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The Precision Path to the Summit
– search for electric dipole moments
– charged lepton flavor violation 

• (e.g. μ→eγ,  μ N → eN) 
– muon (g-2)

– double β decay with no ν
– Møller scattering
– neutron β decay
– muon decay
– rare kaon decays
– dark matter searches



Charged Lepton Flavor Violation
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Generations of leptons
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CLFV in the muon sector

SM

BSM

e

Presenter
Presentation Notes
Sensitive to intermediate particles at 1000’s of TeV.
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What is μe Conversion?

• Example of charged Lepton Flavor 
Violation (CLFV)

• Related Processes: 
– μ eγ, τ eγ, τ μγ, μ e+e-e , τ e+e-e , τ 

μ+μ−μ

A muon converts to an electron in the field of a nucleus, 
with no neutrinos produced. The nucleus needs to be 
there to conserve energy and momentum!

Jim Miller,  Neppsr – 14 August 2009 

( , ) ( , )A Z N e A Z Nμ − −+ → +



Muon to Electron Conversion

17  6x10  (90% c.l.)New Mu2e proposal at FNAL
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The Measurement Method in a Nutshell
• Stop negative muons in an aluminum target
• The stopped muons form muonic atoms

– hydrogenic 1S level in aluminum nucleus
– Bohr radius ~20 fm, Binding E~500 keV

– Nuclear radius ~ 4 fm
muon and nuclear wavefunctions overlap

– Muon lifetime in 1S orbit of aluminum ~864 ns compared to 2.2 μsec in vacuum
40% decay, 
60% nuclear capture, 
(capture is ~ sum of reactions over protons in  nucleus)

• Look for a monoenenergetic electron from the neutrinoless conversion of a 
muon to an electron, leaving the nucleus in the ground state:

• Measured quantity: the ratio Rμe:

27 27
13 13          Electron energy~105 MeVAl Al eμ − −+ → +

27 27
13 13
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Production

Solenoid

Transport

Solenoid

Detector

Solenoid

Proton

Target

Target

Shielding

Muon Beam

Collimators

Tracker

Calorimeter

Pions Electrons
Muons

Muon 

Stopping Target

Proposed Mu2e Muon Beamline

Muons are collected, transported, and

detected in superconducting solenoidal magnets

Delivers 0.0025 stopped

muons per 8 GeV proton

Proton Beam
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Production Solenoid

p

Magnetic

Mirror Effect

μ
π

π decays to μ
μ is captured into the 
transport solenoid and 
proceeds to the 
stopping target

8GeV Incident Proton Flux

3×107 p/pulse (34ns width)

Primary π
production

off gold target π

¹
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Motion in a Solenoid with a Gradient Field
• In a magnetic field, low momentum charged particles tend to follow 

helical paths along the field lines.
• The magnetic moment of the particle associated with the helical motion is 

approximately constant. For a relativistic particle, pt
2/B=constant, 

– pl is continuously increasing in the direction of decreasing field
– Particle pitch increases when spiraling to lower field: pt decreases 

and pl increases.
– Particle pitch decreases when spiraling to higher field: pt increases 

and |pl| decreases.
– Particles are ‘pushed’ in the direction of lower field

2 2
0 0 0 0  p   ,      t t t l tB p p B B p p p B B∝ = =→ −→

pt

Br
(Bz points out of page. 
Field decreases moving 
out of page,  Gz <0.  )

Note that net

points downstream

regardless of q (if q flips

sign, pt reverses direction)

t rq xp B
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• If a particle spirals in the direction of higher field, 
pt increases and |pl| decreases:

•

Magnetic Mirror

, 0t lp p p→ →

•For a particle born in the middle of the PS, where B~3.5 T, the 
maximum pitch which can be reflected in the maximum 5T fIf the 
field becomes large enough,                                        

and the particle is reflected, spiraling back toward lower field

min 0 0 max

0

sin / 3.5 5 0.84

123  Increases downstream flux of muons
tp p B Bθ

θ

≡ = ≈ =

→ < →

If a particle is born near the target where B~3.5 T, 
then the maximum q (corresponding to minimum 
pitch) at the downstream end of the PS, where B=2.5 
T, will be about 600.
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Goals:

—Transport low energy 

μ− to the detector solenoid 

—Minimize transport of positive 
particles and high energy 
particles

—Minimize transport of neutral 
particles 

—Absorb anti‐protons in a thin 
window

—Minimize particles with long 
transit time trajectories

Transport Solenoid

B=2.5T

B=2.0 T

Curved sections eliminate line of 
sight transport of n, γ.

