

High-Temperature Superconductors

Xiangyi Meng, Aravinth Raveendran

Department of Physics, Boston University

- 1. Introduction
- 2. Theory of superconductivity
- 3. Electrical resistance
- 4. Meissner effect
- 5. Summary

Superconductivity is a phenomenon of (a) exactly zero electrical resistance and (b) expulsion of magnetic flux fields occurring in certain materials, called superconductors, when cooled below a characteristic critical temperature T_c .

Theory of superconductivity Continuous phase transition

Superconducting phenomenon is a **continuous phase transition**.

Bardeen–Cooper–Schrieffer (BCS) theory

- The "attractive" interaction between electrons allows the formation of "Cooper pairs" Ι. which do not follow the Pauli exclusion principle.
- **II**. The superconducting system is equivalent to an XY-lattice model. The dimension of order parameter is 2 (the amplitude & phase of wave function).

Classification

- Type-I (e.g., mercury): the "attractive" interaction is s-wave and is symmetric. Ι.
- Type-II (e.g., bismuth strontium calcium copper oxide (BSCCO)): high-temperature, II. d-wave, penetration of magnetic field.

Characterization

Conductor vs. Semiconductor vs. Superconductor

Electrical resistance

The critical temperature of the BSCCO sample is $T_c \approx 103$ K, with a transition width of 6 K.

Scaling behavior

Given $\varepsilon = (T - T_c)/T_c$, we know that the correlation length and the correlation time should scale as

 $\xi \sim \varepsilon^{-\nu}$, $\tau \sim \xi^{z} \sim \varepsilon^{-z\nu}$.

The London's equation and Maxwell's equation suggest

 $B \sim \xi^{-2}, E/\xi \sim B/\tau.$

So, the voltage V (or electric field E) scales like

 $E \sim \varepsilon^{\nu(1+z)}$.

Electrical resistance

Zoom-in of the critical transition region.

We find the slope $v(1 + z) \approx 0.9$. (Mean-field theory predicts v = 0.5 and z = 2.)

Meissner effect

Meissner effect

Method of mirror images

The length dimension of $F_{dipole-dipole}$ must be $[L^{-2}]$.

So, $F_{\rm dipole-dipole} \propto m^2/d^4$, with dipole moment m.

We find $F_{\text{dipole-dipole}} \propto d^{-\gamma}$, where $\gamma = 3.09 \pm 0.39$ is smaller than what we expected.

Systematic error:

□ (Electrical resistance) Impurity of the sample lowers the critical temperature.

□ (Meissner effect) The superconducting surface is not infinitely large.

□ (Meissner effect) The scale is made of "iron".

The next group could work on...

□ Characteristics of yttrium barium copper oxide (YBCO) material.

□ Measurement of critical magnetic field.

References

- 1. Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of Superconductivity. Phys. Rev. 108, 1175–1204 (1957).
- 2. Strachan, D. R., Sullivan, M. C. & Lobb, C. J. Probing the limits of superconductivity. in (eds. Bozovic, I. & Pavuna, D.) **4811,** 65 (2002).
- Koch, R. H. *et al.* Experimental evidence for vortex-glass superconductivity in Y-Ba-Cu-O.
 Phys. Rev. Lett. 63, 1511–1514 (1989).