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Abstract

The question of assignment of probability to path history in quantum phenomena is
examined in what are believed to be simple quantum phenomenal structures. The har-
monic oscillator and its various ramifications are analyzed in the framework of Complex
Measure Theory and it is shown that conditional measure/probability can be assigned to
the history of simple paths like transit through Gaussian slits.
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1 Introduction

The object of this contribution is to show that the assignment of probability to paths is
a tricky affair and in direct conflict with some of the fundamental postulates of quantum
mechanics. Quantum phenomena has been explained all along essentially by Schrodinger-
Heisenberg-Dirac approach where probability has practically no role to play. Von Neu-
mann(1955) who provided a mathematical basis for the new mechanics in terms of a
Hilbert structure with operators merely crafted the Born interpretation by an additional
statement that the trace of an operator corresponds to probability.It is rather strange that
Planck radiation formula that has many an implication on statistical aspects is explained
away by current formulation of quantum mechanics. However the interpretation of quan-
tum mechanics with specific reference to the notion of an event and its connection to the
further evolution of the state vector is tricky and very often it is not recognized that a
satisfactory explanation is not within the framework of original postulates. The Feynman
path integral formalism1948)is an attempt to overcome some of these difficulties; firmly
based on the earlier investigations of Dirac(1933) the formalism is viable enough to trans-
late the classical time evolution in quantum mechanical terms and provides a description
in terms of trajectories each of which,by the superposition principle,contributes to the
quantum mechanical amplitude. Although it appears very tempting to interpret it as
some kind of a complex measure(see for example Gelfand and Yagalom, 1956),it is rather
difficult to figure out any kind of positive definite measure in view of the unbounded
nature of the variational measure arising therefrom1960)(see however Ito 1961). Never-
theless the path integral approach provides an alternative self-contained reformulation of
quantum mechanics (see Feynman and Hibbs 1965)and is capable of direct extension to
cover gauge fields. However the probabilistic interpretation is to come through the Born
interpretation since neither the classical action nor its quantum mechanical counterpart
implies any notion of probability.

It is to be specially noted that the state of a quantum system, the Hilbert space
to which it belongs and the measurement system involve the notion of an event at a
single epoch and the Born interpretation provides a link, albeit weak, to the probabilis-
tic structure; the non-deterministic elements arising from measurement and events at
different epochs cannot be interpreted from the Born interpretation without adding fur-
ther postulates. Despite this the probabilistic notion corresponding to multiple epochs
is freely introduced in the current literature giving the impression that the path integral
formalism is all inclusive to admit a comprehensive probabilistic structure. Unfortunately
the so called path integral measure is not additive; nor can a bounded variational mea-
sure be derived from it. However the experimental results favor a deeper connection
to probability(see for example Youssef, 1991,1994);exchanges do continue over quantum
phenomena being formulated as a stochastic process(Skorobogatov and Svertilov, 1998).
It is in this context that the complex measure theoretic approach proposed some time



back(Srinivasan and Sudarshan, 1994;Srinivasan,1997,1998) assumes significance. In such
a Complex Measure Theoretic Framework(CMTF),quantum phenomena is modelled as
a complex measurable stochastic process endowed with Markov property;some further
constraints on the process lead to a Fokker-Planck type equation with complex valued
drift and diffusion functions. It turns out that explicit characterization is possible in the
case of a free harmonic oscillator and forced harmonic one and this provides a method of
dealing with the problem of interaction of radiation with matter; connections are provided
to the path integral formalism in a rather gross manner and tally is provided with major
results, an interesting feature being the removal of divergences at least in the context
of Lamb shift with the ultra-violet cutoff in conventional method now turning out to be
valid numerical approximation in CMTF. The object of this contribution to present the
analysis of the harmonic oscillator and its various ramifications and examine how far it is
possible to associate a positive definite probability to the history of trajectories generated
by a harmonic oscillator.