Radial gradients (dBs/dR) in toroidal 
sections cause particles to drift 
vertically; off‐center collimator 
signs and momentum selects 
beam

dB/dS < 0 in straight sections to 
avoid slow transiting particles

Collimation designed to greatly 
suppress transport of e− greater 
than 100 MeV

Length decreases flux, by decay, of 
pions arriving at stopping target in 
measurement period

Inner bore radius=25 cm

Length=13.11 m

Toroid bend radius=2.9 m

B=2.4T

B=2.1T

B=2.4T

B=2.1 T

Beam particles
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Vertical Drift Motion in a Toroid

Define

1
  ( )

0.3
1 .
2

lp
p

q s
D p

B R

α

α
α

= =

= × +
×

× ×

Toroidal Field: Axial field Bs=constant x 1/r. This gives a large dBs/dr

Particle spiral drifts vertically (perpendicular to the plane of the toroid bend):
R=major toroid radius=2.9 m,

s/R = total toroid bend angle=900

D[m]=distance, B[T], p[GeV/c]

lp

B

R

D= vertical drift 
distance

pl=longitudinal 
momentum

pt=transverse 
momentum

Toroid B field line
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Separation of μ− from μ+
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μ+
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• Conversion electrons of interest: [μ− + Αl(13,27)]bound −> Αl(13,27) + e− (105 ΜeV)
• Electrons from decay of bound muons (DIO) -- kinematic endpoint equals conversion 

electron energy:

Backgrounds from Stopped Muons: Muon Decay in 
Atomic Orbit (DIO)

FWHM∼0.9 MeV,

σ ∼ 0.3 MeV on 

high side tail

1[ ( , )] ( , )S
bound eA N Z A N Z e μμ ν ν− −+ → + + +

Decay in Orbit electrons

Simulation

(Assume Rμe~10-16)

μ− e-

5( )endptprob E E∝ −
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The Detector

• The detector is specifically designed to look for the 
helical trajectories of 105 MeV electrons

• Each component is optimized to resolve signal from  
the Decay in Orbit Backgrounds



Mu2e Schedule at FNAL
• Has Stage I approval at FNAL and strong endorsement of P5 

Committee
• CD0- imminent
• CD1- next year- preliminary design and alternative 

technologies
• CD2- following year- money arrives for construction
• Construction until 2016 then data-taking
• Goals: 

• Factor of x10000 better than previous experiments
• Energy scales in the thousands of TeV for some processes
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Presently active: μ + → e+ γ (MEG @ PSI)

• First running is going on now
– goal < 10-13
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Electric Dipole Moment: 
P T    

If CPT is valid, an EDM would imply non-standard model 
CP.   Of course, we need new sources of CP to explain 
why we’re here.

Transformation 
Properties



Sakharov conditions for baryogenesis:

1. Baryon number violation 
2. C and CP violation 
3. Departure from thermal equilibrium 
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Basics of spinning particles in B and E Fields
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E μ μ= − −B Ei i
The energy of interaction is

+Q

-Q

Ε

=τ μ × B τ = d × E

Ν=+Qm

S=−Qm

Β

For each case: 

• In a uniform field, the net force is zero

• The torque tends to align the moment with the field.

• With an angular momentum directed along the moment, spin 
precesses like a top with precession vector directed along the field.

dμ
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The present EDM limits on fundamental particles are 
orders of magnitude from the standard-model value

Particle Present EDM limit
(e-cm)

SM value
(e-cm)

References: n PRL 97, 131801 (2006)

p, 199Hg   PRL 102, 101601 (2009)

e- PRL 88, 071805 (2002)

μ arXiv:0811.1207v2 [hep-ex]
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• The discovery of an EDM would (finally) provide evidence for non-standard 
model CP violation and would point toward new physics.

