340

1 m/s or 29 microseconds
The ping travels

out and bJ(l so to find the distance of the
// object we take thT of the dis tj|C~ travelled.
return microseconds / 20 / 2

h

per centimeter.

Why do we use functions?
e Functions allow us to break up our code
into logical chunks.
e Organizing often used code in functions
saves us from copy/pasting it
Syntax:
e Functions have:
o Aname
o Alist of values they expect
o Code that manipulates those values
o Avalue returned to the caller
e The code in the function is put between the
““ and “}” characters.
e The function ends with a return statement
or when it gets to the end of the code.
e This code has access to global variables
and variables created inside the function.

14

A basic program for the Arduino

Special setup function
that is called once when
the arduino starts.

Special loop function

that |S Ca"ed over and \ the loop routine runs over and over again_ {

over again forever.

Blink | Arduino 1.0
File Edit Sketch Tools Help

Blink

/% -
Blink
Turns on an LED on fhr one second, then off fopes® second, repeatedly.
This example code is in the public ggm®Th.

%7

4/ Pin 13 has an LED cge®cted on most Arduino boards.
/7 give 1t a nap

int led = 13;

// the setup routine runs once when yg
vold setup() {
// initialize the digitg
pinMode (led, OUTPUT);

as an output.

void loop(} {
digitalWrite{led, HIGH);
delay (1000);

M turn the LED on (HIGH is the voltage level]
// wait for a second
digitalWrite(led, LOW); // turn the LED off by making the voltage LOW

delay (1000) ; Cgr AN - s el
¥ -

1 N*]

Global variable

Library function that

-~ configures a /O pin for

output mode.

Library function that
writes a ‘1’ to the led pin

Library function that
causes the arduino to
sleep for 1000 ms

15

Arduino specific functions & libraries

Special Arduino functions

void setup(): This function is run once when the Arduino is powered up (or reset) and sets up the initial
conditions for your code.
void loop(): This function is called after setup() has finished and is called over and over again forever.

I/0 port control:

Digital:
e pinMode(pin,mode): This sets the mode (INPUT/OUTPUT) of the pin on the arduino.
e digitalWrite(pin, value): This writes the value(HIGH/LOW) to pin on the arduino.
e digitalRead(pin): This returns the value of the pin on the arduino.
Analog:
e analogRead(pin): Read the analog value on pin and return the value (0 - 1024).

e analogWrite(pin,value):Write (PWM) the value to pin.

Useful libraries:
Serial: Used to communicate with your computer over a USB cable and a terminal program.

See the SerialCallResponse example under communication.
16

Bitwise Operations

e Remember, data types are fundamentally made out of bits.
e There are special commands to do operations directly on these bits.

symbol meaning example result

& and Ob0111 & 0b0100 0b0100
| or Ob0011 | 0b1010 Ob1011
A xor 0b0011 ~ 0b1010 Ob1001
~ complement ~0b0101 0b1010
<< left shift O0b0010 << 2 0b1000
>> right shift Ob1000 >> 1 0b0100

e These are used when we want to assemble read bits into a byte or get a bit out of a byte for writing.

// pins 8, 9, 10, 11 are LED outputs 10hz Binary counter
with LED outputs

void setup() {
for(int i=8; i<=1ll1l; i++)
pinMode (i, OUTPUT) ;
}

int count = 0;
void loop() {

count = count + 1; // increment our counter
for(int b=0; b<4; b++) { // loop over bits
int mask = 1<<b; // mask =1, 2, 4, 8
if (count & mask) // test one bit in count
digitalWrite(8+b, HIGH) ;
else

digitalWrite(8+b, LOW) ;

}
delay (100) ; // delay 100ms

Variable scope

int n = 12;

void loop () {
int z = 3;

static int ecnt;

for(int i=0;

B <

// global variable /

// “automatic” wvariable —_

// static wvariable

i++)

Visible in any function

Initialized to zero by defaulit.

Retains value indefinitely.

Visible only inside { }
where it is declared.
Not Initialized by default!
Does not retain value
(created anew on each
function call)

Visible only inside { }
where it is declared.
Initialized to zero by default
Retains value across
function calls

19

Go have fun with your Arduinos!

e [f you haven't already, please pick up an Arduino pack from Prof. Sulak, one of the TA’s, or me.

e Your homework over break is to install the Arduino software (http:/arduino.cc/en/Main/Software) and get the
blinky example working on your Arduino.

e You can find it along with many other examples by going to File->Examples in the Arduino IDE.
e Please change the frequency of your blinky program to make sure you have everything working.

e |f you need help, feel free to talk to the TAs or myself or check the arduino reference website:

http://arduino.cc/en/Reference/HomePage .

20

http://arduino.cc/en/Main/Software
http://arduino.cc/en/Reference/HomePage

Homework

dec hex binary val >>3 val &0x3 val | 0x80 final dec

unsigned b
(unsigned) / / //) //

123 0x7B | 0b01111011 OxOF 0x03 0x83 131

255

Ox80A5
0b11100111

-128

*(signed int)

Work these out on paper first and then write code to check them.

*hint: ints are 2 bytes long and http:/en.wikipedia.org/wiki/Two%27s_complement

http://en.wikipedia.org/wiki/Two%27s_complement

