

Outline

- Introduction
 - General Concepts
 - LHC Requirements
 - General Trigger Architecture
- Implementations of 'Level 1' Triggers at the LHC
 - ATLAS + CMS Architecture
 - Examples

Basics

- LHC will collide protons at a center of mass energy of 14 TeV
- Collision Rate of 40 MHZ
- Most 'Interesting' physics doesn't happen at such a high rate
- Even if we wanted to , technological + \$\$ limitations to ~200 Hz

- Inelastic Cross-Section is ~70mb
- 'Interesting' Physics on the order of a few nb
- 'Discovery' Physics on the order of pb or even fb
- Cannot (and probably do not)
 want to record every beam
 crossing
- Need to make choices defining 'interesting'
- 99.99%+ of these choices are made very quickly (within microseconds) and

Generic Trigger Requirements and Challenges

- Highly Efficient on the very rare processes that we wish to record
- Large Reduction of rate
 - Higher rate 'less interesting' processes
 - Instrumental Backgrounds
- High Processing Rate
- Large number of channels ~ 0.1 few billion
- Push out 100 Mb/s to disk
- Not all detectors have data available in 25 ns (some take more than 10 times this)
- Do all of the above in simultaneously with a finite amount of \$\$ and time...

LHC Basics

- Beam is not continuous but comes in 'bunches' with very specific (and complicated) structure
- 25 ns between each 'bucket' (where there could be beam)
- 2808 bunches organized in superbunches
- Accelerator clock used to synchronize detectors

b = bucket with protons = 2808 e = empty bucket

$$3564 = \{ [(72b + 8e) \times 3 + 30e] \times 2 + [(72b + 8e) \times 4 + 31e] \} \times 3 + \{ [(72b + 8e) \times 3 + 30e] \times 3 + 81e \}$$

$$+ \{ [(72b + 8e) \times 3 + 30e] \times 3 + 81e \}$$

$$+ (172b + 8e) \times 3 + 81e \}$$

$$+ (172b + 8e) \times 3 + 81e \}$$

$$+ (172b + 8e) \times 3 + 81e \}$$

$$(8+30+81)$$
 (25 ns) = 3 µs

Trigger 101

The trigger is a function of :

- Need to examine (nearly)
 every bunch crossing
 - select most interestingones
 - collect all detector
 output, transfer from
 detector front-end to
 tape
- But, not all data will be available in 25 ns, T() gets evaluated piece wise

I will talk about this one

The Multilevel Trigger

- Level 1
 - Rapid rejection of most events in custom based hardware
 - short deadtime and fixed latency
 - examine every beam crossing
- High Level Trigger
 - more complex algorithms run on cpus which make final decisions
- Key buffer events during the process rather than fully processing one at a time

Pipelines

- Events come every 25ns
- However, it takes >> 25ns to decide if event is worth recording or not
- Introduce pipelined system
 - Trigger decision must be made every 25ns, but the decision time can be longer (if you processing many events in parallel)
- trigger latency -amount of time you have to make trigger decision + amount of time to move data around
- trigger latency FIXED at LVL1
 ~3 microseconds at CMS/ATLAS

How to process?

Pipe-lined readout at LHC

Deadtime

Dead-time (numbers for ATLAS)

- Deadtime Fraction of total time that the detector is not live due to various reasons
 - some time period
 after trigger accept
 where detector is
 readout (unavoidable)
 - start/stop runs,failures

How does this compare to previous experiments?

Overall Trigger Architecture

CMS ATLAS

Similar, CMS has 2 levels while ATLAS has 3

No Unique Solution ...

With 3 level system – ATLAS reduces the load on readout but less flexible since only ROI are available at LVL2

Divide and Conquer

- Global LVL1 Trigger Processor fed by
 - Calorimeter LVL1 Trigger
 Processor
 - Muon LVL1 TriggerProcessor
- In turn, Muon and Calorimeter Triggers are the sum of:
 - many calorimeter towers
 - local muon ASICS

ATLAS LVL1 Example...

Which Detectors to use at L1?

Why not Inner Detector Tracking at L1 at the LHC?

- High multiplicity, time consuming
- Huge number of channels
- Need to link up to other detector elements
- Technology at time of design and development just not fast enough
- Some sort of hardware trigger will be for an upgrade (though not at L1, but LHC is a 20 year program..)

Regions of Interest (ROI) - ATLAS

- Identify Regions based on local areas of activity at LVL1 and pass on to HLT
- Based on course, fast information
- Reduces stress on HLT
- Only ROI data readout to first part of HLT

to ROI or not to ROI?

- Reduces output to first part of HLT to 1% of total
- Smaller Readout networks
- More complicated scheme
- At LVL1 logical OR of all trigger sectors (they are all independent!)

- High throughput
- Large readout networks
- Simpler scheme
- More flexible, but more demanding requirements

Example #1 ATLAS Muon Trigger

- 3 super layers in a toroid field, identify and measure momenta
- Precision drift tubes for precise track reconstruction
- Fast 'Resistive Plate
 Chambers', and 'Thin Gap
 Chambers' for trigger

Remove overlap, tabulate information for central trigger processor

regional processors

ATLAS MIOCT Board

Muon Trigger Efficiency and Rates

Example #2 CMS Jet Trigger

- Ubiquitous at the LHC
- Complicated objects, composed of many (different types) of particles
- Calibration, energy scale, need to control rate
- Need not to split jets (and overcount)

CMS Calorimeter Towers

Sliding Window Algorithm

Trigger tower

- 4x4 trigger towers = region
- Search for jets with a sliding 3x3 regions window
- **Jet** = 3x3 region where the E_T in the central region is above some threshold and is bigger than the E_T in any of the 8 outer regions

A jet = 144 trigger towers, with typical tower dimensions $\Delta \eta \times \Delta \phi = 0.09 \times 0.09$ Hence typical jet dimensions: $\Delta \eta \times \Delta \phi = 1 \times 1$

Regional Calorimeter Trigger

Receiver Card: Electron Isolation & Clock: Jet/Summarv:

Expected Rates

Of Strawman and Real Menus

- Tevatron Experience
 - Initial Trigger Tables relatively simple -> over 600 triggers (including calibration triggers, different luminosity settings, ...)
 - Detailed Rate Studies done on monte carlo are often drastically (by factor of 10-1000!) wrong.
 - Real bandwidth is often < than on paper bandwidth
- Real work is preparing for different scenarios, not evaluating MC trigger efficiency to 0.001% (you can't trust monte carlo simulations to that level!)

Conclusions

- Triggering at the LHC is complicated
- No unique solution, though generically split into
 - Fast electronics in custom hardware for fast rejection
 - Offline or close to offline reconstruction for HLT
- Extremely important and contentious topic
 - most event selection takes place at LVL1
 - physics priorities decide which events you will see for your analysis and which you won't
- DAQ and HLT to follow...