• Experiments proposed or underway:
– n EDM (Oak Ridge, Grenoble (2), PSI)
– p EDM d EDM (Brookhaven)
– e EDM  Imperial College, Yale, Harvard, Colorado, Amherst, Penn State, 

Texas, Osaka,  Indiana, …
• I will focus on the proposed n EDM experiment at SNS, Oak Ridge
• How do we hold the neutrons in one place to make the 

measurement?

EDM Experiments
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Principle of the “traditional” EDM measurements

B0 EB0 B0 E

Animation by J. Karamath

E=100kV/m

Presenter
Presentation Notes
Need to keep B very steady!
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New Result! 199Hg - PRL 102, 101601 (2009)



Neutron EDM Experiment at Oak Ridge
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ULTRACOLD NEUTRONS
Ultracold neutrons (UCN) have a low enough energy to be
bottled.  Their wavelength is long enough to feel a generally
repulsive force (totally internally reflected) from certain
materials as described by their Fermi potential.  The minimum
wavelength is material dependent; e.g. a good one is 58Ni.

Properties:
UF ~ 200 neV v ~ 5 m/s λ ~ 500 Å
mg ~ 100 neV/m μ ~ 60 neV/T

UCN can be bottled by UCN can be polarized by
• materials • magnetic fields
• the gravitational potential • gradient magnetic fields
• a gradient magnetic field • 3He
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SUPERTHERMAL SOURCE OF UCNs
(Polarized) neutrons incident on superfluid 4He at 0.3 K

Up-scattering

suppressed
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3He MAGNETOMETRY

δν διπολε μομεντ   δ3 =0

Look for a difference in precession frequency ωn - ω3 ± ωd
dependent on E and corrected for temporal changes in ω3

Monitor average B field by measuring average 3He precession 
frequency with SQUIDs 3He is a co-magnetometer

+−

ΕΒ ΕΒ

σ = 1/2

n 3He
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3He-DOPANT AS AN ANALYZER
3He + n → t + p σ(parallel)  < 102 b

σ(opposite) ~ 104 b
UCN loss rate ~
1-p3•pn = 1-p3pn cos(γn-γ3)B0t
| γn-γ3| = | γn|/10

3He concentration must be adjusted to keep
the lifetime τ  reasonable for a given value
of the 3He polarization.

The proper value for the fractional
concentration x = Atoms-3He/Atoms-4He ~
10-10.
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3He AS A DETECTOR
3He + n → t + p

t + p share 764 keV of kinetic energy.  They scintillate while 
stopping in the 4He.  Light detected from the cell is a 
signature that the neutron had a polarization opposite to the 
3He. 
 
The emitted light (~3 photons/keV) is in the XUV ~ 80 nm. 
 
A wavelength shifter (TPB) is used to change it to the blue,
where it can be reflected and detected.  Getting the light out of
a cryogenic system is a challenge. 
 
The walls and the wavelength shifter must be made of
materials that do not absorb neutrons or depolarize 3He.  For
the neutrons, deuterated wavelength shifter and Ni will do; for
the 3He, ??? 
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HV

Experiment

Dilution

Refrigerator

He Purification

6 m
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nEDM Experiment at SNS (Oak Ridge)

Technical  issues are being studied

CD2 next year

Plan to start taking data 2016

Goal: improve on current neutron EDM limit from

~few x 10-26 e-cm to ~ few x 10-28 e-cm
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Muon Magnetic Moment: Muon g-2
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In the beginning there was Dirac

predicted electron magnetic moment

However,  experimentally g > 2;  need to add a Pauli term

where a is the anomaly, 

dimension 5 operator

(only from loops)
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In the QED, a becomes an expansion in (α/π) from loops

New Physics contribution to a at some scale Λ

where C could be

in weak coupling loop scenarios

or

For leptons, radiative corrections 
dominate the value of a ≃ 0.00116… 
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The SM Value for aμ from e+e- → hadrons (Updated 6/09)

# de Rafael, hep-ph arXiv:0809.3085 and Davier, et al.,hep-ph arXiv:0906.5443v1

well known significant work ongoing
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a(had) from hadronic  τ decay?

