
Effects Joystick for LoFi Guitar

George Willingham
Boston University

Using an Arduino Uno for quality audio processing presents several immediate challenges: the
analog inputs have only 10-bit ADC, there is only 2kB of SRAM for processing, and there is no
onboard DAC for the output. Despite these limitations, people have succeeded in making decent
sounding guitar pedals, amps, etc which do all their signal processing on an Arduino Uno. For my
project, I plan to make an Arduino-based guitar effects module which will be controllable with a
joystick.

PROJECT OVERVIEW

Before going into the details of the design, here is an
overview of the project. The block diagram in Figure 1
depicts three stages of signal flow (including the joystick
in the second stage). Each of the three stages can be
broken down as follows.

Input Stage: The preamp block is the input stage
which serves the purpose of preparing the signal induced
on the guitar’s pickups for the Arduino. The signal
must be biased to center it between the rails of the
Arduino and to take full advantage of the dynamic range
available, a preamp step is needed. Filtering out high
frequencies in this stage will also help prevent aliasing
effects in the subsequent A/D conversion.

Processing Stage: After the input stage, the sig-
nal will pass through the Arduino’s ADC and will be
processed. I will write a C program for the Arduino
which will modulate that signal based on an additional
input from the joystick. Once modulated, the result will
be output from the Arduino to an external DAC.

Output Stage: The output from the Arduino
will be sent via SPI protocol to an external DAC. At
the output of the DAC, I will use a low-pass filter to
smoothen the signal and a blocking capacitor to remove
a dc offset before finally sending it to a separate power
amplifier and loudspeakers.

FIG. 1. Project Block Diagram

I. INPUT STAGE

To prepare the guitar’s signal for the Arduino, the in-
put stage circuit must perform three tasks: filtering, bi-
asing, and preamplification. The filtering is for cutting
high frequencies to prevent aliasing in the subsequent
A/D conversion. The biasing is for centering the sig-
nal between the +5V and 0V rails of the Arduino. The
preamplification is for boosting the signal to swing across
the entire 5V dynamic range. The circuit designed for
these purposes is shown in Figure 2. It can be broken
into 3 parts:

1. Biasing Network

The biasing is taken care of with the voltage divider
formed by R1 and R2. These resistors are set equal to
center the signal at +2.5V. The capacitor C1 blocks any
dc signal and more generally forms a high-pass filter with
R2.

2. Tunable-Gain Amplifier

The biased signal is then fed to the non-inverting
input of an op-amp for the preamplification step. A
non-inverting configuration is chosen for its higher in-
put impedance. To ensure that the dc bias is preserved
across the op-amp, a capacitor (C2) is placed between
the feedback path and ground, thus ensuring a dc gain
of unity. To provide some manual control of the preamp
gain, a rheostat (R5) is also included in the gain circuit.

3. Low-pass Filter

Finally, the biased and amplified signal is passed
through a simple RC low-pass filter formed by R6 and
C3. This cuts high frequencies and helps reduce aliasing
effects in the subsequent A/D conversion.



2

FIG. 2. Input Stage

TABLE I. Input Stage Component Values

Resistors (Ω) Capacitors (F) Op-Amp

R1 100k C1 1µ LM358
R2 100k C2 1µ
R3 100k C3 6.8n
R4 10k
R5 100k
R6 1k

Since this is for an audio application, the frequency
range of interest is 20Hz - 20kHz. With this in mind,
the resistor/capacitor values should be chosen with the
following design considerations:

• To act as an anti-aliasing filter, frequencies higher
than 20kHz should be filtered out

• With my typical guitar signal at 1Vpp, frequen-
cies in the audible range should have a flat gain of
around 5. The variability of that gain as controlled
by the pot should be limited to similarly reasonable
values (say 1 to 10)

The values chosen are shown in Table I. A listening
test confirmed that the output sounds loyal to original
guitar signal.

II. PROCESSING STAGE

After the input stage, the signal will be input to the
Arduino through one of its analog input pins. The signal
is then sampled and quantized by a 10-bit ADC onboard
the Arduino before going on to be modulated. After the
modulation, the signal will be output to a DAC via SPI
protocol.

A. Audio with Timer Interrupts

In digital audio, it is standard to sample at 44.1kHz
and with 16-bit resolution. This is a tall order for the
Arduino, but it is possible to get reasonably close. The
microcontroller onboard the Arduino is an ATmega328P
which has a system clock with fclksys = 16MHz. On that
chip there are also three timers; one of which is 16-bit
(Timer1). The idea is to use this timer to trigger an
interrupt every time it reaches its TOP value. Then in
the interrupt routine, a sample is taken from the ADC,
modulated, and sent to the DAC. The full process is il-
lustrated in Figure 3.

To get a decent sound, the timer and the ADC have
to be sufficiently fast. The Timer1 frequency ftimer is
determined by a programmable prescalar which divides
the system clock. Since the interrupt frequency (i.e.
sampling/output frequency) is related to the timer’s fre-

quency and TOP value through fsample = ftimer

TOP+1 , we can
write

fsample =
fclksys

prescalar × (TOP + 1)

By default the prescalar is set to 64 and the TOP value
is 28−1 which gives an fsample of about 1kHz. Changing
the prescalar and TOP value, this can be bumped up to
fsample = 31.25kHz. It could be higher, but there will
need to be enough time to modulate each sample before
getting a new one. The modulation code must be kept
short and sweet!

