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Abstract

We present evidence, based on play-by-play data from all 6087 games from the 2006/07—
2009/10 seasons of the National Basketball Association (NBA), that basketball scoring is well
described by a continuous-time anti-persistent random walk. The time intervals between successive
scoring events follow an exponential distribution, with essentially no memory between different
scoring intervals. By including the heterogeneity of team strengths, we build a detailed
computational random-walk model that accounts for a variety of statistical properties of scoring
in basketball games, such as the distribution of the score difference between game opponents, the
fraction of game time that one team is in the lead, the number of lead changes in each game, and
the season win/loss records of each team.
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1 Introduction

Sports provide a rich laboratory in which to study competitbehavior in a well-
defined way. The goals of sports competitions are simplaules are well defined,
and the results are easily quantifiable. With the recentabisity of high-quality
data for a broad range of performance metrics in many spsets, for example,
shrpsports.com), it is now possible to address questioogtabeasurable aspects
of sports competitions that were inaccessible only a fewsyago. Accompanying
this wealth of new data is a rapidly growing body of liter&uvoth for scientific and
lay audiences, on quantitative modeling and analysis atsgtatistics (for general
references, see, e.g., Mosteller (1997), Albert, Bennatt, @ochran (2005), Ku-
batko, Oliver, Pelton, and Rosenbaum (2007), Albert and kgp(2008), Glickman
and Evans (2009), Arkes and Martinez (2011)).

In this spirit, our investigation is motivated by the follmg simple ques-
tion: can basketball scoring be described by a random watk&nswer this ques-
tion we analyze play-by-play data for four seasons of allidvet] Basketball As-
sociation (NBA) games. Our analysis indicates that a simgtelom-walk model
successfully captures many features of the observed gcpatterns. We focus on
basketball primarily because there are many points scaedgme — roughly 100
scoring events in a 48-minute game — and also many games asarselhe large
number of scoring events allows us to perform a meaningétissical analysis.

Our random walk picture addresses the question of whetlmtssperfor-
mance metrics are determined by memory-less stochastiegges or by processes
with long-time correlations (Gilovich, Vallone, and Tvkys(1985), Miller and
Weinberg (1991), Gould (1996), Dyte and Clarke (2000), Emeand Goldsmith-
Pinkham (2008)). To the untrained eye, streaks or slumps meha sustained
periods of superior or inferior performances — seem so ualubat they ought to
have exceptional explanations. This impression is at odttsthe data, however.
Impartial analysis of individual player data in baskettheals discredited the notion
of a‘hot hand’ (Gilovich et al. (1985), Ayton and Fischer ()). Rather, a player’s
shooting percentage is independent of past performandtleasapparent streaks or
slumps are simply a consequence of a series of random ulatedscoring events.
Similarly, in baseball, teams do not get ‘hot’ or ‘cold’ (\g&n (2000), Sire and Red-
ner (2009)); instead, the functional forms of winning ansing streak distributions
arise from random statistical fluctuations.

In this work, we focus on the statistical properties of segrduring each
basketball game. The scoring data are consistent with threngcrate being de-
scribed by a continuous-time Poisson process. Consequambarent scoring
bursts or scoring droughts arise from Poisson statistiterahan from a tempo-
rally correlated process. Our main hypothesis is that ttwuéen of the score
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difference between two competing teams can be accountedcbytanuous-time
random walk.

This idealized picture of random scoring has to be augmeoyesvo fea-
tures — one that may be ubiquitous and one idiosyncraticskdiball. The former
is the existence of a weak linear restoring force, in whighldading team scores
at a slightly lower rate (conversely, the losing team scatesslightly higher rate).
This restoring force seems to be a natural human responeeittbalanced game —
a team with a large lead may be tempted to coast, while a lgdgam likely plays
with greater urgency. A similar “rich get poorer” and “poa@tgicher” phenomenon
was found in economic competitions where each interactaslow decisiveness
(Durham, Hirschleifer, and Smith (1998), Garfinkel and Skdps (2007)). Such
a low payoff typifies basketball, where the result of any Ergay is unlikely to
determine the outcome of the game. The second featureyidicaic to basketball,
is anti-persistencein which a score by one team is more likely to be followed by a
score from the opponent because of the change in ball passedgter each score.
By incorporating these attributes into a continuous-tinredan-walk description
of scoring, we build a computational model for basketbathga that reproduces
many statistical features of basketball scoring and teamags records.