• Assume: CVC, no 2nd-class currents, isospin breaking 
corrections.   
– e+e- goes through neutral ρ 
– while τ-decay goes through charged ρ

• n.b. τ decay has no isoscalar piece, e+e- does
• There are inconsistencies in the comparison of e+e- and 

τ decay: 

Back
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e PRL 100, 120801 (2008) μ PRL, 92, 161802
(2004)

muon more sensitive to 
heavier physics by

and interpretation of the electron anomaly limited by precision of 
independent measurements of α, ~4.5 ppb.

PR D73, 072003 (2006)
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Ring relocation to Fermilab? Proposed at FNAL

• Heavy-lift helicopters bring coils to a barge
• Rest of magnet is a “kit” that can be trucked to and from the 

barge 
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Connection between MDM, EDM and the lepton 
flavor violating transition moment μ → e

SUSY           slepton mixing MDM, EDM



Philosophy of Muon g-2 Measurement
• Precess polarized muons in a very uniform magnetic field 

so that all muons precess at the same rate regardless of 
momentum; rate of precession of spin relative to 
momentum vector:

• Need to hold muons in a storage ring: add electric 
quadrupole field to focus beam of muons 

• Choose pμ=3.1 GeV/c so that

• Use correlation of electron spin direction in muon decays to 
determine the direction of the spin at time of decay.
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2

1[ ( ) )]
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Spin Motion: difference frequency between ωS and ωC

Count number of decay e- with Ee ≥ 1.8 GeV

0

μs

ee μμ ν ν− −→ + + Ee : 0-3.1 GeV
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Storage ring p, d, μ EDM Experiments (not at magic γ)

With ωa = 0, the EDM causes the spin to steadily 
precess out of the plane.

0

Use a radial E-field to turn off the ωa precession

ωη

“Frozen spin”
PRL 93 052001 (2004)

PSI, Ferminlab Project X, 
J-PARC, NuFact? 
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Parasitic Muon EDM Measurement using straw tube arrays

The EDM tips the precession plane, 
producing an up-down oscillation 
with time (out of phase with ωa)

Measure upward-going vs. 
downward-going decay electrons vs. 
time with straw tube arrays

E821 straw-tube array

arXiv:0811.1207v1

Back



Summary

Three examples of experiments which can see 
new physics at energy scales at least as large 
as the LHC:

• Neutron EDM experiments
• Muon g-2: ~1 TeV, specific tests of SUSY
• Muon to electron conversion: will also test CLFV 

in SUSY complementary to LHC. In NP 
scenarios can reach to 1000’s of TeV, way 
beyond any conceivable accelerator- also likely 
the most sensitive CLFV reaction because of 
experimental advantages

Jim Miller,  Neppsr – 14 August 2009 - p. 48/36
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muon (g-2) storage ring

Muon lifetime   tm =  64.4 
ms

(g-2) period                   ta = 4.37 ms

Cyclotron period t = 149 ns
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I wish to acknowledge up front that I have borrowed heavily 
from articles in the new World Scientific book 

http://www.worldscibooks.com/physics/7273.html

Especially the article by Andrzej Czarnecki and William J. Marciano:

http://www.worldscibooks.com/physics/7273.html
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In the beginning there was Dirac

predicted electron magnetic moment

However,  experimentally g > 2;  need to add a Pauli term

where a is the anomaly, 

dimension 5 operator

(only from loops)
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In the QED, a becomes an expansion in (α/π) from loops

New Physics contribution to a at some scale Λ

where C could be

in weak coupling loop scenarios

or

For leptons, radiative corrections 
dominate the value of a ≃ 0.00116… 
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What if we introduced the additional Pauli-like term

Parameterize the effect of new physics on a and d by:

where the EDM 
is defined as

Electric Dipole Moment, EDM
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Electromagnetic Form Factors:                                        
(q = momentum transfer, Q = charge)

(anapole moment which we ignore in this talk)
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Magnetic and Electric Dipole Interactions

• Muon Magnetic Dipole Moment aμ

• Muon EDM

chiral changing
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Transition Moments and Form Factors fi → fj

chiral-conserving, flavor-changing amplitudes at q2 ≠ 0

chiral-changing, flavor-changing amplitudes at q2 ≠ 0
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Magnetic Dipole 
Moments

Transition Dipole 
Moments
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e PRL 100, 120801 (2008) μ PRL, 92, 161802
(2004)

muon more sensitive to 
heavier physics by

and interpretation of the electron anomaly limited by precision of 
independent measurements of α, ~4.5 ppb.

