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Project: Signal Sensitivity in
Low Rate Experiments

• Analysis of small samples
- Set a limit on detector sensitivity for low-

background experiments

• ROOT
– Create, analyze, display, store datasets
– Root tutorial by:

o Michael Betancourt
o Jeremy Lopez
o Wei Wang
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Project Motivation
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Scintillation

WIMP Detection

χ

Heat

Ionization

Detector

Topology
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Recoil Rate

Recoil rate v.s. ER
energy 

Detected rate v.s. Eeee
electron-equivalent energy

~0.01 events/kg/day
Energy
threshold

(‘quenching’ = Eeee/ER)

~0.1 events/kg/day

WIMP flux
~3 1011  WIMPs/kg/day
(LXe, Mχ=100GeV, ρ=0.3GeV/cm3)

~exp[-ER/E0r]
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Untamed background rate ~106 events/(kg day)
~108 larger than signal !!

n,χ

Signal:
χN ➙χN

γ e- ➙ γ e-

n N ➙ n N
N ➙ N’ +  α, e-

ν N ➙ ν N

γ
γ

Backgrounds n,χ
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Cosmic-induced Background

Detectors
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Detector Shielding

Water tank used for shielding around neutrino experiment
in Homestake mine (4850ft) by Ray Davis (in photo)
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Detector Radioactivity
Traces of U (~ppb), Th (~ppb), K (~ppm) contaminate detector and
surrounding materials
E.g. U-238 chain (80ppb~1Bq/kg):

U-238

Rn-222

4α + 2e-

A,Z(α,n)A+3,Z+2 n

Fiducial volume of
detector

WIMP-like 
nuclear
recoil

α

n

Po-218+

Pb-206

3α, 4e−, T1/2~22years
Long-lived Po-210 decay:
Pb-206 recoils inside
detector, alpha not seen

Charged daughters
stick to walls

Pb

Po
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Event Signature
Further suppress background based on event signature
E.g. gamma suppression based on ionization/heat/scintillation signature

XENON10CDMS

10 events observed in signal region0 observed events in signal region

Ionization vs heat
(gammas with more ionization
for same amount of heat)

Ionization vs scintillation
(gammas with less scintillation for
same amount of ionization)

Signal region Signal region
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Low Statistics at NEPPSR VI
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NEPPSR 09 Project
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Analysis of Small Samples
• Assume we see few surviving events after all
detector and analysis cuts
• The statement on WIMP rate depends on what we
know about background(s):

Poissonnono

Feldman-Cousinsyes/noyes

Maximum
likelihood

yesno

Maximum Gap
(Yellin)

nono

Analysis method Distribution
known? (db/dE)

Rate known? (b)
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Poisson Limit
Suppose background rate and distribution not known
Allowing possibility that all events can be signal - obtain a Bayesian
upper limit on number of signal events:

! 

CL 90%( ) =
µ + b( )

n

e
" µ +b( )

n!
# $ µ + b( )d µ + b( )

0

µ +b( )
90

%
! 

CL = p theory | experiment( )" =
p experiment | theory( )# theory( )"

# (data)

Poisson Prior

Probability for observing n
events if µ+b expected Prior?
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Poisson Limit
Prior flat in µ+b:

Prior flat in (µ+b)0.5:

×

×

=

=

n=0

µ+b µ+b µ+b
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Poisson Limit

For n=5
(µ+b)90<9.3

For n=0
(µ+b)90<2.3

For n=2
(µ+b)90<5.3

We only assumed that count rates follow Poisson statistics
We can improve this limit with additional information on signal and
background properties

Prior flat in µ+b:

Prior flat in (µ+b)0.5:
(µ+b)90<1.4 (µ+b)90<4.6 (µ+b)90<8.6
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Maximum Gap
What if instead of counting events that we observed, we  count signal
events that didn’t happen  ?
E.g. find the biggest gap between data points in some variable.

Here is the logic:
-If we assume too large event rate, then such gap is very unlikely
-If we assume too low event rate, then there must exist even large gap

This approach is described in:

Yellin, Phys Rev D66 (2002)

(used by WIMP search experiments)
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Maximum Gap

Ei Ei+1

! 

µ = dE
R

dN

dE
REmin

Emax

"

! 

x
i
= dE

R

dN

dE
REi

Ei+1

"

Find number of expected events
in each energy gap

Total number of expected events

Example with recoil energies:

Choose gap with maximum
number of expected events
(‘maximum gap’)
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Maximum Gap
Probability of maximum gap being smaller than x (i.e.
signal rate higher than expected):

! 

CL x,µ( ) =
kx "µ( )

k

e
"kx

k!
k= 0

m

# 1+
k

µ " kx

$ 

% 
& 

' 

( 
) 

! 

m " µ / xwith

Note, this method can only
give upper limit 

Total wimps

CL
0.9
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Maximum Gap
Setting a WIMP limit:

- dN(E)/dE depends on
WIMP mass
-for each WIMP mass find
upper limit on # of signal
events using Maximum
Gap method
- convert to cross section
(per nucleon)

xx
x x x x x x x

x

x x x

Allowed

Excluded

CDMS
XENON10

Nχ=ρΤVT σ vχρχ
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Feldman-Cousins
A frequentist approach based on construction Neyman’s confidence belts:
- for each physical µ, select a set that includes 90% of observed events

Choose µ

90%

FC 90% confidence
belt for b=10
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Feldman-Cousins
A frequentist approach based on construction Neyman’s confidence belts:
- for each physical µ, select a set that includes 90% of observed events

FC 90% confidence
belt for b=10
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Feldman-Cousins

FC 90% confidence
belt for b=10

- find intersection of measured value with 90%CL line(s)

CL

UL
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Feldman-Cousins
A trick is in deciding which events to include.