2 Scoring Rate

Basketball is played between two teams with five players eRclints are scored
by making baskets that are each worth 2 points (typicallyd points. Additional
single-point baskets can occur by foul shots that are awlaafter a physical or
technical foul. The number of successive foul shots is gifyd or 2, but more can
occur. The duration of a game is 48 minutes (2880 secondane&are divided
into four 12-minute quarters, with stoppage of play at the eihneach quarter. The
flow of the game is ostensibly continuous, but play does stopduls, time-outs,
and out-of-bounds calls. An important feature that setdithe scale of scoring is
the 24-second clock. In the NBA, a team must either attempioa that hits the
rim or score within 24 seconds of gaining possession of thedreelse possession
is forfeited to the opposing team. At the end of the game, ¢hentwith the most
points wins.

We analyze play-by-play data from 6087 NBA games for the 2006
2009/10 seasons, including playoff games (see www.bazkethie.com); for win/
loss records we use a larger dataset for 20 NBA seasons (\wvpsports.com). To
simplify our analysis, we consider scoring only until thedesf regulation time.
Thus every game is exactly 48 minutes long and some games ¢ied.i \WWe omit
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overtime to avoid the complications of games of differentations and the pos-
sibility that scoring patterns during overtime could bdetiént from those during
regulation time.

We focus on what we termscoring playsrather than individual baskets. A
scoring play includes any number of baskets that are madeneitime elapsed be-
tween them on the game clock. For example, a 2-point playddoela single field
goal or two consecutive successful foul shots; a 3-point ptauld be a normal field
goal that is immediately followed by a successful foul sloota single successful
shot from outside the 3-point line. High-value plays of 5 &nmgbints involve mul-
tiple technical or flagrant fouls. Since they have negligimlobability of occurence
(Table 1), we will ignore them in our analysis. Consistentwvatir focus on scoring
plays, we define the scoring rate as the number of scoring ay second. This
guantity is measured for each second of the game. For thesérszaf data, the
average scoring rate is roughly constant over the coursgaife, with mean value
of 0.03291 plays/sec (Fig. 1). Averaging each quarter sepgrgieés a scoring
rate of 0.03314, 0.03313, 0.03243, and 0.03261 for firsujindourth quarters, re-
spectively. The scoring rate corresponds to 94.78 suadqdalys per game. Since
there is, on average, 2.0894 points scored per play, eaohhaa 99.018 points
in an average game (Westfall (1990)). Parentheticallyatheage scoring rate is
constant from season to season, and equals 0.03266, 0,@B329%99284, 0.03315 for
the 2006—-07 to the 2009-10 seasons.

Points per Play Percentage
0
Points per Baskelt Percentagé 1pt. 8.70%
2 pts. 73.86%
1pt. 33.9%
3 pts. 17.28%
2 pts. 54.6% €
3 pts 11.5% 4 pts. 0.14%
' ' 5 pts. 0.023%
6 pts. 0.0012%

Table 1: Point values of each basket (left) and each platjrand their respective
percentages.