PR D73, 072003 (2006)
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The SM Value for aμ from e+e- → hadrons (Updated 6/09)

# de Rafael, hep-ph arXiv:0809.3085 and Davier, et al.,hep-ph arXiv:0906.5443v1

well known significant work ongoing
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aμ is sensitive to a wide range of new physics, e.g.SUSY

difficult to measure at LHC

Related processes in SUSY
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Connection between MDM, EDM and the lepton 
flavor violating transition moment μ → e

SUSY           slepton mixing MDM, EDM
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• E821 at Brookhaven
– superferric storage ring, magic γ, <B>θ ± 1 ppm

• P989 at Fermilab
– move the storage ring to Fermilab, improved shimming, new 

detectors, DAQ, 
– new beam structure that takes advantage of the multiple 

rings available at Fermilab, more muons per hour, less per 
fill of the ring

The aμ Experiments:
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Spin Motion: difference frequency between ωS and ωC

Count number of decay e- with Ee ≥ 1.8 GeV

0

μs
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E821 achieved 0.54 ppm;  e+e- based theory 0.43 ppm 
Hint is 3.8σ (new data from BaBar in Aug, KLOE in ?)

S-M = de Rafael, 
arXiv:0809.3085
Davier, et al.,hep-ph 
arXiv:0906.5443v1
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Model

UED

The Snowmass Points and Slopes give benchmarks to test   
observables with model predictions

Future?

Present

Muon g-2 is a powerful discriminator ...
no matter where the final value lands!

SPS
Definitions
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Suppose the MSSM point SPS1a is realized and the 
paramaters are determined at LHC- sgn(Δ) gives sgn(μ)

LHC (Sfitter)

Old g-2 

New g-2 

2σ

1σ

• sgn (μ)  difficult to obtain from the collider
• tan β poorly determined by the collider

from D. 
Stöckinger
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Charged
Lepton 
Flavor (μ)
Violation

2-body final state

μ+ e-→μ -e+
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μe - conversion operators

have calculated the coherent μ-e conversion branching ratios in various 
nuclei for general LFV interactions to see:

(1) which nucleus is the most sensitive to mu-e conversion searches, 
(2) whether one can distinguish various theoretical models by the Z 

dependence.

Relevant quark level interactions

Dipole

Scalar

Vector

R.Kitano, M.Koike and Y.Okada. 2002

MEGA

Sindrum IIMEG

Mu2e

Mu2e Project-X

κ (non-dipole term)

(fig, from Andrew Norman)

Λ
(T

eV
)
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The μ2e Apparatus proposed for Fermilab 
(has stage 1 approval)

Straw Tracker

Crystal 
Calorimeter

Muon Stopping 
Target

Superconducting 
Production Solenoid          

(5.0 T – 2.5 T)
Superconducting 
Detector Solenoid     

(2.0 T – 1.0 T)

Superconducting 
Transport Solenoid              

(2.5 T – 2.1 T)

Collimators

p beam

Phase 1: 90% C.L. limit of Rμe< 6 x 10‐17

Phase 2: 90% C.L. limit of Rμe        ≲ 10‐18Proton
Target

Target
Shielding
(Copper)

Pions

Muons
Target

Shielding
(Tungsten)

Protons 
enter here

B=5T

B=2.5T
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COMET Proposal @ J-PARC                
μe conversion 90% CL Rμe < 10-16

curved detector to reduce low E
DIO background
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Electric Dipole Moment: 
The search for non-SM 
CP 

Phys. Rev. 78 (1950)

torque
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EDMs of Hadronic Systems, p, n, d, 199Hg
QCD vacuum state can be parameterized by:

P T
Physical quantity is  the sum of θ and the overall phase of the 
quark matrix,                                              which is constrained by 
the non-observation of a neutron EDM.

We have the form factors  F2n,p  (0) and F3n,p(0)  (the aMDM and EDM) 
which we can write as isovector and isoscalar contributions:

strong CP problem!
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Conclude isovector dominates aMDM, what about F3(0)?