2 Simple harmonic oscillator

At the outset we note that the one dimensional quantum harmonic oscillator is described
in CMTF by a diffusion process for the coordinate x with the drift and diffusion functions
specified by

(1) Ax) = —iwx (Drift)

(2) D(x) = —ih/(2m) (Diffusion)

The complex measure density (CMD)function 7(z,t | zg) of the coordinate is then given
by 11)
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where xq is the position of the coordinate at time ¢t = o(initially). It is reasonable to
conclude that this corresponds to a measurement leading to the value xy at ¢ = 0. Under
the gimmick w — w — i€, the limit of 7 as ttends to infinity is given by

(4) lim (2, | 29) = (mw)l/g exp {—m“mz}

7h h

so that we conclude that the oscillator relaxes to the ground state ultimately. It is worth
noting that the measure density in the limit is real and positive valued quite accidentally.
However for a finite value of ¢, we consider the variational measure density (called modulus
measure density in (Srinivasan 1997) appropriately normalized and this is given by

mw\ /2 mw?
(5) mw(x,t| zg) = <27rh> exp {— o7 }




a result manifestly demonstrating the doubling of the variance as compared to the ground
state. As observed earlier(Srinivasan 2001), in CMTF the result obtained from the varia-
tional measure can be interpreted as the one resulting from a measurement;thus each time
a measurement is made on the coordinate, its variance gets doubled. Thus a sequence of
measurements corresponds to the stopping and restarting of the process with the coordi-
nate being governed by the variational density. Hence if a sequence of measurements is
made,there results ultimately a real white noise process as is to be expected.

Next we take up the problem of assignment of probability to history. First we note
that even for this simple situation there does not exist a stochastic process (with positive
definite measure);this is easily verified by taking a multi-time point complex measure
density and imposing the modulus on it. Thus it may be worthwhile to consider the
ground state and evaluate the the probability of passage of the coordinate through a
Gaussian slit. The Gaussian slit is preferred rather than a window of a given width for
computational simplicity. Let us assume that the slit is specified by a weight function
fw(z,0) where

©) fiwte:0) = (e oo o~ 07/0).

In other words the window is approximated by the function fy (z,0). At the outset we
note that the measure density is independent of ¢ and the probability p(, o,t) of passage
through the slit at epoch t is given by

2

p(T,0,t) = <T:;J)l/2/fw(flf) eXp{—mL;Lm }dx

1, 1/2 2
(7) = {W(O' + [h/mw])} exp {_02—1—(h/mw)}'

It is interesting to note that the function p(.,o,t) is not a density in as much as the
probabilities corresponding to two different but close enough values of T are not exclu-
sive; nevertheless the integral of p(Z, o, t) with respect to T yields unity by virtue of the
special form of the function fyy(.,0). In conventional quantum mechanical approach as
contrasted with CMTF, this aspect goes unnoticed in as much as all vectors in the Hilbert
space are automatically chosen to have norm equal to unity.!We shall presently see the
gravity of the situation when we deal with passage through two slits.

"However Dowker and Halliwell(1992) did observe the overlapping while introducing projectors for
Gaussian slits and had consequently taken into account the overlap while providing constraints for
decoherence



Next we assume that the oscillator initially in ground state is passed successively
through two slits at epochs ¢; and ¢, respectively centred at x and y with respectively
widths o and p. The conditional CMD of the oscillator coordinate at epoch ¢, denoted
by w(xo,ts | T,0,t1)? is given by

AN /2 p—iw(ta—t1) 2
(8) 7T(.§L’2,t2 | z,o, tl) = () exXp —A |fU2 — .’LT]
T

mwo?/h] + 1

where

) A=

mw 1
h 1 — e 2wlta=t) [[(mwo?/h) + 1]
From the above expression it is a straightforward exercise to obtain the conditional prob-

ability density function of the coordinate X(¢5) at time ¢, conditional on the passage
through the slit centered on T at timet;:

mwK)1/2 { mwki
exp < —

(10) pla, ol o t1) = (" .

(22 — xG]Q}

where K and G are given by

<mc7<%02 + 1) <mu}%02 + 2sin? w(ty — t1)>

(11) K=

2 2
(m%(j + 2sin® w(ty — t1)) +4sin® w(ty — 1) cos? w(ty — 1)

2

mMwo 1

(m%ﬂ + 1)(m%02 + 2sin’ w(ty — 1))

Next we note that in order to obtain the conditional probability of passage through
another slit (7, p) at time 5, we need to multiply p(zs, t2|Z, 0, t1) by the Gaussian window
function fiy(z2) and integrate over xo. Thus we have

12) 6= (" feositra - 1)