Curiously, significant deviations to the constant scorirtg cccur near the
start and end of each quarter (Fig. 1(a)). During roughlyfitst 10 seconds of
each quarter, scoring is unlikely because of a natural mimntime to make a
basket after the initiation of play. Near the end of each effitst three quarters,
the scoring rate first decreases and then sharply incremgesat the end of the
guarter. This anomaly arises because, within the last 2dnsiscof the quarter,
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Figure 1: (a) Average scoring rate as a function of time ollgiaanes in our dataset.
(b) Rate near the change of each quarter; zero on the absoissaponds to the
start/end of a quarter.

teams may intentionally delay their final shot until the lagtiment, so that the

opponent has no chance for another shot before the quadsr However, there is

only an increase in the scoring rate before the end of the gaossibly because of
the urgent effort of a losing team in attempting to mount &iasute comeback via

intentional fouls. While these deviations from a constawrisg rate are visually

prominent, they occur over a small time range near the encd quarter. For

the rest of our analysis, we ignore these end-of-quartemafies and assume that
scoring in basketball is temporally homogeneous.

In addition to temporal homogeneity, the data suggest tiwairsy frequency
obeys a Poisson-like process, with little memory betweertessive scores (see
also de Sa Guerra, Gordaez, Montesdeoca, Ruiz, Arjonillaéipez, and Garca-
Manso (2011)). To illustrate this property, we study thebadality P(t) of time
intervals between successive scoring plays. There are augal such time in-
tervals: (a) the interval between successive scores of either team, and (b) the
intervalts between successive scores of the same team. The prob&gilishas a
peak at roughly 16 seconds, which evidently is determinethby24-second shot
clock. This probability distribution decays exponentiah time over nearly the
entire range of data (Fig. 2). Essentially the same behavises forP(ts), except
that the time scale is larger by an obvious factor of 2. Whethalsame-team time
intervals are divided by 2, the distributioR&te) and P(ts) overlap substantially.
The long-time tails of bothP(te) and 2P(ts/2) are proportional to the exponential
function exg—Awit), with rateAy; = 0.048 plays/sec. This value is larger than the
actual scoring rate of 0.03291 plays/sec because scoriag/ats of less than 10
seconds are common for the exponential distribution butaresin real basketball
games. Amusingly, the longest time interval in the datasewhich neither team
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Figure 2: Probability distributions of time intervals bet®n successive scores for
either teamP(te) vs.te (a), and for the same team(ts) vs.ts (b). The line is the
least-squares linear fit of (R) vs.t over the rangé. > 30 sec ands > 60 sec and
corresponds to a decay ratgj = 0.048 and 0.024, respectively.

scored was 402 seconds, while the longest interval for whisimgle team did not
score was 685 seconds.

It is instructive to compare the distribution of total scora single game to
that of a Poisson process. Under the assumption that samesat the empirically-
observed rate oA = 0.03291 plays/sec, the probability that a game kasor-
ing plays is given by the Poisson distribution, P#lplays= k) = k—l!(/\ T)ke AT,
whereT = 2880 sec. is the game duration. Since the average score lofpéac
is = 2.0894 points, a game that contaikscoring plays will have a total score
of approximatelyS= sk By changing variables frork to Sin the above Poisson
distribution, the probability that a game has a total s&ie

S/Sa—AT
Prol(score=S) = %(AT()T;'

This probability agrees reasonably with game data (Figc@)sidering that (1) is
derived using only the mean scoring rate and mean pointdg@geriy including the
different point values for each play, the resulting scostritiution would broaden.
Furthermore, if we impose a cutoff in the probability of stexoring intervals (see
Fig. 2) the total score distribution of Fig. 3 would shiftgdlily to the left which
would bring the model prediction closer to the data.

An important aspect of the time intervals between successioring events
is that they are weakly correlated. To illustrate this featwe take the time-ordered
list of successive scoring intervdlst, ts, . .., for all games and compute the n-lag

(1)
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Figure 3: Probability Profscore= S) for a total scoreSin a single game. Circles
are the data, and the solid curve is the Poisson distribtipn

correlation function (Box and Jenkins (1976))

_ k=) (ten—T)
o= k(-2 @)

Thusn = 1 gives the correlation between the time intervals betwemtessive
scoresn = 2 to second-neighbor score intervals, etc. For both thevalte (in-
dependent of which team scored) agdsingle team), we find that(n) < 0.03
for n > 1. Thus there is little correlation between scoring evesiigigesting that
basketball scoring is a nearly memory-less process. Aauglgd scoring bursts or
scoring droughts are nothing more than manifestationseofltittuations inherent
in a Poisson process of random and temporally homogeneotiagevents.

