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New approach for multicriticality in directed and diode percolation
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We present a new and very simple model for treating directed and more general diode-percolation prob-
lems by allowing neighboring sites to be joined by up to two independent bonds of opposite orientations. A
generalized ‘‘break-collapse’” method is developed to calculate renormalization-group recursion relations.
On the square lattice, a very symmetric phase diagram is obtained which displays multicritical percolation
phenomena, and a variety of interesting conductivity transitions are predicted.

In their original work on percolation, Broadbent and Ham-
mersley! proposed models in which neighboring lattice sites
were connected by directed bonds, or diodes, which allow in-
formation ‘‘flow’’ in one direction only. This is in contrast
to the percolation models generally considered,? where sites
may be connected by two-way bonds, or resistors. Recent
interest in directed percolation models stems from their rich
phenomenology and diverse applications.® The directionality
constant gives rise to anisotropic critical phenomena3~* and
shifts in the upper critical dimension from 6 in pure percola-
tion to 5. More general models can be defined where the
bonds may be either resistors, diodes of an arbitrary orienta-
tion, or even bonds that conduct in both directions, but
with different conductivities.®* Such networks exhibit novel
critical phenomena driven by either concentration or orien-
tational fields.

Unfortunately, the description of these more general
models requires a large parameter space and tedious calcula-
tions in the renormalization-group framework. In this Ra-
pid Communication, we show that the rich geometrical and
conductivity properties of such networks can be satisfactori-
ly described by a very simple model in which neighboring
lattice sites may be joined by up to two independent directed
bonds of opposite orientations (Fig. 1). The interplay
between percolation in one direction and in the opposite
direction gives rise to an interesting multicritical behavior in
our model. Moreover, our study indicates that many results
of pure percolation are recovered if a network is globally iso-
tropic rather than each bond being isotropic.

We consider the square lattice, where ‘‘positively’’ orient-
ed bonds which point either upward or to the right occur
with probability p, while ‘‘negatively’’ oriented bonds occur
with an independent probability g. When one of p or q is
zero, directed percolation is recovered,** while for p =g,
each bond is isotropic, on average, and results of pure
percolation are obtained. From a position-space
renormalization-group (PSRG) approach, we find a mul-
ticritical point at p=4q =+, where a two-way percolating
phase (denoted + — in Fig. 2) is simultaneously critical
with one-way percolating phases (either + or —) and a
nonpercolating phase.

To perform the PSRG calculation, we partition the square
lattice into 2x 2 cells® as indicated in Fig. 1. Each such cell
is rescaled into a single bond pair with renormalized values
of p’ and q’'. The recursion relations for these two quanti-
ties are determined by calculating the respective probabilities
of traversing the cell upward or downward. A priori, this
calculation entails a tedious evaluation of all of the 2!° con-
figurations on the 2x2 cell. To avoid this, we have
developed an extension of the break-collapse’ method to
calculate traversing probabilities by performing simple topo-
logical operations without evaluating all cell configurations.

To illustrate the method, notice as a preliminary that the
probabilities of traversing two bond pairs (p;,q;) and
(p2,q2) which are either in series or parallel, respectively,
are

Ps=DpiP2 (1a)

Pp=pP1+p2—p1p2 , (1b)
and analogously for the ¢’s. This can be applied to an arbi-

q

FIG. 1. Definition of our percolation model, on a 2x 2 cell of the
square lattice. Each pair of neighboring sites may be connected by a
positive bond which occurs with probability p, or a negative bond
which occurs with an independent probability g. Only the vertical
bonds and the upper-left horizontal bond pair are required for the
PSRG calculation, leading to the Wheatstone bridge of Fig. 3.
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FIG. 2. Phase diagram of the model on the square lattice. Fixed
points of the renormalization transformation are shown by heavy
dots, and the arrows indicate the direction of flow under renormali-
zation. The four phases of the network are indicated. At M, two
independent exponents may be defined by approaching the point
along either the (1,1) diagonal or along the (1,— 1) diagonal.