1/2
(13) p(y7p7t2’x70-7t1> - 5 h exp —(271)
(0 + oK) P+ R

Again we note that despite the fact that the probabilities corresponding to two distinct
but close enough values of 7 overlap,the function p(., p, t2|Z, t1) is normalized in the sense
the integral of p over ¥ is equal to one. Although the CMD 7 given by (8) can lead to
some kind of a complex probability of passage through the slit,it is not a complex measure
in a technical sense and hence no variational measure can be extracted out of it and this
is the main reason why we first obtained a positive measure density from 7 and then

2Throughout we use the symbol 7 to denote the complex measure or measure density and p to denote
the positive probability.



proceeded to evaluate the probability of transit through the slit. Thus the question of
assignment of consistent probabilities does not arise. In fact the probability of passage
through the slit as given by (13) can be used as a crucial test for CMTF itself. Another
noteworthy point is that we have a framework to define in a consistent way a sequence
of measurements(corresponding,in this case, to a sequence of passages through the slits)
since the interference of each measurement is describable as a conditional measure in the
first instance.

To sum up the CMD conditional on X (t) = zg at t = ¢, on imposition of modulus
measure at ¢t = ¢; leads to a zero mean normal variable with variance “* which is double
the value corresponding to the ground state. The modulus measure density is stable in
the sense that this density is reproduced every time the process is stopped and restarted
with modulus measure density; thus the resulting stochastic process is a collection of
i.i.d random variables with a normal density with zero mean and variance equal to %
It should be noted that these properties hold for short times and that if we wait long
enough the system relaxes to the ground state(under the gimmick(w — w — i€). Even at
the risk of repetition,we note that the probability of the passage through the slits is best
evaluated by first arriving at the mod measure of the coordinate and then considering the
passage through the slit. Next the correlation function E[X (1) X (t2)] with respect to the

original complex measure is given by

(14) EMﬁﬁX®H—<JL>eM”“N@>u)

If modulus measure is imposed at t; and the process re-started,the correlation function is
given by

h
(15) BLX(0)X(0)] = (

) ) (1 > 1)
mw

If modulus measure is imposed at the final point ¢5, then there results a delta corre-
lation;if modulus measure is imposed at a sequence of epochs, we obtain a white noise.
This can be interpreted to mean that too many observations lead to a white noise process
implying that there is a quantum phenomenal way of generating the white noise process.
The situation changes drastically if we deal with a slightly altered scenario wherein the
relevant measure density is genuinely complex valued. We discuss below such a situation
where initially the oscillator is conditioned to be in a displaced ground state.



3 Conditioned Harmonic Oscillator

Let us again introduce a free harmonic oscillator when initially (at ¢ = 0),the oscillator is
in a displaced ground state or equivalently in a coherent state a:

(16) (2, 1) |1=¢o = (%)1/2 exp {—W;Lw(x - 04)2}

where « is a complex valued parameter. We pass the oscillator through a Gaussian
slit(Z, 0?) at epoch t;. In this case we define p(T, o,t;) as the normalized modulus value
of the complex measure of passing through the slit;now p is given by

15000 = (magren)

T — t1 —to) — nw(t; — to))?
exp{—[x ajcosw(ty — tg) — aasinw(t; — to)] }

(17) [h/mw] + o2

Next we proceed to obtain the conditional CMD of the oscillator coordinate at ts,
the coordinate process being conditioned by the passage through the slit at ¢;; this is
conveniently done by first evaluating the CMD of the coordinate at ¢, and the passage
through the slit at ¢;. Thus we have

(g, ta; the process stops and re-starts with mod measure at t,7, 0, t1; | a, to)

(18) = p(Z,0,t1 | a,to)m (2, ta | mod measure at t1;7T,0,t1; , to)

where

A

1/2
7(xe,ty | mod measure at t1; 7, 0, t1; a,ty) = ()
T

(19) exp¢ —A

mw ) efiw(tgftl)
o

h %02—{—1

Ty — <x + [agcosw(ty — to) + agsinw(ty — to)]

where A is defined by (9). Now the conditional mod measure density function of X (¢s)
follows from the above equation; on taking the mod measure and normalizing, we have

(20) p(x2, to|T, 0, t1; 0, tp) = ( 7

where M is given by

mw02

h

(21) M =uxz,— G{T + [y cosw(ty — tg) + agsinw(t; — to)]}



where K and G are given respectively by (11) and (12). The conditional probability of
passage through a second slit of width p centered at 7 is easily obtained; thus we have

oY y—H)
(22) p(y7p7t2|fap7tl;a7t0) - (ﬂ- {p2+K}> exp _(yh)
mw P+ UK
where H is given by

mwao?