3 Random-Walk Description of Scoring

We now turn to the question efhichteam scores in each play to build a random-
walk description of scoring dynamics. After a given teamresp possession of
the ball reverts to the opponent. This change of possessiofers a significant
disadvantage for a team to score twice in succession. Oag&gmmediately after

a score, the same team scores again with probalitty.348, while the opponent
scores with probability 852. This tendency for alternating scores is characteristi
of ananti-persistentandom walk (Gara-Pelayo (2007)), in which a step in a given
direction is more likely to be followed by a step in the oppesiirection.
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As we now discuss, this anti-persistence is a determinictgifan the streak-
length distribution. A streak of lengthoccurs when a team scores a totatebn-
secutive points before the opposing team scores. We d@fisjeas the probability
for a streak to have length To estimate this streak-length probability, note that
sinces = 2.0894 points are scored, on average, in a single play, a scsitieak of
spoints corresponds 'S consecutive scoring plays. In terms of an anti-persistent
random walk, the probabilit@(s) for a scoring streak o points isQ(s) = Ag¥/S
whereA = g~1/5— 1 is the normalization constant. This simple form reprogduce
the observed exponentially decaying probability of sapsireaks reasonably ac-
curately (Fig. 4).

- = = Q(s)=Aq¥?!

= Refined Model
O Game Data

0 5 25 30

1‘0 15 26
Streak Length [points]
Figure 4: ProbabilityQ(s) for a consecutive point streak spoints ©). The dashed
line corresponds tQ(s) = Ag¥/S, with g = 0.348 andA the normalization constant.
The solid line corresponds to a refined model that incorpsrtte different proba-
bilities of 1, 2, 3, and 4-point plays (see Egs. (4) and (5)).

However, we can do better by constructing a refined modeltbatporates
the different probabilities for 1, 2, 3, and 4 point plays.t lag be the probability
that a play is wortha points (Table 1) and lety, be the value of then" play
in a streak. A scoring sequeng®,... vy} that results ins points must satisfy
the constrainty;_, vk = S, wheren is the number of plays in the sequence. The
probability for this streak is given by]y_, W, . Because a streak of lenggipoints
involves a variable number of plays, the total probabildyd streak of points is

00

Q(s) = Zl [q”‘l(l—q)g <kﬁIWVK)] ; (3)
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Here the inner sum is over all allowed sequeneg of n consecutive point-
scoring events, and the factq¥ (1 — q) gives the probability for a streak of ex-
actly n plays. For example, the probabilities for streaks up+o4 are:

Ql)=1-gw

Q(2) = (1-a)[wa + aw] @
Q(3) = (1—a)[ws + 20wew1 + °Wj]

Q(4) = (1—0)[Wa + q(2wawy +W3) + 307 WoW5 + G°Wj]

A direct calculation of these probabilities for geneshlecomes tedious for
larges, but we can calculate them recursively for 4. To do so, we decompose
a streak ok points as a streak &f— v, points, followed by a single play that of
points. The probability of such a play @sw,,. Because the last play can be worth
1, 2, 3, or 4 points, the probability for a streak of lengik given recursively by

Q(s) = gw1Q(s— 1) +W2Q(s— 2) +w3Q(s— 3) +WsQ(s—4)]. (%)

Using Egs. (4) and (5), we may calcul&és) numerically for anys. The resulting
probabilities closely match the empirical data (Fig. 4ggesting that streaks arise
only from random statistical fluctuations and not from teammdividuals getting
hot or cold.