FIG. 3. Interrupt-Based Audio Processing



3

With each timer interrupt requesting a sample, the
ADC needs to be able to meet that demand. The ADC on
the ATmega328P has its own clock which has a frequency
determined by a prescalar just like the timer. From the
datasheet, one ADC conversion takes 13 clock cycles. As
a consequence, the ADC cannot take samples any faster
than

max ADC sampling freq. =
fclksys

13 × prescalarADC

By default, the prescalar is set to 128 which leaves a
maximum sampling frequency of around 9.6kHz — too
small for good audio! But that value can be changed.
With prescalar=32, the maximum sampling frequency is
38.5kHz which would work, but since the joystick also
needs to be sampled, it will be preferable to push the limit
and set prescalar=16 which gives a maximum sampling
frequency of 77kHz. This is elaborated on in the next
section.

B. The Joystick: Multiplexed Analog Inputs

A challenge in this project is figuring out how to in-
corporate the joystick input into the timer interrupt al-
gorithm just described. The output of the joystick must
go into an analog input pin of the Arduino just like the
guitar signal. But as can be seen in Figure 4, all of the
analog inputs are sent to a single multiplexer which feeds
the ADC. So the multiplexer must constantly switch be-
tween these inputs to read them and as a consequence,
time that would ideally be spent handling audio will have
to be sacrificed to sample the joystick.

With the consistent timer interrupts, it seems like the
best solution is to sample both the audio and the joystick
every interrupt. This way the audio sampling frequency
remains 31.25kHz.

FIG. 4. ATmega328P ADC block diagram

III. OUTPUT STAGE

With the digital signal being output from the Arduino,
it can now be sent to the external DAC (MCP4921) for
conversion. As described, this is done through SPI pro-
tocol. All that remains is to put one last low-pass filter
to smooth out the signal and put a blocking capacitor to
remove the dc bias. The output stage circuit is shown in
Figure 5 and its component values are shown in Table II.

FIG. 5. Output Stage

TABLE II. Output Stage Component Values

Resistors (Ω) Capacitors (F) DAC

R7 1k C4 6.8n MCP4921
C5 4.7µ



4

TABLE III. Complete Parts List

Resistors (Ω) Capacitors (F) Op Amp DAC Connectors Microcontroller Other

R1 100k C1 1µ LM358 MCP4921 2× 1/4” audio jacks (female) Arduino Uno Joystick Module
R2 100k C2 1µ
R3 100k C3 6.8n
R4 10k C4 6.8n

R5 (pot) 100k C5 4.7µ
R6 1k
R7 1k

TABLE IV. Implementation Plan

Week Plan

4/4 - 4/10 Build input stage prototype and test/troubleshoot. Also focus on how
viable the overall software structure is. Get working output to DAC at
desired frequency using just a test signal. Switch to dual PWM output
if need be.

4/11 - 4/17 Write code for ADC sampling. Connect input stage and joystick to
Arduino and begin testing guitar input.

4/18 - 4/24 Write code for modulation. General testing/troubleshooting

4/25 - 5/1 Finishing touches. Solder everything together if possible.

• Creative Technologies — Arduino Guitar Amp

• Electrosmash — pedalSHIELD UNO Arduino Gui-
tar Pedal

• ATmega328P datasheet

• Open Music Labs — ATmega ADC

• Instructables — Arduino Audio Input

• Instructables — Arduino Audio Output

• QEEWiki — Analog Inputs (Analog to Digital
Converter)

• QEEWiki — Timers on the ATmega 168/328

• AVR — ATmega Interrupts

• Oscar Liang — Arduino Timer and Interrupt Tu-
torial

• Glenn Sweeney Tutorials — Interrupt Driven Ana-
log Conversion with ATmega328P

https://www.creative-technologies.de/arduino-guitar-amp/
https://www.electrosmash.com/pedalshield-uno
https://www.electrosmash.com/pedalshield-uno
http://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061A.pdf
http://www.openmusiclabs.com/learning/digital/atmega-adc/index.html
https://www.instructables.com/Arduino-Audio-Input/
https://www.instructables.com/Arduino-Audio-Output/
https://sites.google.com/site/qeewiki/books/avr-guide/analog-input
https://sites.google.com/site/qeewiki/books/avr-guide/analog-input
https://sites.google.com/site/qeewiki/books/avr-guide/timers-on-the-atmega328
http://web.csulb.edu/~hill/ee346/Lectures/10%20ATmega32U4%20Interrupts.pdf
https://oscarliang.com/arduino-timer-and-interrupt-tutorial/
https://oscarliang.com/arduino-timer-and-interrupt-tutorial/
http://www.glennsweeney.com/tutorials/interrupt-driven-analog-conversion-with-an-atmega328p
http://www.glennsweeney.com/tutorials/interrupt-driven-analog-conversion-with-an-atmega328p

	Effects Joystick for LoFi Guitar
	Abstract
	Project Overview
	Input Stage
	Biasing Network
	Tunable-Gain Amplifier
	Low-pass Filter


	Processing Stage
	Audio with Timer Interrupts
	The Joystick: Multiplexed Analog Inputs

	Output Stage
	References