• Lattice is better at determining the isovector part.
– both isoscalar and isovector EDMs are predicted by 

the various models (see Pospelov and Ritz in Ann. 
Phys, or Lepton Moments for a detailed discussion).

• Measuring both the proton and neutron EDM will 
constrain the models, and help understand new 
sources of CP.  
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10-28
Left -
Right MSSM 

φ ~ α/π

Multi 
Higgs

MSSM 

φ ~ 1

10-24

10-22

10-26

10-30

10-32

10-34

10-36

e EDM  (e.cm)

E. Hinds’ e-EDM 
experiment 

at Imperial College 
with YbF molecules

seems to be ahead in 
the race for de

Standard Model

de < 1.6 x 10-27 e.cm
Commins (2002)

Excluded region 
(Tl atomic beam)

with thanks to Ed Hinds

n

The SUSY CP 
problem!
The strong CP problem!

199Hg

μ
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Storage ring p, d, μ EDM Experiments (not at magic γ)

With ωa = 0, the EDM causes the spin to steadily 
precess out of the plane.

0

Use a radial E-field to turn off the ωa precession

ωη

“Frozen spin”
PRL 93 052001 (2004)

PSI, Ferminlab Project X, 
J-PARC, NuFact? 
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aμ implications for the muon EDM assuming same New 
Physics participates  (recall that (Δtoday=307(81) X10-11 )

Either dµ is of order 10–22 e cm, or the CP phase is strongly suppressed!

Assuming that
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• Exciting opportunities exist to explore the TeV scale and beyond with dipole 
moments.

• There appears to be a difference between aμ and the standard-model 
prediction at the ≃3.8 σ level. 
– if confirmed it would fit well with SUSY expectations

• The discovery of an EDM would (finally) provide evidence for non-standard 
model CP violation and would point toward new physics.

• The observation of charged lepton flavor violation would signal the 
discovery of new physics, and perhaps probe the PeV scale

• Experiments proposed or underway:
– n EDM (Oak Ridge, Grenoble (2), PSI)
– p EDM d EDM (Brookhaven)
– e EDM  Imperial College, Yale, Harvard, Colorado, Amherst, Penn State, 

Texas, Osaka,  Indiana, …
– μ LFV (PSI, Fermilab, J-PARC)
– μ g-2 (P989@Fermilab, J-PARC)
– μ EDM (suggestions at PSI, J-PARC and Fermilab)

Summary: A definitive signal for any of these processes 
would change our view of nature! 
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Possible topics for further discussion
• Theory

– Current / future status of (g-2) hadronic vacuum polarization 
– Current / future status (g-2) hadronic light-by-light 
– Use of initial state radiation to measure R(s)
– Use of τ-decay data for the hadronic contribution?
– What are the SPS points?
– CMSSM Constraints?
– Show us more about the Sfitter results w/wo g-2
– How general is the UED “small effect” prediction?

• Experiments
– What are the neutron EDM experiments?
– Muon EDM experiments
– What’s the status of the muon to electron conversion experiments?
– What is involved in moving the (g-2) storage ring to Fermilab?

D. Hertzog and L. Roberts – PAC Fermilab – March 6, 2009
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Analyticity and the optical theorem: Back

contribution
error2(from F. Jegerlehner)

• Future efforts will reduce errors
– Additional KLOE data (in hand, near term)
– CMD3 at VEPP2000, up to 2.0 GeV (next 5 years)
– perhaps Belle  
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|Fπ |2 from KLOE, CMD2 and SND agree well

weighted contribution

recall that:

Back
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Suppose the hadronic contribution 
increased to remove the difference?

• A similar dispersion integral enters elsewhere 

• Increasing σ (s) to remove the (g-2) difference 
lowers the Higgs mass limit PRD 78, 013009 (2008)

• This cross section is important for aμ and for any 
precision EW physics. 

• BaBar result soon. Future work continues in 
Frascati and Novosibirsk.  Belle is also 
beginning to explore this possibility. 

Back
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KLOE and BaBar use ISR (radiative return)

• KLOE
– sit on φ,  γ is soft and goes 

down the beam pipe
– in data published thus far, 

use theory to calculate mm 
cross section.