Another intriguing feature of basketball games is that ttogiag probability
at any point in the game is affected by the current score: thbagbility that the
winning team scores decreases systematically with its $&s& conversely, the
probability that the losing team scores increases systeatigitwith its deficit size
(Fig. 5). This effect is well-fit by a linear dependence of thas on the lead (or
deficit) size. (Such a linear restoring force on a random wgatkown in the physics
literature as the Ornstein-Uhlenbeck model (Uhlenbeck@mtein (1930)). For
basketball, the magnitude of the effect is small; assumifigear dependence, a
least-squares fit to the data gives a decrease in the scatmg@fr0.0022 per point
of lead. Naively, this restoring force originates from thi@mng team ‘coasting’ or
the losing team increasing its level of effort.

We now build a random-walk picture for the time evolutiontud difference
in the score)\(t) between two teams. Each game starts scorelesa@ndubse-
guently increases or decreases after each scoring playthmtgame ends. The
trajectory ofA(t) versust qualitatively resembles the position of a random walk
as a function of time. Just as for random walks, the stasityicsignificant quan-
tity is 02 = var(A(t)), the variance in the score difference, averaged over many
games. For a classic random wati = 2Dt, whereD is the diffusion coefficient.
As illustrated in Fig. 6,02 does indeed grow nearly linearly with time for NBA

8
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Figure 5: Data for the probabilit§(L) that a team will score next given a lead
(o). The line is the least-squares linear 8tl.) = % —0.0024..

basketball games, except for the ladi ghinutes of the game; we will discuss this
latter anomaly in more detail below. A least-squares liriedo all but the last 2.5
minutes of game data gives’ = 2Ds;t, with Dy = 0.0363 pointé/sec.

We may also independently derive an effective diffusionstant from the
time evolution of the score difference from basic paransetéran anti-persistent
random walk. For such a walk, two successive scores by the ssam correspond
to two random-walk steps in the same direction. As menticatsale, we found
that the probability of this outcome = 0.348. Conversely, the probability for
a score by one team immediately followed with a score by th@osimg team is
1—g. Let us defindP(A,t) as the probability that the score difference equats
timet. Using the approach of GdezPelayo (2007) for an anti-persistent random
walk, P(A,t) obeys the recursion

P(A7t + T) = qP(A_ ﬁ,t) + qP(A_Fg?t) + [(1_ q)2 - qz]P(A7t - T)v (68.)

where/ is the point value of a single score. To understand this émuate rewrite
it as

P(At+1) = qP(A—£,t) + P(A+£,t) — P(At—T)] + (1— q)P(At —T). (6b)

The second factor in (6b) corresponds to two scores by aliegiteams; thus the
score difference equals at timet — T and again at timé+ 1. This event occurs
with probability 1— g. The terms in the square bracket correspond to two suceessiv
scores by one team. Consequently a score differenfietd/ at timet — 1 evolves
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Figure 6: Variance in the score differena@?, as a function of time. The line
02 = 2Dsit is the least-squares linear fit, excluding the last 2.5 neimwatf data.
The variance reaches its maximund 2ninutes before the end of the game (dashed

line).

to a score differencA at timet + 7. Thus the corresponding walk must behat ¢
at timet butnotatA at timet — 1.
ExpandingP(A,t) in Eq. (6a) to first order ih and second order i yields

2 32 2

k__a _LoP_p 0P 7)

ot (1-q) 21 9A? N2
whereDgyp is the effective diffusion coefficient associated with ari-persistent
random walk. Notice that fog = 3 the score evolution reduces to a simple sym-
metric random walk, for which the diffusion coefficientls, = ¢2/(21). Substi-
tuting in the values from the game daja= 0.348 (probability for the same team
to score consecutivelyf,= 2.0894 (the mean number of points per scoring event),
andt = 30.39 seconds (the average time between successive scorintsgwee
obtain

q ¢

Dgp=——-—=0.0383 8
P 1-qg2r ®

This diffusion coefficient is satisfyingly close to the valDs; = 0.0363 from the
empirical time dependence?, and suggests that an anti-persistent random-walk
accounts for its time dependence. We attribute the smaldtefsncy in the two
estimates of the diffusion coefficient to our neglect of tinear restoring force in
the diffusion equation (7),

Thus far, we have treated all teams as equivalent. In fagtinttuence of
team strengths on basketball scoring is not decisive — wdakens can (and do)

(points)?

