
Microcontroller Lab 1 (class 10)

Please bring your Arduino, USB cable and computer to class. You should have installed the
software and run at least the blinky example before class. If you haven’t please read this page
to get started.

Revisions:
05 April 2013 -- add lab section numbers

Reading

Pleaser read the following before class:

● Introduction to Microcontrollers -- Google document by E. Hazen
● On the Arduino Website:

○ Foundations -- Required (read each sub-section)
○ Examples -- Recommended. (feel free to try some!)

After the reading, you should know how to write a sketch (program) and download it into your
Arduino. You should understand the following terms:

sketch, digital input, digital output, analog input, analog output
variable, constant
function, operator
flash memory, RAM, EEPROM

Doing

Switches and LEDs

First we are going to warm up by connecting some switches and LEDs to your Arduino and
programming it to emulate various types of digital logic.

Wire 4 switches to digital pins on your Arduino
Wire 4 LEDs to (different) digital pins
Connect the common side of the switches to Ground
Connect the common side of the LEDs to Ground
Connect the Arduino GND to Ground

▢ Lab 1.1

http://arduino.cc/en/Guide/HomePage
https://docs.google.com/document/d/1-c0M6EwhrY5vrg6FGS7zwoZ01nApK6zbCjElP_gtrCE/edit?usp=sharing
http://arduino.cc/en/
http://arduino.cc/en/Tutorial/Foundations
http://arduino.cc/en/Tutorial/HomePage

Write a sketch which reads the switches and displays the value on the LEDs
You will need to enable the “pull-up” function as described in the reading.
Trouble? Make sure you use pinMode to set the LED pins as outputs.
Use digitalRead() on each switch and digitalWrite() on each LED.
Does a switch “on” result in a logic ‘1’ or logic ‘0’. Why?

▢ Lab 1.2
Write a sketch which performs the following logic functions on the switch inputs
and displays the result on the outputs. You need two switches and one LED for
each (if you like you can display all four functions at once). Show the results to
your lab partner and double-check the truth tables.

AND hint: C language “&”
OR hint: C language “|”
NOR
XOR hint: C language “^”

▢ Lab 1.3
Connect a push-button to a digital pin on your Arduino.
Write a sketch which counts inputs from the button in binary and displays the
count on the LEDs. Modify the sketch so that the switches set the maximum
count in binary, i.e. if you set the switches to “1010” (off-on-off-on) the counter will
wrap around at 10 (decimal).

▢ Lab 1.4
Modify your sketch to count seconds, starting and stopping when the button
is pressed. Display the seconds in binary on the LEDs.

Project - Digital Voltmeter

For your first “serious” project you are going to turn your Arduino into a digital voltmeter, which
displays an unknown voltage on a 3-digit display.

Display

First we need to figure out how to display information in a more convenient way than in binary
on the LEDs. You are going to wire up a four-digit display like the one shown below. See page
348 in your lab manual or the HP5082-7340 data sheet for wiring details.

http://edf.bu.edu/PY371/DataSheets/HP5082-7340.pdf

▢ Lab 1.5
Wire up one digit of the display. Connect four digital Arduino pins
to pins 8, 1, 2, 3 of the display. Connect GND to pin 6 and 5V (from the
breadboard) to pin 7. Tie pin 4 and 5 to GND.

Write a sketch which outputs various values to the four digital outputs.
Figure out how to display the values “0” through “9”. This can be done cleverly in
about 3 lines of C code.

Notice how the value displayed changes as soon as the output from the Arduino
is updated. For a multi-digit display, this would take a lot of wires (16, for four
digits). There is a better way called multiplexing.

▢ Lab 1.6
Disconnect pin 5 of your display from GND and wire to an Arduino digital pin.
This is the LE* (latch enable, active low) input. When it is at logic ‘0’, the display
track the inputs. When it is at logic ‘1’, the display is latched (frozen).
Modify your sketch so that it updates the display as follows:

Output desired binary value on pins 8, 1, 2, 3
Output a logic ‘0’ to pin 5
Output a logic ‘1’ to pin 5

Now the value is latched by the display.

▢ Lab 1.7
Add three more digits to your display. Wire them just like the first one, except
that the connections to pins 8, 1, 2, 3 should be shared by all the digits (parallel).
Each digit should have a separate connection from a digital pin to the LE* input.
Write a sketch which displays a four-digit number. This is a bit of tricky coding,
and you may need to ask for some help. That’s fine. Here are some hints:

■ Update one digit at a time
■ Use the “/” (division) and “%” (modulo) operators to get each digit’s value

▢ Lab 1.8

Make a simple stopwatch which counts in 10ms increments up to 99.99 seconds
(use the delay() function to delay 10ms). How fast can you start and stop the
watch?

▢ Lab 1.9
Connect a potentiometer to provide an adjustable DC voltage from 0 to 5V
and wire it to the A0 (analog input 0) pin of your Arduino.
Use the analogRead function to measure the voltage on the potentiometer, and
use the code you wrote above to display the value on the digital display.

▢ Lab 1.10
Modify your sketch to calibrate the display so it reads in volts,
i.e. from 0.000 to 5.000. Compare the results with a VOM. Is it accurate? If not,
how could you improve it?

You’re Done!

Here are some “extra credit” ideas in case you want to go further with this:

▢ Lab 1.11
Replace the potentiometer with a thermistor (temperature-sensitive resistor)
connected between GND and A0 on the Arduino. Connect a 10k resistor from A0
to +5V. Run your “voltmeter” sketch... you should see a voltage of about 2.5V for
a nominal 25 deg C lab temperature. The voltage should change if you warm up
the thermistor by putting your finger on it.

Now let’s make a calibrated thermometer.

The thermistors in your kit are type NTCLE100E3103JB0 (link to datasheet).
This data sheet will tell you how to convert the ADC value to degrees. First, look
at page 2. Note that the part number NTCLE100E3103... corresponds to the line
in the table below starting with “10 000”, which is the resistance of the thermistor
at 25 degrees C.

http://edf.bu.edu/PY371/DataSheets/ntcle100.pdf

Also note the value “K” which is 3977. Now look at page 4. Our thermistor
corresponds to line 9 in the table (K=3977). From this you can read the
constants A-D and A 1-D1 which are used in formula (2) on page 4 to convert from
resistance to degrees C.

Modify your sketch to use formula (2) and the constants from the table to convert
to degrees C. If you store any intermediate values in variables (recommended!),
use the “float” data type since the values are floating point.