trary graph that is reducible by series and parallel opera-
tions. However, if the graph is irreducible, such as the
Wheatstone bridge of Fig. 3, we need the following:

G=~U-p)1-g)GP+(1-p)q,GK
+p(1-q;))GF+ piq;Gf© , )

where G is the probability of traversing the graph comprised
of the bond set {(p;,q;)}, and the superscripts on G; denote
that the ith bond pair (p,q;) has its constituents either
‘“‘broken”’ (b) or ‘‘collapsed”” (c¢). We illustrate the use of
Eq. (2) in Fig. 3. The dashed line represents a ‘‘precol-
lapsed’’ bond which is present with probability unity. It is
necessary to keep such a bond in this state, until it is ascer-
tained that a path through the cell actually traverses via this
particular bond.
With use of the property

GF+GP*=GM+Gf 3)

=> (1-p)(1-q)

A

+ p(1-q) 0\/0

FIG. 3. Break-collapse reduction of the Wheatstone bridge. The
dashed lines indicate a bond in a precollapsed state, and the proba-
bilities of the various graphs are shown in the figure.
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Eq. (2) can be rewritten more simply as
G=(1-p)GP+q,G+ (pi—q))G?® . 4)

The combined use of Eqs. (1) and (4) constitutes a general-
ized break-collapse procedure for calculating traversing
probabilities, and the break-collapse method for pure per-
colation” is recovered when p;=gq; for all i. As Eq. (4)
holds for any directed two-terminal graph, the present
model is, for p,=gq; (i.e., globally isotropic although locally
anisotropic), equivalent to the standard bond percolation
(which is both globally and locally isotropic) in what the
directed pair connectedness (and quantities intimately relat-
ed to it) is concerned; although the models differ in princi-
ple on other grounds, one has to bear in mind that most of
the macroscopic criticality is determined by the directed pair
connectedness.

For our model, we find the following recursion relations
on the square lattice after a simple calculation on the 2x2
cell,

p =p=3p*+p’+ 202+ =20+ Vg =r(pq) ,
q¢'=f(gp) , v Q)

which reduce to the recursion relation for pure bond per-
colation® when p = g, and to that of directed percolation?® for
one of p or g equal to zero.

The resulting phase diagram is shown in Fig. 2. The p-g
plane is divided by second-order transition lines into four
phases characterized by two-way percolation (+ — ), one-
way percolation (+ or — ), or no percolation. These four
phases meet at a multicritical point M defined by
pc=q¢=%. The location of M at (%,%) is a consequence
of self-duality, and property of the square lattice. The line
p =q renormalizes into itself under rescaling and along it
the results of pure percolation are reproduced. The point
(pc,q.) is completely unstable with an eigenvalue in the
(1,1) direction equal to %, just as in pure percolation. This
leads to a correlation length exponent of wv=In2/
In1.625 = 1.43, compared to the conjectured® exact value of
v=+. The eigenvaiue in the (1, — 1) direction is equal to

%, yielding an exponent of 1.71. Physically, this exponent
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FIG. 4. Schematic behavior of the normalized positive conduc-

tivity, o4, as a function of p for various values of g. Two distinct
singularities occur if 0.444 < ¢ < 0.5 (dashed line of Fig. 2 ).
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describes how the average length of connected paths, run-
ning opposite to the average orientation of the diodes,
diverges as the orientation becomes random. This is some-
what analogous to the divergence of the spin correlation
length, £ ~ H~"/B5 as a function of the magnetic field H at
the critical temperature.

