

Hanbury-Brown-Twiss (HBT) Effect: Correlation Between Photons in Two Coherent Beams of Light

Jingjie Zheng Deepak Sathyan

Advanced Lab Seminar Series October 30, 2017

- 1. Background on HBT interferometer
- 2. Experimental setup
- 3. Results
- 4. Suggestions for successors

Background

HBT interferometer

- Correlation of two photomultiplier tube (PMT) signals
- PMT displacement, x

4

Waveforms

Photon

Nuclear Instrumentation Methods (NIM)

Unterminated Cable

Results

Need improvements

Suggestions

- 1. Focused light
- 2. PMT aperture
- 3. PMT-T on slider
- 4. Correlator
- 5. Results interpretation
- 6. Half-silvered mirror

BOSTON UNIVERSITY

Thank you!

Acknowledgement

I express sincere appreciation to **Deepak Sathyan**, my collaborator, for contributing a great amount of efforts and talents in this experiment. I also express sincere appreciation to **Daniel Arcaro**, to **Lawrence R. Sulak**, and to **Yaokun Situ** of Boston University for sharing their valuable experience and guidance in setting up this experiment. We also thank **Steve Ahlen**, also of Boston University, for providing notes on theoretical background for this experiment.

Extra Slides

Background

Significance of HBT effect

- Measured angular diameter of a star.
- Showed that it applies not only to radio waves but also to lights in **optical range**.
- Provoked a heated debate about the concept of photon.
- Solved by Glauber (recipient of 2005 Nobel Prize) through the theoretical development of coherent states (Glauber states).
- Opened the door to quantum optics and a much more comprehensive understanding of coherence.

Details of the original HBT interferometer

BOSTON UNIVERSITY

Theory

For a two-point light source, the correlation between the intensity of signals at a and b is:

$$\frac{\langle I_a I_b \rangle}{\langle I_a \rangle \langle I_a \rangle} = 1 + \frac{2 A_1^2 A_2^2}{(A_1^2 + A_2^2)^2} \cos((\vec{k}_1 - \vec{k}_2) \cdot (\vec{r}_a - \vec{r}_b))$$

$$\vec{k}_1 \qquad \qquad \vec{k}_1 \qquad \qquad \vec{k}_1 \qquad \qquad \vec{r}_a \quad \vec{k}_a$$

 $\vec{k}_{2} \longrightarrow \vec{k}_{2} \qquad \vec{r}_{b} \longrightarrow \vec{k}_{b}$

where \vec{k}_1 and \vec{k}_2 are wave number of the incident light, and A_1 and A_2 are amplitudes. For a circular light source, the correlation between the intensity of signals at a and b is:

where k is the wave number of the incident light, and $J_1(y)$ is the first order Bessel function.

Experimental Setup (Detailed)

Light source information

Performance Data		
Lamp Output	Up to 3000 Lumens at fiber optic insertion plane	
Electrical Data		
Input Voltage	115V AC 50/60 Hz, 230V AC 50/60Hz	

Wavelength (nm)

Parameter		Description / Value	Unit
Spectral response		300 to 650	nm
Wavelength of maximum response		420	nm
Photocathode	Material	Bialkali	
	Minimum effective area	<i>\phi</i> 46	mm
Window material		Borosilicate glass	
Dynode	Structure	Linear focused	
	Number of stages	12	
Operating ambient temperature		-30 to +50	O°
Storage temperature		-30 to +50	O°
Base		21-pin glass base	
Suitable socket		E678-21C (supplied)	

PMT spectral response and gain

Figure 1: Typical spectral response

Figure 2: Typical gain characteristics

Length:

- Radius of light source aperture, $R = 100 \,\mu m$
- Wavelength of light color filter, $\lambda = 2\pi/k = 546$ nm
- Distance between light source and PMT, $L = 575.5 \pm 0.5$ mm
- Central position of PMT-R, $x_0 = 1.00 \pm 0.01$ inch
- Diameter of PMT aperture, $l = 6.57 \pm 0.05$ mm

Voltage:

• Voltage of High Voltage (HV) Supply, V = -2.7 kV

Expected Value

Data and analysis

Visterec	Cants		
(inch)	TR	AND	OR
1.100 +200	1671733 3934434	63234	5538678
n'weird	numbers		3320020
ISack	frind Ketc:		
1.100 - 200	3317 2024	0	C2
			5541
With UVI	Lemp:		
1.200	908317 1805083	155 50	
1.300	914578 1357685	15854	2696532
1.100	935989 9208014	11737	7259798
1.000	933040 1600122	20142	3122606
0.900	942745 957550	14319	2517421
1.050	943141 2015215	8805	1000000
1.150	937653 2111200	18147	20201989
1.175	917048 1929200	19462	27 39142
1.225	926571 1170112	17613	5059049
1.075 8	390033 1619489	14872	2877038
1.025	923431 2007124	172,2	2590231
	1786168	16120	2878883
		2128	2692460
			100

Data and Analysis

Data and analysis

22

References

- I. L. Silva, <u>http://quantum-history.mpiwg-berlin.mpg.de/news/workshops/hq3/hq3_talks/23_silva.pdf</u>.
- R. Hanbury Brown, and R. Q. Twiss, Phil. Mag. 45, 663 (1954).
- R. Hanbury Brown, R. C. Jennison, and M. K. Das Gupta, Nature (London) 170, 1061 (1952).
- R. C. Jennison, and M. K. Das Gupta, Phil. Mag. (in the press).
- R. Hanbury Brown, and R. Q. Twiss, Nature (London) 177, 27 (1956).
- See product specifications at https://www.dolan-jenner.com/hubfs/products/illuminators/mh-100-data-sheet.pdf.
- See product specifications at <u>https://www.dolan-jenner.com/hubfs/products/glass-fiber-optics/flexible-glass/single-fiber-optic-cables-data-sheet.pdf</u>.
- See operation manual at https://www.hamamatsu.com/resources/pdf/etd/R329-02_TPMH1254E.pdf.
- Image downloaded from https://en.wikipedia.org/wiki/Interferometry.