(23) H=G (x

{ag cosw(t; —ty) + agsinw(t; — to)}> :

It is worth noting that the joint probability of passage through the two slits can be ob-
tained from (22) and (17) by elementary arguments and the question of consistency does
not arise since the passages are defined only sequentially;because of the overlap prob-
lem,there is no avenue open in CMTF to define the joint probability directly. Thus unlike
conventional quantum mechanical treatment, inconsistencies are automatically avoided
here.

At this juncture it is worth looking at the CMTF description of the complex measure
of the passage through two slits; since the method gimmicks the conventional quantum
mechanical method of analysis,it will be helpful to see the anomaly with greater clarity.
Thus if we take the CMD for X(¢;) and integrate it after weighting with the function
fw (x1, p) we have

1/2

T — —iw(t1—1t0)]2
mh(T5 +1) mw T O°

where it is worth noting that the function 7 (Z, 0, t1]«, to) is not a measure density. Anyway
we continue in this vein and obtain an expression for the second order complex valued
function describing the passage through the slits centered at (7, ¢;) and (7, t2):

1/2
o -, 1 1
(Y, p, ta; T, 0, 11| a, to) = 7(T, 0%, t1 |, to) P fq_ et
F ol = e )
M
1
€xTp § — A —2iw(ty—ty)
PP+ —
ma mwo? )
_ Cioltstg) €T —iw(t1—to) i
(25) 7y — ae W\ 0—7%00_2_’_1{1'—&6 1)y



If we now integrate over T, we find

h —-1/2 = ae—iw(tQ—to) 2
/71'(@, P, tQ;fa g, t1|O{,t0)dT = {’N(pQ + )} €ETp — [y i ]
mw

P+ mw

a relation showing the normal consistency check for complex measures. However we can-
not conclude that the 7 functions introduced above are genuine measure densities in view
of the overlap discussed earlier. Thus we cannot resort to mod measure and normalize
to make the total measure unity. At this juncture it is worth noting that in the conven-
tional treatment the density matrix corresponding to the passage through several slits
is obtained using the path integral formalism and the desired probability is identified to
be the diagonal element of the density matrix. However there is a problem in the con-
ventional quantum mechanical formalism; the Gaussian slit is at best an approximation
used to simplify the evaluation of the amplitude/density matrix corresponding to a slit
of deterministic width. The passage through the slit amounts to a measurement after all
and the Heisenberg principle comes into play at each passage through the slit , a scenario
completely ignored. However arguments can be put forward against the applicability of
Heisenberg’s uncertainty principle by invoking the closed nature of the system; still the
normalization factor is to be put in to obtain the probability an aspect,completely ignored
in the literature.On the other hand, this issue is automatically well focussed in CMTF as
we have seen earlier. In the present case,it is very transparent.In fact this is a fit case for
experimental verification. Unfortunately, the Gaussian slit experiment (see for example
Feynman and Hibbs (1965)p.47)is still a gadenken.

Last we present one more result that goes to show that theoretically it is possible to
arrive at the probability of a two-time ’observation’ of the coordinate:

mw
(@2, t2; 21, |, t0) | od. measure = (27rh>

(27) exp — {Z;;d[xg + (21 — 2 cosw(ty — ty) — 2agsinw(ty — to))Z]}

Even at the risk of repetition, we observe that no attempt should be made to derive the
marginal probability density functions of the coordinate corresponding to time epochs t;
and t5 from the above probability density function since in CMTF such density functions
essentially arise by measure transformation at these epochs after stopping the process at
t; and t5 respectively. From a purely statistical inferential point of view, it is worth noting
that a frequency ratio connection can be provided to the joint probability density function
given by (26); this will correspond to repeated non-interfering(i.e. non-destructive) type
of ’observations’ at the epochs t; and t5. In fact there is a generalization of an observa-
tion friendly Chebycheff type of inequality derived elsewhere (Srinivasan,2005a)that will



provide the desired connection in a limiting sense;the result can be stated as follows:

Extended Chebycheff inequality: If X and Y are two random variables (i.e. measurable
functions with respect to the complex measure space)and myx and my are respectively
the expected values with respect to the mod measure,then the complex measure denoted
by Pr, for arbitrary ki, ko > 0,satisfies