– have μ μ data being analyzed

• BaBar
– runs on the Υ 4s, the γ is 

hard, and is detected
– excellent particle ID with μ

– π separation
– measures R (s) directly

scan e+e- beam energy use ISR to lower collision energy

BINP

Always the issue of radiative corrections

KLOE

BaBar

Back



Jim Miller,  Neppsr – 14 August 2009 - p. 84/36- p. 84/68

a(had) from hadronic  τ decay?

• Assume: CVC, no 2nd-class currents, isospin breaking 
corrections.   
– e+e- goes through neutral ρ 
– while τ-decay goes through charged ρ

• n.b. τ decay has no isoscalar piece, e+e- does
• There are inconsistencies in the comparison of e+e- and 

τ decay: 

Back
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Testing CVC with one number (last year)

Infer τ branching fractions (more robust than spectral functions) from e+e– data:

Difference: BR[τ ] – BR[e+e – (CVC)]:

Mode Δ(τ – e+e –) `Sigma‘

τ – → π – π 0 ντ + 0.92 ± 0.21 4.5

τ – → π – 3π 0 ντ – 0.08 ± 0.11 0.7

τ – → 2π – π + π 0 ντ + 0.91 ± 0.25 3.6

ee data on π – π + π 0π 0 not satisfactory

from Michel Davier

Back



Jim Miller,  Neppsr – 14 August 2009 - p. 86/36

recent preprint, to be published in EPJ
M. Davier, et al., arXiv:0906.5443v1 [hep-ph]

Back
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Note, with Δaμ = 295 x 10-11 … If HLBL is the source 
of the difference with SM, it would need to increase by 
11 σ   ....   

arXiv:0901.0306v1

Dynamical models 
with QCD behavior

Back
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The π0 (Goldstone) contribution fixes sign of the 
contribution  From χpt and large Nc QCD

• The magnitude of the HLBL is about the same as the 
magnitude of the 3-loop HVP which can be calculated 
from the dispersion relation. 

• It’s hard to believe that the HLBL would be huge 
compared to the other 3-loop contributions.

Examples of other 3-loop hadronic contributions:

Back
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How general is the UED “tiny effects” prediction?

• UED models (1D) typically predict “tiny” effects
– Incompatible with a  Δaμ of ~ 300 x 10-11

The statement refers to the UED models originally proposed and 
studied by Appelquist, Cheng, and Dobrescu, and also by Rizzo in 
2000/2001.  The results for g-2 in the UED models with one extra 
dimension is (according to these references) below 50 x 10-11 as 
written in our proposal. 

While there might be modified UED models with larger contributions to g-2, 
this again demonstrates that g-2 is very powerful tool to discriminate 
between different new physics models.   (D. Stockinger)

Back



Sfitter LHC global fit
(Alexander, Kreiss, Lafaye, Plehn, Rauch, Zerwas; Les Houches 2007, Physics at TeV Colliders)

With g-2, many are improved, some significantly

Result for the general MSSM parameter determination at the LHC in 
SPS1a. Flat theory errors (non-gaussian) are assumed.  The fit is 
done with and without inclusion of the current measurement of g-2.

Confirmation of tanbeta 
measurement by comprehensive 
global fit.

Improvement of tanbeta-error with 
current g-2: 

4.5  -> 2.0

estimated improvement with 
future g-2:

4.5  -> 1.0

Back

- p. 90/36Jim Miller,  Neppsr – 14 August 2009 
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SPS points and slopes 
• SPS 1a: ``Typical '' mSUGRA point with intermediate value of 

tan_beta.
• SPS 1b: ``Typical '' mSUGRA point with relatively high tan_beta; tau-

rich neutralino and chargino decays.
• SPS 2: ``Focus point '' scenario in mSUGRA; relatively heavy 

squarks and sleptons, charginos and neutralinos are fairly light; the 
gluino is lighter than the squarks

• SPS 3: mSUGRA scenario with model line into ``co-annihilation 
region''; very small slepton-neutralino mass difference

• SPS 4: mSUGRA scenario with large tan_beta; the couplings of A, H 
to b quarks and taus as well as the coupling of the charged Higgs to 
top and bottom are significantly enhanced in this scenario, resulting 
in particular in large associated production cross sections for the 
heavy Higgs bosons 