10
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Figure 7: Probability for a given score difference at the ehdhe first quarter,
after 45.5 minutes, and at the end of the game. The abscissscialed by linear
fit of variance,0? ~ 2Dt (see Fig. 6). The dashed curve is the distribution from
simulated games with team strength variargg= 0.0083 (see Sec. 4).

win against better teams. The data show that the winning teaany game has a
better season record than the losing opponent with praba®i6777. Thus within
our random-walk picture, the underlying bias that arisesnfthe disparity in the
strengths of the two competing teams is masked by randorkfluatuations. For a
biased random walk with bias velociyand diffusion coefficienD, the competition
between the bias and fluctuations is quantified byR&eletnumberPe= vt /2D
(see, e.qg., Probstein (1994), Redner (2001)), the ratioeohtierage displacement
squaredvt)? to the mean-square displacemebt 2aused by random-walk fluctu-
ations. ForPe < 1, bias effects due to disparities in team strengths aregileig,
whereas forPe > 1 the bias is important. For basketball, we estimate a typica
bias velocity from the observed average final score diff«aeem ~ 10.7 points,
divided by the game duration ¢f= 2880 seconds to give~ 0.0037 points/sec.
Using D ~ 0.0363 pointé/sec, we obtaifPe~ 0.55, which is small, but not negli-
gible. Consequently, the bias arising from intrinsic défieces in team strengths is
typically not large enough to predict the outcome of typNBIA basketball games.
Finally, the scoring anomaly associated with the last 2 fineis of the game
is striking. If the score evolves as an anti-persistent oamavalk, the distribution

11
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of the score difference should be Gaussian whose width gvatistime as+/Dt.

As shown in Fig. 7, the distribution of score difference h&aassian appearance,
with a width that grows slightly more slowly thajiDt. We attribute this small de-
viation to the weak restoring force, which gives a diffusgmmstant that decreases
with time. However, in the final B minutes of the game, the score-difference dis-
tribution develops a spike @ = 0 and dips for smallA|. Thus close games tend
to end in ties much more often than expected from the randatk-picture of the
score evolution. This anomaly may stems from the losing tpkaying urgently to
force a tie, a hypothesis that accords with the observeéaserin scoring rate near
the end of the game (Fig. 1).

4 Computational Model

From all of the empirical observations about scoring, we owstruct a compu-
tational random-walk model that broadly accounts for pstring statistical phe-
nomena, as well as the win/loss record of all teams at the et season. In our
model, games are viewed as a series of temporally homogsmenluncorrelated
scoring plays. The time between plays is drawn from a Poidginbution whose
mean is the observed value of.30 seconds. We ignore the short-lived spikes
and dips in the scoring rate at the end of each quarter (Fend plso the very rare
plays of 5 or 6 points. Thus plays can be worth 1, 2, 3, or 4 gowith correspond-
ing probabilities drawn from the observed distribution @mble 1. Simulations of
scoring events continue until the final game time of 48 misugeeached.

There are three factors that determimbkich team scores. First, the bet-
ter team has a greater intrinsic chance of scoring. The sefamtor is the anti-
persistence of successive scoring events that arises frerohiange of possession
after a score. The last is the linear restoring force, in Whie scoring probabil-
ity of a team decreases as its lead increases (and vice \wraadam in deficit).
We therefore write the probabilitid? andPs that team A or team B scores next,
immediately after a scoring event, as:

Pa=1ao—0.152 — 0.0022A,

9
Ps = Ig+0.152 +0.0022). 9)

Herela andlp are the intrinsic scoring probabilities (which must satigf+ 1g = 1;
and the termt-0.152 accounts for the anti-persistence. Heie defined as

+1 team A scored previously
r=< —1 team B scored previously (20)
0 first play of the game

12

Brought to you by | Boston University Library
Authenticated | 128.197.40.148
Download Date | 9/19/12 5:16 PM



Gabel and Redner: Random Walk Picture of Basketball Scoring

and ensures that the average probability for the same teaoote twice in succes-
sion equals the observed value of 0.348. Finally, the te@@2Z2\ (with A the score
difference) accounts for the restoring force with the efopily measured restoring
coefficient (Fig. 5).