(28) |Pr{|X (t1) — mx| > kiox, | X (t2) — my| > kooy} < Ae/[k3k305%0%]

where A is the normalizing constant arising in the definition of mod measure in (26) and
k is the joint moment given by

(29) k= E{[X —mx]*[Y — my]*}

where the expectation is with respect to the mod measure of the joint density function.
The proof of the above inequality is fairly straightforward. In the special case when the
mod measure density is defined by (26), « is simply equal to(1+2p?)o% 0% It is interesting
to note that the above inequality says nothing about the complex measure or the possible
statistics arising therefrom; on the other hand it implies some kind of a convergence of
the statistics of the mod measure to those obtained by frequency ratio method.

4 Harmonic oscillator in a bath

Now we wish to discuss the various aspects of a test (harmonic) oscillator in interaction
with a collection of oscillators consisting a bath. Normally the study of interacting os-
cillator is a complex one; however in our case we make the (drastic) bath approximation
so that the test oscillator feels the effects of the bath substantially with the bath itself
being unaffected by the presence/interaction of the test oscillator. Such an oscillator had
been the subject of investigation from various angles by numerous authors including Feyn-
man and Vernon (1963), Ford, Kac and Mazur (1965) and Caldeira and Legget (1983).
The model had been elegantly handled by the path integral method by Feynman and
Vernon (1963) treating the distinguished (test) oscillator as a forced harmonic oscillator,
the forcing term arising from its interaction with the bath. Dowker and Halliwell (1992)
had discussed this problem with special reference to the general aspects of quantum me-
chanical history and decoherence. We here show how certain probabilities relating to the
history of paths can be handled in CMTF.

We note that the motion of the distinguished (test) oscillator in interaction with
the bath is best visualized as a forced harmonic oscillator with the bath characteristics
included in the forcing term. In CMTF, we can introduce the bath characteristics (IB)
as some kind of a conditioning; denoting the conditional CMD by w(z,t|xo, to; B) we

10



note that 7 satisfies the Fokker-Planck equation with D(z) the usual complex diffusion
coefficient and A(x) which is now a function of ¢ also is specified by

(30) Alz) = —iwz + B(¢)
(1) 5(6) = [ e ps)ds
(32) f(t) == CipRy(t)

The additional term 3(t) in the drift function A(x) brings out in a transparent manner the
linear coupling (of the distinguished oscillator) with the coordinate Ry(t) of the typical
oscillator of the bath. Thus the conditional CMD 7 (x, t|xg, to; IB) is given by

. 1/2 .
21wt 21wt . 2
(33)7(x, t|zo, to; IB) = (m‘”el)) exp {-"’m"e [ — woe i — F(t, )] }

ﬂ-h(emwt _ elet —1

where
1

(34) F(t,to) = = /tt F(u) sinw(t — u) du

In the ultimate analysis we consider a continuous assembly of oscillators constituting the
bath; however to obtain results in a rather simple way, we note that if we deal with one
oscillator, then f(u) can be replaced by —C'R(u) whose CMD has a Gaussian structure.
The process of summing over the different oscillators constituting the bath is analyzed
elsewhere(Srinivasan 2005b)); the final result is given by

7Tﬁnal(xv t|zo, to) = Ep[m(, t|zo, to; IB))

A . ~1/2
= {27]- [A + 27(1 _ tew(ttO))] }

mw
(35) exp — (ac _ xoe’i‘”(t*to)f/ 9A + N (1 _ efin(t7t0)>
mw
where Ep denotes the expectation over the bath variables and A is given by
C?h Q7
= — L h="" 1) 1
(36) A Xn: MO, o2 [ 1(n) + (COt T > 2(”)]

The above expression is for the most general case corresponding to independent evolution
of the oscillators of the bath, each starting from a thermal equilibrium state with temper-
ature 7. If however we use the same approximation as the one used by Caldiera-Legget
or Dowker and Halliwell (1992) then r.h.s. simplifies considerably since the oscillators of
the bath are assumed to be in thermal equilibrium for all time; in such a case

(37) L(n) = L(n) = 52 sin? w(t — o)

11



Following Caldeira and Legget if we choose a continuum of oscillators with density pp(£2),
we simply make the replacement