• SPS 5: mSUGRA scenario with relatively light scalar top quark; 
relatively low tan_beta

• SPS 6: mSUGRA-like scenario with non-unified gaugino masses
• SPS 7: GMSB scenario with stau NLSP 
• SPS 8: GMSB scenario with neutralino NLSP
• SPS 9: AMSB scenario

www.ippp.dur.ac.uk/~georg/sps/sps.html
SPS PLOT

Back
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Present nEDM experiments

• Cryo-EDM 

– on the floor at ILL, de-bugging the experiment

• Serebov et al., (ILL, Grenoble) 
– on the floor at ILL

• Paul Scherrer Institut,  UCN Source
– Source being developed. Will use previous Sussex-RAL 

apparatus in phase 1, new apparatus in phase 2.

• SNS nEDM collaboration
– has CD1, CD2 review in late 2009

Back



Jim Miller,  Neppsr – 14 August 2009 - p. 93/36

Muon EDM Limits:  Present and Future

E821

ν Factory

Need:

NA 2 = 1016 for

dμ ≃ 10-23 e·cm
new (g-2)?

PSI ?

Dedicated 
storage 
rings

Back

Proj. X/ 
JPARC 
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PSI muon EDM storage ring

by A. Streun

Back
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Parasitic Muon EDM Measurement using straw tube arrays

The EDM tips the precession plane, 
producing an up-down oscillation 
with time (out of phase with ωa)

Measure upward-going vs. 
downward-going decay electrons vs. 
time with straw tube arrays

E821 straw-tube array

arXiv:0811.1207v1

Back
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E821 Data: up-going/down-going tracks vs. time, (modulo 
the g-2 frequency):

• BNL traceback measurement was entirely statistics 
limited

– 1 station
– Late turn-on time
– Small acceptance
– Ran 2 out of 3 years

(g-2) signal: # Tracks vs time, 
modulo g-2 period, in phase.  

EDM Signal: Average vertical 
angle modulo g-2 period. Out-of-
phase by 90° from g-2; this is the 
EDM signal

(g-2) EDM

Back
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Status of the μ → e experiments

• Mu2e at Fermilab
– Stage 1 approval from the PAC
– CD0 expected soon
– much work on design, simulations etc. underway

• COMET   PRISM/PRIME at J-PARC
– under consideration by the PAC, many studies 

underway

Back
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Ring relocation to Fermilab

• Heavy-lift helicopters bring coils to a barge
• Rest of magnet is a “kit” that can be trucked to and from the 

barge 

Back
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Typical CMSSM 2D space showing g-2 effect
(note: NOT an exclusion plot)

This CMSSM calculation: Ellis, Olive, Santoso, 
Spanos.  Plot update: K. Olive

gaugino mass

sc
al

ar
 m

as
s

Excluded for neutral 
dark matter

Present:
Δaμ = 295 ± 88 x 10-11

Topical Review: D. Stöckinger hep-ph/0609168v1

Here, neutralino accounts for the 
WMAP implied dark matter density

courtesy Keith Olive

Back
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Typical CMSSM 2D space showing g-2 effect
(note: NOT an exclusion plot)

This CMSSM calculation: Ellis, Olive, Santoso, 
Spanos.  Plot update: K. Olive

gaugino mass

sc
al

ar
 m

as
s

Excluded for neutral 
dark matter

With new experimental and theoretical precision and same Δaμ

Future
Δaμ = 295 ± 34 x 10-11

Topical Review: D. Stöckinger hep-ph/0609168v1

Here, neutralino accounts for the 
WMAP implied dark matter density

Historically muon (g-2) has played 
an important role in restricting 
models of new physics.

It provides constraints that are 
independent and complementary
to high-energy experiments.

courtesy Keith Olive

Back
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Thank you,
THE END
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muon (g-2) storage ring

Muon lifetime   tm =  64.4 
ms

(g-2) period                   ta = 4.37 ms

Cyclotron period t = 149 ns
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Principle of the “traditional” EDM measurements

B0 EB0 B0 E

Animation by J. Karamath

E=100kV/m

Presenter
Presentation Notes
Need to keep B very steady!
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