- Order by probability ratio:

! 

R =
p n,µ + b( )
p n,µ* + b( )

This approach described in:
- Feldman, Cousins, Phys Rev D57 (1988)
- Feldman, NEPPSR 2005

Poisson probability for observing
n events for given b and µ

Most likely physical value of
µ=µ∗ to observe n events
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Feldman-Cousins
Computational example for µ=0.5 and b=3 from F-C paper 

Poisson ordering uses different events
for upper limit and central limit
Undercoverage, flip-flopping

FC ordering uses same
events for upper limit and
central limit
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Feldman-Cousins
Example: under-coverage and flip-flopping

(1)

(2)

(3)

Poisson 90%
confidence belt
for b=5

(1) If signal<0, pretend it’s zero
(2) If signal<3σ, use upper limit
(3) If signal>3σ, use central limit

10%

5%

FC 90%
confidence belt
for b=5

(1)=(2)=(3)

85%
coverage
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Likelihood Model
Assume background probability distribution function (PDF) is known (PBG(ER)) 
Likelihood for an event i:

! 

L i( ) = P
WIMP

E
R
;i( ) "µ + P

BG
E
R
;i( ) " b

Total likelihood for a sample

! 

L =
1

N!
" e# µ +b( ) " L i( )

i=1

N

$

Note

! 

LdE"
R

=
1

N!
# e$ µ +b( ) # µ + b( )

N

Poisson distribution for N observed events
when µ+b expected (‘extended ML’)

! 

dE
R" P E

R( ) =1
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Maximum Likelihood Fit
• Vary model parameters pi to maximize likelihood function
• For technical reasons, minimize -log(L):

! 

"

"pi
# logL pi

0( )( ) = 0

! 

logL pi( ) = logL pi
0( ) "

1

2
#
$ 2 logL pi

0( )
$pi

2
# pi " pi

0( )
2

" pi " pi
0( )
$ 2 logL

$pi$p j

p j " p j

0( )
i% j

&

... in Gaussian approximation:

! 

1

" 2
=
# 2 logL

#pi#p j

! 

" # logL p( )[ ] =
p # p

0( )
2

2$ 2
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Maximum Likelihood Fit
Suppose we have many events - Gaussian approximation ok
Minimum is estimator for true value of parameter

! 

"

"pi
# logL pi

0( )( ) = 0

! 

" # logL p( )[ ] =
p # p

0( )
2

2$ 2
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Maximum Likelihood Fit
 Error estimate, assuming Gaussian distribution around p0 -
symmetric errors

Change in
log(L)

Change in
sigma

1/2 1

2 2

nn2/2

% of
values
68

95
2σ

1σ Gamma function
Prob(χ2,dof)

! 

"

"pi
# logL pi

0( )( ) = 0

! 

" # logL p( )[ ] =
p # p

0( )
2

2$ 2
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Maximum Likelihood Fit
Small sample - expect non-Gaussian, asymmetric errors

• Likelihood function scan:
fix µ, refit while floating other
parameters (b)

• Use likelihood function to set
upper limit
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Upper Limit

! 

CL =

dµ " L
#$

µ
90

% µ,b( )& µ( )

dµ " L
#$

$

% µ,b( )& µ( )

Find µ90 such that CL=90%
Use a flat prior: π(µ)=1, µ>0

π(µ)=0, otherwise

Note:experts are picky about priors - everyone has its own best choice
=> In addition to 90%CL, experiments publish full likelihood function -
later combined with likelihoods from other experiments

Bayesian limit
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Bias in Fitted Parameters?

Most difficult step is to confirm that a fit makes sense.

Bias in fitted parameters can originate from  

• incorrect PDF’s (ignored correlation between observables,  wrong
shapes, etc.)

- verify with simulated dataset, control samples

• minimization problems (e.g. parameters close to edge,
convergence to local minima, bugs …)

- check plots with likelihood projections, ‘pulls’
- many can be checked with blinded fit parameters.
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Visual Check
Overlay data with likelihood function
An obvious, but very useful test - likelihood shape should follow data

Likelihood for
all events

Likelihood for
background
events
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NEPPSR Problem Set
Take the following set of measured recoil energies in 20-100keV acceptance interval: 22.4, 27.7, 31.3,

23.6, 31.6, 23.4, 27.7, 24.6, 40.5, 29.7, 22.2, 20.0
Compute the following bounds on the number of signal events.

1) Compute upper limit on signal events with 90%CL using Poisson statistics.
Discussion: Does the result change with different prior? (e.g. flat in (µ+b)0.5, log(µ+b) )

2) For 60keV WIMP and 19GeV target mass, and ignoring detector effects, the distribution of recoils
energies for signal events is given as

Use Maximum Gap method to find upper limit on signal events with 90% C.L.
Discussion: How would you include detector effects (efficiency, resolution)?

! 

PWIMP ER( )"exp #
ER

11.8keV

$ 

% & 
' 

( ) 
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NEPPSR Problem Set

3) Assume the expected background rate is b=10 events. Calculate Feldman-Cousins ordering ratios and
construct Neyman 90% confidence bends for signal µ=0,1…12 events. Find an upper limit on the
number of signal events for the given sample.
Discussion: How does the upper limit change if b=13? Comment.

4) Take background distribution

Construct an extended likelihood function and minimize -log(L) to find signal and background events.
Make a likelihood scan and find upper limit on signal events by integrating the likelihood function using

a flat prior for µ>0.
Discussion: What if fit gives negative µ?! 

PBG ER ,cos"( )#exp $
ER

5keV

% 

& ' 
( 

) * 