> = [ d2p(9),Co — C(Q)

so that we finally have

2h
Mwt

(38) A= Gin2u(t —t,) /0 * C2(Q)pp(Q)coth—Ldq

2kT

The complex representation of A even in its most general form (35) provides an easy
interpretation of the main characteristics of the test oscillator; besides renormalization
of the frequency the dissipation due to bath is apparent from (34). Next we note that
(32) corresponds to the situation when the test oscillator is initially constrained at a fixed
position xgy; if on the other hand we take the initial configuration to correspond to the
coherent state «, then defining

(39) p(z, tlo, to) = m(z, t|ev, to)|hormalized

mw

mw 1/2 )
(10) e, thaste) = [ pya(a thaos to) <7Th) exp [—h(wo —a) } dxq
we find that p(zq,t1|a, to; B) is given by

p(mlv tl‘Oé, to, B) = 7T(l‘1, tllaa to, B)|mod

1/2
(41) = <7Z:;;> exp {—n;;d[xl —ajcosw(ty —tg) — agsinw(ty — tg) — F(tq, to)]2} :

Next we pass the oscillator through a slit centered at T at time ¢; to obtain

-1/2 - )
(42) p(T, t1|a, to, B) = (W{02 + nZu}> exp {_[x — Fa(t%to)] }

2
o+ mo

where F,(t1,1) is given by
(43) Fa(tl, tg) = F(tl - to) + 1 cos w(tl — to) =+ Qo sin w(tl — to)

We next note that under the assumption that each of the bath oscillators is under thermal
equilibrium,a major simplification arises namely the measure density p continues to be
positive real valued even after the conditioning of the bath variables are removed by virtue
of A remaining positive real valued(see (37)). Thus removing the conditioning,we obtain

~1/2
/ 52

P, tafo; to) = (w{oz + iﬁ) [ @ray™”? exp——

12
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T — ty —tg) — agsinw(ty —ty) — 2]?
exp [m—aicosw(ts — ty) — agsinw(t; —to) — 2] d
0%+

i T — ajcosw(ty — tg) — agsinw(t; — to)]?
o) = (s o+ 1) exp{_[f (t— to) (1 — t0)] }

= 24+ o1 L

This elegant formula is one of the significant results following from CMTF and can be
used as a test of the theory itself.

It is needless to repeat the remarks made in the earlier section which are quite pertinent
in the present context. The probability density function of X(¢3) conditional on the
oscillator having passed through the slit centered at T at time t; can be evaluated using
the same type of analysis presented earlier; we thus have

mwK>1/2 { mwk
exp s —

(45) p(Ig,tﬂT, Uatl; &,to,B) = < A [:L‘Q - Ha]Q}
e

where K is defined by (11) and H, is given by

mwo?

(46) H, = F(ty, ty) + {7 + Fo(ti —t0)}G

where again G is defined by(12). It thus follows that the conditional probability of passage
through the second slit is given by

o\ 7 — H,)?
(47> p(ya P t2|ja g, t1a7t07B) = 7.{-{102 + } €xXp (y )
mwk 0?4 i

mwik

Again this result can be put to test after removing the conditioning if the gadenken for
the Gaussian slit can be realized physically.

5 Summary and conclusions

In this contribution we have examined the problem of assignment of probabilities to the
histories of paths from the point of view of Complex measure theory proposed earlier. The
motivation is essentially due to the fact that deeper problems exist whenever probabilistic
analysis beyond the framework of Born interpretation is resorted to. For instance when
a Gaussian slit is represented by the projector, it gives rise to overlapping probabilities
and the usual Born recipe doesn’t work; unfortunately in the Hilbert space framework, all
vectors are automatically normed to one. The Complex Measure Theoretic Framework
brings out in a transparent way the anomaly. In this case we have shown that there
will be an impasse if we resort to compute the complex measure of the transit through

13



the slit(the analogue of amplitude of the passage through the slit in the conventional
quantum mechanical approach). Thus the only way out is to arrive at the variational
measure (which is normalized) and then use the same to compute the probability of
passage through the slit. Using this method of analysis, we have shown how we can handle
passage through several slits. The method of analysis is transparent and shows how the
process is to be stopped and restarted,a scenario which is very close to the manner the
experiments are designed. Thus in CMTF we have a natural way to deal with situations
by introducing appropriate conditional measures. The probabilities of passage through
the slits are very crucial quantitative measures and can be subjected to experimental test
directly. It is with this motive behind we have presented the results relating to the test
oscillator in a bath.
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