In our minimalist model, the only distinguishing charadgc of teama
is its intrinsic strengthX,. We estimate team strengths by fitting simulated team
win/loss records to that predicted by the classic BradlayyTeompetition model
(Bradley and Terry (1952)), in which the intrinsic scoringlpabilities are given by

_ K o ®
Xa+Xg °T XatXs

To simulate a season, we first assign a strength parametercctoteam that is
fixed for the season. We assume that the distribution of gtinenis drawn from
a Gaussian distribution with averagg and variancen)% (James, Albert, and Stern
(1993)). Nearly identical results arise for other teamrgitk distributions. Since
the intrinsic probabilities|a andlg, depend only on the strength ratia /Xg, we
may chooseuyx = 1 without loss of generality, so the only free parameternis
We determines? by simulating many NBA seasons for a league of 30 teams for a
range of(I)% values and comparing the simulated probability distrimsifor vari-
ous fundamental game observables with corresponding maipitata.

Specifically, we examined: (i) The distribution of a givendlirscore dif-
ference (already shown in Fig. 7). (ii) The season team wmpercentage as a
function of its normalized rank (Fig. 8 (a)); here, normatizank is defined so that
the team with the best winning percentage has rank 1, whidégam with worst
record has rank 0. (iii) The probability for a team to leaddagiven fraction of the
total game time (Fig. 8 (b)). (iv) The distribution of the nber of lead changes
during a game (Fig. 8 (c)).

Our motivation for focusing on these measures is that theyige useful
statistical characterizations of how basketball game$sevarhe score difference
is the most basic information about the outcome of a baskeghme. Similarly,
the relation between rank and winning percentage providdeam overall test of
our model. The probability for a given lead time is motivatgdthe well-known,
but mysterious arcsine law (Feller (1968)). According t tlaw, the trajectory
of a one-dimensional random walk is likely to always be on side of the origin
rather than the walk spending equal amounts of time to thefef to the right of
the origin. The ramification of the arcsine law for baskdtisaihat a single team is
likely to lead for the most of the game rather than both teanegjtially sharing the
time in the lead. As a corollary to the arcsine law, there gpeeally v/N crossings
of the origin for a one-dimensional random walkN&teps, and the distribution of

A (11)
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Figure 8: (a) Winning percentage as a function of team rahle. data (circles) cor-
respond to the 1991-2010 NBA seasons. The solid curve isrthdated win/loss
record when the team strength variawge= 0.0083. The dashed curve is the simu-
lated win/loss record if all teams have equal strengﬁmz 0. (b) Probability that a
randomly-selected team leads for a given total time. (ch&odity for the number
of lead changes per game: datq &nd simulation (curve). Simulations were run
for 10* seasons witlsZ = 0.0083.

the number of lead changes is Gaussian. These origin cgassimrespond to lead
changes in basketball games.

For each of the four empirical observables listed above, avepare game
data with the corresponding simulation results for a givene of the team strength
variancea%. We quantify the quality of fit between the game data and thelsition
results by the valug? defined by

X2 =3 (Fe(x) —Fs(x)?. (12)
X
HereFe(x) is one of the four above-mentioned empirical observalblgs) is the
corresponding simulated observable, anslthe underlying variable. For example,
Fe (X) andFs(x) could be the empirical and simulated probabilities of thalfatore
difference and would be the final score difference.
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Figure 9: x2 as a function ofoﬁ for: the score difference distribution at 45.5 min-
utes 6), number of lead changes per gamg){ distribution of time that a team is
leading ¢), and winning percentage as a function of ran (Each point is based
on simulation of 18 seasons.