Let us now turn to treating the conductivity of this net-
work. We consider a model in which each directed bond
has a finite conductance in the direction of the arrow, and
zero conductance in the opposite direction. The conduc-
tance distribution for each bond is

P,i(g)=0-pls(g)+pdlg—g+) ,

P_(g)=(1—¢q)3(g)+qd(g—g-) , ©)

4 3
g =2+ pu%(l—p)+l%1’—(1—p>2+p2(1—p)3+p3(1—p)q/(3+z¢)+p2<1—p>2q/(2+¢)

=h(pg.g+.8-) ,
g-=h(gpe-.g+) ,

where ¢y=g./g-. From Egs. (5) and (7), we find the
mean conductivities of the lattice, o+(p,g) and o_(p,q),
by using the fact!® that these quantities scale, respectively,
as b?72% 3!, where b is the rescaling factor in the PSRG.
From this, we may numerically calculate o+ and o_, and
the values obtained reflect the geometry of the lattice. In
the nonpercolating phase, both o4 and o - are zero, while
in the one-way percolating phases one of o4 or o_ is
nonzero, and in the two-way percolating phase both ¢, and
o _ are nonzero.

In order to study the critical behavior of the conductivity,
we need to specify the initial ratio of . We shall treat the
special case yy=1 as this leads to a network which is both
geometrically and electrically isotropic at M. Two indepen-
dent exponents govern the behavior of the conductivity as
M is approached. If the point is approached from the two-
way percolating phase along a path with p =¢ (see Fig. 2),
then the conductivity is isotropic and it vanishes as
(p— %)‘. The 2Xx 2 rescaling gives a conductivity exponent
of t=1.17,"" to be compared with the recent numerical esti-
mate of r=1.28 +0.02.)2 On the other hand, if the mul-
ticritical point is approached along the path p =1—g¢, then
the directed conductivity vanishes with a new exponent
which is equal to 1.40 in our 2x 2 cell approximation. Just
as for percolation properties, the exponent ¢ measures how
the conductivity vanishes when a temperature-like field is
varied, while the new exponent measures how the directed
conductivity vanishes when a magnetic-field-like variable
vanishes. It would be interesting to obtain a more accurate
estimate of this new exponent perhaps by treating larger
cells,® as well as by providing an interpretation for the ex-
ponent in terms of cluster structure.

A second interesting feature is the behavior of the con-
ductivity as a function of p for various values of ¢ (Fig. 4).
For g < g4 (which equals 0.444 in the 2x 2 approximation),
o+ becomes nonzero at some value of p, and this conduc-
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where + and — refer to the positive and negative directions,
respectively, and g is the value of the bond conductance.
We wish to investigate the conductivity of a network con-
taining these circuit elements in the vicinity of the multicrit-
ical point M. At M, the network is isotropic and the usual
scaling laws relating eigenvalues to exponents should be
valid. For the four anisotropic fixed points on the edges of
the phase diagram, anisotropic scaling laws or a different re-
scaling procedure than the one used here would be needed.

Upon rescaling, a new conductance distribution is ob-
tained which is a sum over many delta functions, and we
approximate it by the original binary form.!%!! Recursion
relations for g4 and g_ are calculated by imposing that
their average values remain invariant. This leads to

%) :

)

I
tivity

increases smoothly until p=1. However, for
0.444 < g < 0.5, o+ displays two singularities. At the first
one, o+ becomes nonzero, while at the second one, there is
percolation of connected paths running in the negative
sense which cause o - to become nonzero. These new
paths provide additional current-carrying contributions in
the positive direction, thereby causing a nonanalyticity in
o +. This property, and related features, such as negative
resistance, appear to be characteristic of biased networks
which are between the isotropic and directed percolation
thresholds.!> When ¢ = %, the two thresholds coalesce, and
for ¢ > %, only a single threshold occurs.

In conclusion, we have introduced a new model to
describe the geometry and conductivity of random networks
with directed bonds. This model has the advantage of pro-
viding a large amount of qualitative information with very
simple calculations. A symmetric phase diagram was found
which displays multicriticality among two-way-percolating,
one-way-percolating, and nonpercolating phases. In treating
the conductivity, a new exponent was introduced to describe
how the directed conductivity becomes isotropic near the
multicritical point. It would be worthwhile to extend the
present study to the case y=g /g _ # 1, where even more
interesting network responses are possible.
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