PY371 eLab Final Project Proposal:
Moon Phase “Projector” /Diagram

Khloe "Keke” Katende*
Boston University Physics Department,
8 Cummington Mall, Boston, MA 02215
(Dated: May 1, 2021)

Usage: Visual translation of moon phases.

Structure: I am planning to program and build circuit that determines from an PNG image the phase that the
moon is in by detecting the how many pixels are lit up. For my output, I will have an arrangement of LEDs
(Light-Emitting Diodes) that “translate” the image unto itself.

I. NECESSARY EQUIPMENT:

1x Arduino UNO - For programming the LED.
2x Breadboard — For wiring purposes.
1x circular LED matrix — For ”visual translation”.

1x Raspberry Pi - For communicating and program-
ming the Arduino UNO.

A. Implementation:

At its simplest, this project should function in such a
way that:

1. Process:

1. A PNG file will be uploaded to the Raspberry Pi,
which will translate it to an achromatic array of pixels
(i.e. a bitmap of a black and white image) the Arduino
UNO can process.

2. The Arduino UNO will take the bitmap and run
a separate code that tells the LED matrix how to light
up. On a simpler vesrion with only 8 LEDs, only one will
light up per moon phase.

a. FExtra: If I am able to and I have the time, I will
first try to vary the luminosity for the in-between phases
of the moon (e.x. if it is not quite a full moon, but more
than a waxing gibbous moon, the luminosity on the full
moon light will be lower than average).

2. Timeline:

1. Week 0: Figure out how many photoresistors I will
need, and contact my Python professor on ideas he would
have to write code to process images/the amount of light
in them.

* kkmen@bu.edu

2. Week 1: Start building the code. Begin program-
ming the Raspberry Pi.

3. Week 2: Start building the circuit proper. Fin-
ish programming Raspberry Pi, and begin programming
Arduino UNO.

4. Week 3: Finish preliminary circuit and make sure
it is functional; troubleshoot if need be.

5. Week 4: Refining.

II. FIGURES, DIAGRAMS, AND CODE:

A. Figures and Diagrams:

Ds1

FIG. 1. Schematic drawing: Photo input — ”Processed” by
Raspberry Pi — LED display lights up as assigned by code

INPUT: OUTPUT:
PNG Photo LED Matrix

Raspberry Pi Arduino to
to Arduino LED Matrix

‘:‘z;‘lg Original LED
g Display Code

L —

Python
Imaging
Library

—

Data sent to Arduino

FIG. 2. Block diagram

B. Code Snippets:

F
P

H o O O OH HH

PY371: Electronic Lab for Students

inal Project: Moon Diagram
art I: Raspberry Pi - Python 3

from hmcpng import *
import serial

arduino = serial.Serial(port=’COM4’,

baudrate=115200, timeout=.1)

code provided by Prof. Sullivan for CS111

def

def

def

brightness(pixel):

""" takes a pixel (an [R, G, B] list) and
returns a value between O and 255 that
represents the brightness of that pixel.

nnn

red = pixel[0]

green = pixel[1]

blue = pixel[2]

return (21*red + 72*green + 7xblue) // 100

bw(pixels, threshold):

""" Takes the 2-D list pixels containing pixels
for an image, and that creates and returns
a new 2-D list of pixels for an image that
is a black-and-white version of the
original image.

inputs: an integer threshold between 0 and 255
that should govern which pixels are turned
white and which are turned black.

nnn

bwimg = blank_image(len(pixels),len(pixels[0]))

for r in range(len(pixels)):
for c in range(len(pixels[0])):
if brightness(pixels([r][c]) > threshold:
bwimg[r] [c] = [255,255,255]
else:
bwimg[r] [c] = [0,0,0]

return bwimg
LEDdisplay(pixels):

""" Creates a new image from the original,
changing color values from color to black

and white based on brightness, then
converts it into a byte array for

processing by an Arduino UNO.
nnn

ser=serial.Serial("/dev/ttyACMO",9600)

ser .baudrate=9600

pixels = bw(pixels, min(brightness(pixel)))
img = pixels.tobitmap()

return img

//

// PY371: Electronic Lab for Students
//

// Final Project: Moon Diagram

// Part II: Arduino UNO - C for Arduino
//

const unsigned char PROGMEM img2[] =

{

img2 = Serial.readBytes(256, img2, 256)
};

void drawBitmap(int x, int y, int sx, int sy,
unsigned int *data)
{
int tc = 0
for(int Y
{
for(int X = 0; X < sx; X++)
{
display.drawPixel (X+x, Y+y,
pgm_read_word(&dataltc]));
if(tc < (sx*sy)) tct+;
}
}
}

0; Y < sy; Y++)

void setup() {
// put your setup code here, to run once:
Serial.begin(9600) ;
pinMode (

}

void loop() {
// put your main code here, to run repeatedly:
while (!Serial);
Serial.println("0K");
matrix.begin();
matrix.drawBitmap(0, O, img2, 256, 256, OxFFFF);