Figure 9 shows the values gf as a function ob% for the four observables.
The best fit between the data and the simulations all occunwiés in the range
[0.00665 0.00895. To extract a single optimum value fog, we combine the four
X2 measurements into a single function. Two simple and natihaices are the
additive and multiplicative forms

4 2 4 2
fogqg= S —2 four= 1 —2 13
add i; min(x?) mult ﬂ min(x?) (13)

where the sum and product are over the four observajfeis, associated with the
i"" observable, and miix?) is its minimum over alloZ values. The denominator
allows one to compare the quality of fit for disparate funt$ioln the absence of
any prior knowledge about which statistical measure abaskétball scoring is
most important, we have chosen to weight them equally. Wighahoice, bothf,4q
and fit have minima aU>% = 0.0083. Moreover, for this value Q:f)%, the value of
x? for each observable exceeds its minimum value by no more1t@®%. These
results suggest that the best fit between our model and ealpilata arises when
we choosea% = 0.0083. Thus roughly 2/3 of the NBA teams have their intrinsic
strength in the range-t /02 ~ 1+ 0.09.
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5 OQutlook

From all the play-by-play data of every NBA basketball gamerdour seasons,
we uncovered several basic features of scoring statigticst, the rate of scoring is
nearly constant during a basketball game, with small catigels between succes-
sive scoring events. Consequently, the distribution of imervals between scoring
events has an exponential tail (Fig. 2). There is also asga@nti-persistence, in
which a score by one team, is likely to be followed by a scoréhieyopponent be-
cause of the possession change after each basket. Fihallg,is a small restoring
force that tends to reduce the score difference between etiions, perhaps be-
cause a winning team coasts as its lead grows or a losing tiegsmore urgently
as it falls behind.

Based on the empirical data, we argued that basketball gcdata is well
described by a nearly unbiased continuous-time random, watk the additional
features of anti-persistence and a small restoring foreen Ehough there are differ-
ences in the intrinsic strengths of teams, these play a sotalin the random-walk
picture of scoring. Specifically, the dimensionless measirthe effect of dis-
parities in team strength relative to stochasticity, téelét number, is small. The
smallness of the &let number means that it is difficult to determine the sioper
team by observing a typical game, and essentially impassiplobserving a short
game segment. We simulated our random-walk model of scargfound that it
satisfyingly reproduces many statistical features abaskétball scoring in NBA
games.

This study raises several open issues. First, is the exgiahdistribution of
time intervals between scoring events a ubiquitous featfisports competitions?
We speculate that perhaps other free-flowing games, sueti@sse (Everson and
Goldsmith-Pinkham (2008)), soccer (Dyte and Clarke (2Q@#)hockey (Thomas
(2007), Buttrey, Washburn, and Price (2011)), will have tame scoring pattern
as basketball when the time intervals between scores areleesby the average
scoring rate for each sport. It also seems plausible that ¢étctical metrics, such
as the times intervals between successive crossings ofiatddby the game ball
(or puck) may also be described by Poisson statistics. Hidout, perhaps there is
a universal rule that governs the scoring time distribuiiogports.

Seen through the lens of coaches, fans, and commentatsksgtball is a
complex sport that requires considerable analysis to staled and respond to its
many nuances. A considerable industry has thus built updatify every aspect of
basketball and thereby attempt to improve a team’s conngesitanding. However,
this competitive rat race largely eliminates systematiaathges between teams,
so that all that remains, from a competitive standpoint,sanall surges and ebbs
in performance that arise from the underlying stochagtitthe game. Thus seen
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through the lens of the theoretical physicist, basketlsatherely a random walk
(albeit in continuous time and with some additional sugtand many of the
observable consequences of the game follow from this randalk description.
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